
Managing Dependencies in Heterogeneous
Design Automation Systems
Tim HJERTBERG 1, Roland STOLT and Fredrik ELGH

School of Engineering, Jönköping University, Sweden

Abstract. Increasing competition in cost efficiency, lead-times, product quality,
quotation accuracy, and abilities to provide customization drives companies
toward development and adoption of new methods. To re-use knowledge gained
from previous projects in order to avoid producing the same knowledge again and
to circumvent previously encountered obstacles is an approach which is more or
less used by most companies. Utilization of Design Automation (DA) systems in
the engineering design process have proven to increase process efficiency and to
enable new ways of working by systematic re-use of engineering knowledge. In
order to ensure system longevity, industrial practitioners and researchers have
pointed at implementation and long term management as important aspects to
consider during development. The systems are often built on top of commercial
software and legacy systems integrated by different types of scripts and system
descriptions which becomes dependent of each other in different ways. Changes
made during maintenance in one of these artifacts propagates through the
dependency structure making traceability and transparency key factors for keeping
the system valid over time. This paper presents a description of the problem in a
real industrial setting together with a suggestion of an approach, based on set-up
and management of dependencies between sections inside and across different
types of system components, which is aimed to aid implementation and
management of DA tools. A prototype system which informs the user, of
functional sections related to a functional section to be updated, have been
developed. The prototype is applied on a multidisciplinary heterogeneous system
environment used for simulation based knowledge build up and concept
evaluations of jet engine components.

Keywords. Design Automation, Dependency Management, Customization

Introduction

OEMs and consumers are more frequently demanding high levels of customization of
products. Subcontractors are significantly affected by this since they need to compete
with other subcontractors with providing the most appealing quotation. To be able to
meet the demands, the subcontractors’ infrastructure have to be flexible enough to be
able to provide a large range of external variety and at the same time keep costs low.
This increased demand of customization can be reflected in an increasing amount of
research within the field of customization [1, 2]. Allowing high levels of customization
in manufacturing and development processes generally results in high internal variety,
which in turn is related to increased complexity [3] and increased cost [4] of the
processes. One way to counteract the increased cost, resulting from increased

1 Corresponding Author, E-Mail: Tim.Hjertberg@ju.se

Transdisciplinary Engineering: Crossing Boundaries
M. Borsato et al. (Eds.)
© 2016 The authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/978-1-61499-703-0-279

279

customization, is to actively make use of previously produced knowledge. By re-using
knowledge, creation of the same knowledge over and over is avoided and thereby
avoiding costs related to the synthesis of the knowledge. Re-use of knowledge also
have potential in reducing time since in many cases, less time is needed to implement
already existing knowledge than to reproduce it. In technology and product
development processes, many attempts have been made to re-use knowledge by letting
computer based support tools make use of it in different ways. Design Automation
(DA) is an approach which acts on well formalized engineering processes by
automatically performing tasks with the help of stored knowledge. There are many
approaches to DA which can be used differently depending on i.e. the maturity of the
considered process, where in the development process the DA system is supposed to
act, or the level of customization the system should enable. What could be seen as the
simplest type of customization enabling DA system is a configuration system.
Configuration systems make use of a modular product structure which is configured in
the most suitable way for a specific customer [5, 6]. Other types of systems, with the
ability to provide higher degrees of customization, deals with i.e. parametric design [7],
or Knowledge Based Engineering (KBE) [8]. Systems also exists with the purpose of
generating and evaluating versions of design concepts, often with the help of
simulation software [9, 10]. The Design Automation tools introduces new ways of
working when implemented but also comes with an investment. This investment is re-
gained if the system can be active long enough to enable savings, or produce value in
other ways, proportional to the investment. Over time, processes can change, new
requirements can be added to system functionality, new knowledge is added,
knowledge is changed, and environmental changes can be made to the environment in
which the system is built and operates. These types of changes provides challenges in
keeping the system operational over time and companies adopting Design Automation
systems have described this as problematic. Amongst others, two areas have been
described as underlying reasons as of why these types of changes are challenging and
hard to handle. Transparency of the system itself, and traceability of the knowledge
which the system makes use of or is built upon [11]. The same paper presents a
walkthrough of existing methodologies for system development focused on DA related
applications. Concluded from this investigation, it can be seen that existing
methodologies does not support implementation and maintenance of the systems being
developed. The methodologies however states that these are aspects with importance
and affects the success of the final implemented system. Transparency have been
pointed out as a factor which affects longevity of DA systems [12, 13] and refers to the
ability of accessing the system and its components as well as knowledge used by the
system. Low transparency of the system results in time consuming processes for
performing maintenance and updates. If parts cannot be accessed, they could over time
be rendered invalid, thus reducing functionality, performance and/or accuracy of the
system. Traceability will in this context be referred to the ability to follow an artifact,
and the knowledge fragments of which it is built from, through its development and life.

In this paper an attempt to provide an approach, which aids implementation and
management by proactively introducing traceability during DA system development, is
presented. The traceability is gained by keeping track of dependencies between
functional sections in the system and through this, providing several possibilities to
facilitate management of the system.

T. Hjertberg et al. / Managing Dependencies in Heterogeneous Design Automation Systems280

1. Dependency management

Throughout engineering processes, large numbers of documents are created.
The documents have varying scope and purpose. These documents describe the
product from different viewpoints in different levels of abstraction. They can
describe legal limitations of products and processes, specify customer
requirements, contain knowledge of how to design and evaluate concepts.
Dependencies often exists between the documents which can refer each other in
many ways depending on the format. Dependencies can act on specific parts of
documents, creating a complex dependency structure. Extensive work is
required to track these sub-document level dependencies when changes have
been made and the document collection have to be checked for consistency.

Documents are often subjected to change during the engineering processes
and it is important that they are consistent with each other [14]. The
management of documents in such heterogeneous environments have
frequently been pointed out as important in order to maintain consistency in
document clusters and thereby keeping systems and documents valid [15].
Monticolo et al. [16] addresses this problematic, focused on the engineering
design process and expert models connected to CAD and CAE models. They
describe the problem in a concurrent engineering perspective where
information such as parameters, expert rules, and mathematical relations are
shared by several users in different disciplines. They further state that tools
existing today is not capable of managing encapsulated knowledge and cannot
ensure that information is consistent through different heterogeneous expert
models. A Knowledge Configuration Model (KCModel) is proposed with the
aim to allow for acquisition, traceability, re-use, and consistency of explicit
knowledge used in configuration. The solution for consistency is based on
checking every knowledge instance used in a knowledge configuration with all
other configurations. Their approach is constrained to explicit knowledge.
Scheffczyk et al. [17] proposes the use of strict explicit formal consistency
rules in order to obtain consistency in heterogeneous repositories. They present
a tool which can be used to automatically achieve consistency or to pinpoint
inconsistencies in document structures. By setting priorities to the rules, an
impact assessment can be extracted from the inconsistency analysis. Hutter et
al. [18] presents a system called MAYA. The system is described as a tool
which maintains formal developments. To interact with MAYA, the user
translates specifications to a formal specification language. The specifications
contain theories in which, when the specification is translated to the formal
language, proof obligations are defined to indicate relations to other theories.
External theory provers, such as the one presented in [19], can be connected to
the software in order to operate the proof obligations.

Most research found which deals with consistency of document clusters are
presenting methods of how to automatically achieve consistency by enforcing a
set of rules on the content of the documents. Egyed [20] presents a method for

T. Hjertberg et al. / Managing Dependencies in Heterogeneous Design Automation Systems 281

automatically detecting and tracking inconsistencies in software design models.
Engineers have to define consistency rules which is used by the system in order
to automatically detect violations of the rules. The violations are presented to
the user which has to evaluate if the inconsistencies are relevant to deal with or
not. Xiong et al. [21] introduces a language, called Beanbag, for the purpose of
creating automated fixing procedures in software development environments.
The language is based on languages for writing consistency relations but is also
adapted for the adding of semantics which is used in order to provide a
description for the fixing procedure. Spanoudakis et al. [22] have developed a
model and a prototype system on the model, used to generate traceability
relations. Thus, traceability rules have to be defined manually. These rules are
represented in XML from which the prototype system is able to produce four
types of traceability relations. A very similar model can be seen in [23].

A lot of research have been done to the considered topic. Methods and
tools exists, which helps software developers or other practitioners to keep their
document and system environments consistent and updated. Tools exists which
can automatically keep track of relations between documents or make changes
to code in order to re-obtain consistency. However, in order to build the
environments required for the tools to work, a lot of manual work will have to
be done prior to obtaining automatic consistency checks. Most of the tools are
developed with focus on large scale software development, specific problems
or system entities, and are supposed to be used by pure software developers. In
the engineering design field, a lot of smaller software tool development
projects are performed, without the intention to be part of a larger system in the
future, relatable to the System-of-Systems concept. The individual software
tools are often developed by the design engineers themselves who are not very
prone to doing extensive documentation work, not by software developers.

No solutions have been found which have the ability to explore the content
inside different types of documents, keeping track of relations between sections
in one document type to sections in another document type, and doing this with
a low amount of set-up effort.

2. Dependency management in DA systems

In this section an approach, Figure 1, of how to work with dependency management in
DA system environments is presented.

Figure 1. Proposed approach for dependency management in DA environments.

T. Hjertberg et al. / Managing Dependencies in Heterogeneous Design Automation Systems282

Granularity Levels - Dependencies can be captured
in different levels of granularity depending on needs in
specific cases. A fine granularity level enables
visualization of the system structure in different views.
Depending on the purpose for using the system or which
person it might be desirable to have this possibility.
Setting up the system dependency structure in fine
granularity enables different stakeholders to filter the
view to suit their discipline or wanted level of
abstraction. An example of granularity levels can be
seen in Figure 2 where the children of a parent is a finer
grained representation of the parent.

Meta Data - By adding meta data to captured
dependencies, or while capturing dependencies, the
efficiency of the utilization of the stored dependency structure can potentially be
increased. Information about the person who captured a specific dependency enables
the possibility to contact this person for consultation when a change is planned for a
considered dependency. Descriptions of the purpose of the dependency and how the
affected system entities interact technically, enabled engineers to be quickly informed
and saves them from going through code or documentation in order to figure this out. If
there are any specific demands which are required in order to keep the dependency
valid, this could be added here. These could be that a script needs to work against a
specific version of a commercial software in order to work, or that a variable need to be
kept within a certain range.

Capturing Dependencies - Depending on what type of dependencies exists in the
system, they can be captured in different ways. Types of dependencies can be divided
in many ways. In this paper dependencies will be divided in two groups, structural, and
passive dependencies, as described in [24]. Dependencies can be captured manually or
automatically depending on how they are formalized in the system or documentation. If
the dependencies occur in a standardized format, these could be found by an algorithm
and automatically captured. Dependencies which are not described in a predictable way
or if it for some reason is not worth to build the structure needed for automatic capture,
they can be captured manually. In this case it is proposed to introduce tags, containing
the desired information, to the entities. These tags can be built in such way that an
algorithm can find them and thereby enabling a semi-automated capture. Programming
languages usually describes several types of dependencies which easily can be captured
automatically. These could be relations between subroutines, functions, classes, and
libraries. Dependencies which are typically hard to capture automatically are the
passive dependencies. These are often described in natural, non-formal language and
might have to be captured manually. Cross-platform dependencies can also be hard to
capture automatically since communication between two platforms can occur in several
different ways. One must ensure that all ways of communication is covered in the
algorithm to ensure that all dependencies are captured and that they are captured in the
correct way.

Visualization - The captured dependencies can be used to visualize the system
structure in different ways in order to obtain overviews of the system. Informative
views can be obtained by configuring the dependencies using the meta data and the
granularity levels. Utilization of filtering and clustering techniques provides
possibilities to create discipline specific views by removing irrelevant parts or by

Figure 2. Example of granularity levels

T. Hjertberg et al. / Managing Dependencies in Heterogeneous Design Automation Systems 283

putting focus on relevant parts. By using the granularity levels, views which require
more or less previous knowledge about the system can be obtained. This enables
creation of visualizations adapted for stakeholders with focus on varying degrees of
technicality or abstraction.

Transparency/Accessibility - The dependency structure can be used in order to
obtain transparency of the system environment. By providing direct access to system
components such as scripts or descriptive documents through the utilized visualization
approach, the engineers would not have to search for the files, and could also be guided
to the correct place inside the considered system entity without manual navigation or
interaction with PLM or version control systems. Interfacing functionality could also
provide previews and editing capability of system entities without having to open them
in their native development environment.

Impact assessment and change propagation - During maintenance of system
entities, it can be hard to assess the effect of a change, to other system entities. The
scope of the affected area can vary a lot with different types of changes. Through the
dependency structure the engineers can get estimations of the impact of a change
depending on what types of relations it have to other system entities, or how many
dependencies the entity considered for change have to other parts of the system. The
finer granularity of which the system is described in, the higher the accuracy, of the
impact assessment, will be.

When a change is made, it will propagate through the system via the dependency
structure. Depending on the nature of the change, it might affect components of the
system, outside of the changed component. Further change might have to be done to
affected components in order to regain consistency. This behavior can thereby keep
propagating through the system. By investigating meta data captured in the dependency
structure, engineers could determine if change have to be performed to interfacing
components.

3. Case Study

In this chapter, a description of the problem in a real industrial setting is presented
together with a suggestion of an approach, based on modelling and management of
dependencies between functional sections inside and across different types of system
components, which is aimed to aid implementation and management of DA tools.

A case study have been performed in collaboration with a company in the
aerospace industry. Workshops and interviews were held with several people from the
company, working mainly with technology or product development but who also were
heavily involved with development of DA systems. Focus of the activities was to
further develop the understanding of needs presented in [11].

The company is a global actor in the area of development, production, service and
maintenance of components for aircraft engines, rockets and gas turbines with high
technology content. The company provides products that are completely custom
engineered in an international market with high competition. The products are
integrated in complex systems working in extreme environments for long time periods
with both customer and legal demands for complete documentation and traceability.
The company takes full responsibility for the functionality of their products during its
operation including service, maintenance and updates. Fulfilling these harsh
requirements is a challenge but at the same time an opportunity to sustain a competitive

T. Hjertberg et al. / Managing Dependencies in Heterogeneous Design Automation Systems284

edge. Automation of design and production preparation by the use of knowledge based
engineering (KBE) has been used at the company for more than a decade to enable
quick adaptation to changes in customer specifications and evaluation of different
design solutions. In order to aid the concept development phase, a multidisciplinary
analysis system containing KBE applications is currently being developed by the
company. The purpose of the system is to provide knowledge of how changes of the
design parameters affects a concept. This knowledge is obtained by performing
analyses in a number of different disciplines. Simulations of cycle lifetime, stiffness,
buckling, producibility, thermal effects, and more are performed and the results are
compiled and sent to the concept developers. The system consists of several different
commercial software, controlled and stitched together with in-house developed
software and scripts written in several different programming languages. When
realizing the systems, the company engineers follow method descriptions called Design
Practices together with other documents and knowledge sources. The design practices
are directed towards describing the execution of a certain task on a certain component
e.g. meshing a CAD model. Connecting these documents to program code are seen as
challenging but important in order to obtain high traceability through the system. Over
time the design practices as well as the program code are updated and subjected to
changes which creates problems in keeping the connection valid. The integration of this
kind of systems in its intended environment are seen as an important aspect although
problematic. Aspects such as knowledge traceability through the system as well as
system output representation are thought to have an impact on the success of the
implementation. From the workshops and interviews a set of success criteria, thought
to have potential to overcome the main obstacles for DA system success, were derived.
For each success criteria a set of enablers, thought to have the ability to enable the
fulfillment of the success criteria, were derived. Emphasis of the result from the
interviews and workshops could be found around the aspects connected to system
transparency and knowledge traceability which was thought to be enabled by
connecting related parts of the system to each other.

Figure 3. Welding assembly sequence of a structural jet engine component.

A system that is currently developed at the company was used as subject for
introducing dependency management as a means to achieve increased system
transparency and facilitated knowledge traceability. The system is used as a module in
a larger system which performs a set of analyses in order to build knowledge about
concepts. This specific module is used to perform producibility evaluations by
analyzing a components geometrical features in relation to available manufacturing
processes. The Producibility Assessment System (PAS) is built on two commercial
software (Siemens NX, and MS Excel), three different programming languages (VB,

T. Hjertberg et al. / Managing Dependencies in Heterogeneous Design Automation Systems 285

VBA, and NX Knowledge Fusion), and has connections to normative descriptions
written in non-formal natural language in MS Word documents. The system has been
used to perform producibility assessments of a structural component, connecting a jet
engine to the air craft wing, Figure 3. 128 versions of the component are automatically
generated from a base-line model and run through the system which evaluates the
different versions with consideration of, for the company available, welding techniques.

3.1. Applying dependency management

In the test-case with the PAS, most dependencies were captured manually. Automatic
capture was performed on one type of dependency. An algorithm was written in python
for automatic capture of dependencies between knowledge fusion scripts. The
knowledge fusion language is developed by Siemens and is used to perform actions in
the CAD software Siemens NX. When the dependency structure was set up on the PAS,
the finest granularities consisted of chapters in natural language documents, and
subroutines/functions/classes in scripts. This resulted in 81 structural dependencies and
2 passive dependencies. 5 dependencies were caught automatically and 78 were caught
manually. 63 of the 78 are directly connected to how the used programming languages
calls or executes other entities of the system. Capture of these dependencies have
potential in being automated in the same way as the capture of dependencies between
the Knowledge Fusion scripts. This means that 82% of the dependencies in this system
has potential in being captured automatically with simple algorithms. This is without
including possible automatic capture of cross-platform dependencies or attempts to
standardize natural language descriptions. In the test case, two different ways of
visualization were tested. A natural way of presenting the dependency structure is in a
regular tree structure. However, when the system grows and more dependencies are
introduced, it can be hard to keep a clear overview at fine granularity levels. Filtering
techniques can be used in order to improve the ease of use. For the second visualization
approach an open source software for network exploration, Gephi [25], was used in
order to build graphs. The graphs show system entities as nodes and dependencies as
lines between nodes. Several different layout algorithms can be applied to the graphs in
order to produce clear views of the structure. Filtering and clustering techniques can
also be applied in Gephi to further improve the usability of the visualized dependencies.
A python script was used in order to generate input files, representing the dependency
structure of the PAS system, for Gephi. The generated input files were imported into
Gephi and resulted in the plots shown in Figure 4, where the color scale from green to
red indicates how many interactions a system entity has with other entities.
Dependencies can also be weighted in order for certain dependencies to affect the
visualization in a way which reflects its importance.

Meta data can be displayed in the graphs and they can be filtered and searched in
order to provide suitable views for certain situations.

Transparency was in this case study introduced by providing access to the system
entities registred in the dependency structure. Two different technical solutions for
achieving this were tested. The user of the system was given the possibility to open the
system entity, in its native environment, directly from the visualization tool. Text based
entities, such as code or natural language documents, can be displayed in the
visualization tool in order to enable quick previews. If a dependency acts on a specific

T. Hjertberg et al. / Managing Dependencies in Heterogeneous Design Automation Systems286

part inside such documents, this specific part is located and displayed for the user in the
visualization tool.

Figure 4. Gephi visualizations of the PAS system.

4. Conclusions

The objective of this work was to introduce an approach with potential of achieving
traceability and transparency in heterogeneous system and document environments
such as the environment of a typical DA system. The traceability and transparency
were introduced with the intention to enable a more efficient maintanance process of
the considered environements. An atempt to achieve this was made by introducing
dependency management on a sub-document level, allowing cross-document type
dependency capturing. Manual labour was cut by introducing automatic capture of
certain dependency types. In the test case 82% of the total amount of dependencies had
potential for automatic capture. Two important parts of the approach is the
consideration of granularity levels and the capturing of meta data. These can be used to
create clear and explanatory overviews of the system in which the flow of information
and knowledge can easily be traced through the system structure without having to
obtain this through document and code scrutinization. A conclusion based on reviewed
literature, industrial input, and the case study presented in this article, is that there is a
need for approaches which provides traceability and transparency to the concidered
type of environments, and that dependency management and visualization seem to have
potential in achieving this. However, further evaluation will have to be performed in an
industrial setting in order to obtain further verification and validation. Future work will
include a more extensive evaluation of the presented approach in the industrial
environment of the case company. Visualization techniques and meta data
representation will be further investigated.

Acknowledgements

The authors would like to express gratitude towards the participating companies in the
study as well as The Knowledge Foundation who partly funds the project.

T. Hjertberg et al. / Managing Dependencies in Heterogeneous Design Automation Systems 287

References

[1] F.S. Fogliatto, G.J.C. da Silveira, and D. Borenstein, The mass customization decade: An updated
review of the literature, Int. J. of Production Economics, Vol. 138, 2012, No. 7, pp. 14-25.

[2] G. Da Silveira, D. Borenstein and F. S. Fogliatto, Mass customization: Literature review and research
directions, International Journal of Production Economics, Vol. 72, 2001, pp. 1-13.

[3] D. Krause, G. Beckmann, S. Eilmus, N. Gebhardt, H. Jonas and R. Rettberg, Integrated Development
of Modular Product Families: A Methods Toolkit, In W. T. Simpson et al. (eds.) Advances in Product
Family and Product Platform Design: Methods & Applications, Springer, New York, pp. 245-269,
2014.

[4] L. Hvam, M. Malis, B. Hansen and J. Riis, Reengineering of the quotation process: application of
knowledge based systems, Business Process Management Journal, Vol. 10, 2004, pp. 200-213.

[5] L. Hvam, N.H. Mortensen and J. Riis, Product customization, Springer-Verlag Berlin, 2008.
[6] A. Claesson, A Configurable Component Framework Supporting Platform-based Product Development,

PhD thesis, Chalmers University of Technology, 2006.
[7] K. Amadori, M. Tarkian, J. Ölvander and P. Krus, Flexible and robust CAD models for design

automation, Advanced Engineering Informatics, Vol. 26, 2012, No. 4, pp. 180-195.
[8] J. Johansson, Manufacturability analysis using integrated KBE, CAD and FEM, Proceedings of the

ASME Design Engineering Technical Conference, 2008, pp. 191-200.
[9] J. Johansson, A flexible design automation system for toolsets for the rotary draw bending of

aluminium tubes, in 2007 Proc. of the ASME International Design Engineering Technical Conferences
and Computers and Information in Engineering Conference, DETC2007, 2008, pp. 861-870.

[10] O. Isaksson, A generative modeling approach to engineering design, DS 31: Proceedings of ICED 03,
the 14th International Conference on Engineering Design, Stockholm, 2003.

[11] T. Hjertberg, R. Stolt, J. Johansson, M. Poorkiany and F. Elgh, Implementation and Management of
Design Systems for Highly Customized Products – State of Practice and Future Research, In: R. Curran
et al. (eds.), Transdisciplinary Lifecycle Analysis of Systems. Proceedings of the 22nd ISPE Inc.
International Conference on Concurrent Engineering, Delft, July 20-23, IOS Press, Amsterdam, 2015,
pp. 165 - 174.

[12] M. Cederfeldt, Planning Design Automation : A Structured Method and Supporting Tools, PhD thesis,
Chalmers University of Technology, Göteborg, 2007.

[13] W.J.C. Verhagen, P. Bermell-Garcia, R.E.C. van Dijk and R. Curran, A critical review of Knowledge-
Based Engineering: An identification of research challenges, Advanced Engineering Informatics, Vol.
26, 2012, pp. 5-15.

[14] S. M. Becker, T. Haase and B. Westfechtel, Model-based a-posteriori integration of engineering tools
for incremental development processes, Software & Systems Modeling, vol. 4, pp. 123-140, 2005.

[15] D. Hutter, Semantic Management of Heterogeneous Documents, In A. Aguirre et al. (eds.) MICAI
2009: Advances in Artificial Intelligence. vol. 5845, Springer Berlin Heidelberg, 2009, pp. 1-14.

[16] D. Monticolo, J. Badin, S. Gomes, E. Bonjour and D. Chamoret, A meta-model for knowledge configu-
ration management to support collaborative engineering, Comp. in Industry, Vol. 66, 2015, pp. 11-20.

[17] J. Scheffczyk, U. M. Borghoff, P. Rödig and L. Schmitz, Consistent document engineering: formalizing
type-safe consistency rules for heterogeneous repositories, Proceedings of the 2003 ACM symposium
on Document engineering, Grenoble, France, 2003, pp. 140-149.

[18] D. Hutter and S. Autexier, Formal Software Development in MAYA, In: D. Hutter et al. (eds.)
Mechanizing Mathematical Reasoning, Vol. 2605, Springer Berlin Heidelberg, 2005, pp. 407-432.

[19] A. Bundy, Automated theorem provers: a practical tool for the working mathematician?, Annals of
Mathematics and Artificial Intelligence, Vol. 61, 2011, pp. 3-14.

[20] A. Egyed, Automatically Detecting and Tracking Inconsistencies in Software Design Models, Software
Engineering, IEEE Transactions on, Vol. 37, 2011, pp. 188-204.

[21] Y. Xiong, Z. Hu, H. Zhao, H. Song, M. Takeichi and H. Mei, Supporting automatic model inconsisten-
cy fixing, in ESEC-FSE'09 - Proc. of the Joint 12th European Software Engineering Conference and
17th ACM SIGSOFT Symposium on the Foundations of Software Engineering, 2009, pp. 315-324.

[22] G. Spanoudakis, A. Zisman, E. Pérez-Miñana, and P. Krause, Rule-based generation of requirements
traceability relations, Journal of Systems and Sftware, Vol. 72, 2004, No. 7, pp. 105-112.

[23] T. Olsson and J. Grundy, Supporting traceability and inconsistency management between software
artifacts, Proceedings of the 6th IASTED International Conference on Software Engineering and
Applications, SEA 2002, 2012, pp. 484-489.

[24] J. Malmqvist, A classification of matrix-based methods for product modeling, in DS 30: Proceedings of
DESIGN 2002, the 7th International Design Conference, Dubrovnik, 2002.

[25] M. Bastian, S. Heymann, and M. Jacomy, Gephi: an open source software for exploring and
manipulating networks, ICWSM, Vol. 8, 2009, pp. 361-362.

T. Hjertberg et al. / Managing Dependencies in Heterogeneous Design Automation Systems288

