
A Notification-Oriented Approach for
Systems Requirements Engineering

Jean M. SIMÃO a,1, Hervé PANETTO a,b,c,
Yongxin LIAO d and Paulo Cézar STADZISZa

a

 Federal University of Technology, Paraná, UTFPR – Program of Electrical
Engineering and Industrial Computer Science (CPGEI), Brazil

b CNRS, Research Centre for Automatic Control (CRAN UMR 7039), France
cUniversité de Lorraine, CRAN UMR 7039, France

d
 Pontifical Catholic University of Paraná, PPGEPS, Brazil

Abstract. Systems Engineering (SE) is an approach for designing complex
systems in a multidisciplinary universe, based on concepts from the systemic
paradigm and promoting languages, methods, and standardized processes.
Requirements engineering is one of the main steps in SE processes. The current
research presented in this paper aims at focusing on the open issue related to the
formalization of systems requirements for their verification, ensuring the
coherence of the whole set of requirements in each contextual engineering domain
and their validation against the initial stakeholders’ needs. Moreover, requirements
coming from different domains are generally linked by non-formalised traceability
relationships. It is even difficult to trace any change in their definition and their
impact to the whole set of specifications. The paper discusses and proposes an
approach for systems requirements engineering based on a rule and notification
oriented approach for ensuring the effective coherence and understanding of these
requirements throughout the life cycle of any complex system. This proposed
notification approach is derived from the so-called Notification Oriented Paradigm
(NOP), a new rule and event driven approach for software and hardware
specification and execution.

Keywords. Systems Requirements Engineering, System Specification,
Notification Oriented Paradigm

Introduction

Currently, in order to face globalization and the resulting increased competition,
enterprises have specialized in specific domains and have established partnerships with
other companies to complement their initial skills. These enterprises are thus forming a
so-called collaborative and distributed network. These approaches have allowed them
to develop complex systems and collaborative activities in many industrial domains
like aeronautics, nanotechnology, aerospace, and bioengineering.

According to [1], it is important, for succeeding in these collaborative engineering
processes, to formalize how different partners can work with others and, through their
interactions, how they can achieve a common objective within different perspectives.

1 Corresponding Author, E-Mail: jeansimao@utfpr.edu.br

Transdisciplinary Engineering: Crossing Boundaries
M. Borsato et al. (Eds.)
© 2016 The authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/978-1-61499-703-0-229

229

These engineering processes follow best practises generally defined in the so-called
systems engineering domain.

Systems Engineering (SE) is an approach for designing complex systems in a
multidisciplinary universe, based on concepts from the systemic paradigm and
promoting languages, methods, and standardized processes (ISO/IEC 15288) [1]. It
aims at consolidating, identifying, and formalizing new methods and frameworks that
support engineering phases in a better consistent way [2]. It is “an interdisciplinary
approach and means to enable the realization of successful systems” [3]. One of the SE
processes is dedicated to analysing users’ and systems’ requirements.

Requirements Engineering (RE) refers to the activity of formulating, documenting
and maintaining systems requirements [4] in order to produce, from users’ needs, a set
of specification related to what the final system should be. Requirements provide the
basis for all phases of the development system. Thus, it is necessary to control these
requirements in all phases of the development cycle and in all domains to avoid some
misinterpretation and mistakes committing the final results.

A requirement is a statement from the stakeholder’s needs in order to define a
product, a system or a process and it must be unambiguous, clear, unique, consistent,
stand-alone, and verifiable [5]. Each requirement matches a single part of the future
product, system or process and it is grouped in an appropriate combination of textual
statement views. Whereas approaches such as the Model-Based Systems Engineering
(MBSE) have been studied [6][7] for improving the definition and the coherency of
requirements [8], there is still difficulties to ensure that coherency from a semantic
point of view and to identify all impact relationships when any of these requirements
change during the system development lifecycle.

1. Related Works

Requirements Engineering has long been recognized as critical activity in systems and
software development processes [9][10][11]. A large amount of studies addresses
theoretical aspects and propositions of techniques and recommended practices for RE
[12]. Hofmann and Lehner [13] identified RE practices that clearly contribute to
(software) project success and concluded that successful projects allocate a
significantly higher amount of resources to RE (28%). Many (37%) of projects failures
[14] are caused by the problems of requirements misinterpretation among stakeholders.
Most studies have focused on requirements elicitation, modelling, and
processes/methods 1395–1410
[15][16].

A number of researches reported in the literature focus on the elicitation of
requirements. According to [17], this activity is the process of seeking, uncovering,
acquiring, and elaborating requirements for (software) systems. It concerns learning
and understanding the needs of the customer with the aim to communicate these needs
to the developers [18]. Additionally, there is a general agreement [19] that fixing the
results of poor requirements elicitation is more expensive than for other mistakes. It is a
common sense in most studies that systems requirements have to satisfy the customer´s
(i.e. stakeholders) intents. The ISO/IEC/IEEE standard uses the expression “in a way
that is (the requirement) acceptable to the customer” [20] to emphasize that the
requirements must achieve the customer´s intentions. Thus, some authors propose to
validate the specified requirements by determining their conformity with stakeholders´

J.M. Simão et al. / A Notification-Oriented Approach for Systems Requirements Engineering230

needs [13]. The term “need” is often employed to refer to the cause or reason that
justifies the specified requirements [18]. The needs would be the source of the
requirements. Some authors, inspired by INCOSE2 observe that the stakeholders’ needs
in turn contribute to the solution of some real-world problems [21][22].

In the context of systems engineering, the deep understanding of a system’s intents
and how they maps to systems requirements is as important as for software engineering,
and the underlying concepts are also analogous. INCOSE employs the terms “Problem
or Opportunity” to refer to the issues underlying the gaps in the organization strategy
with respect to the desired organization goals or objectives [5]. In spite of the large
number of studies and approaches proposed to specify systems requirements, for any
“complex system” development (e.g. software, aerospace, automotive), it is a common
agreement that requirements engineering remains an unclear and challenging task.
Terms used in scientific literature and even in the industry (as pointed out in this
section) are not convergent creating a lack of understanding on the subject. Analysts
may feel confused when trying gathering information from the stakeholders and other
sources in the business or application domain. Therefore, the specification of the
studied system may become incomplete or incorrect because of an inadequate
understanding of the project intents.

Generally speaking, the various works on requirements engineering show that
there are two unsolved main issues/questions [9] that this paper tackles in the proposed
approach: (1) how to “semi-automatically” model a set of requirements taking into
account their strong inter-relationships? (2) How to identify/formalise these inter-
relationships that are generally domain-dependent and thus related to some deep and
implicit knowledge of the related skills of the stakeholders? [23]

This paper discusses and proposes a solution only for the first question. Indeed, the
model of all requirements of a system and their inter-relationships can be seen as a bi-
graph of interrelated notifications where each requirement is a logical premise
manipulating some systems attributes and notifying some functional entities which, in
turn, forward new attributes values to any impacted requirement. This operational
semantics is quite analogue of the so-called NOP paradigm that we will discuss briefly
in the following section.

2. Notification-Oriented Paradigm (NOP)

A new technique, called Notification Oriented Paradigm (NOP), was proposed as new
software programming and developing approach. NOP presents a new concept to
develop and execute applications. Its essence is an inference process based on small,
smart, and decoupled pieces of software (i.e. entities) that collaborate by means of
notifications. This solves redundancies and centralization problems of the causal
processing, thereby solving processing capacity misuse and coupling issues. In NOP,
causal expressions are represented by a set of logic-causal rules and dealt by entities
called Rules. A Rule entity, represented as a logical and causal expression, is illustrated
in Figure 1 (a). Structurally, a Rule entity has a Condition entity and an Action entity
which respectively concern the decisional part and the execution part. Each element
evaluated by a Rule set is represented and dealt by an entity called Fact Base Element
(FBE). In the considered example, the FBEs are the Security_System and User_Reader.

2 International Council on Systems Engineering, http://www.incose.org

J.M. Simão et al. / A Notification-Oriented Approach for Systems Requirements Engineering 231

A FBE comprises one or more Attribute entities that store data. Examples of Attributes
are the Status in the FBE Security_System and the Bio in the FBE User Reader.

The values of Attributes are analysable, in an inference process, by the Conditions
of Rules, using other collaborative entities called Premise. In the considered Rule
(Figure 1 (a)), its Condition comprises two Premises. When each Premise of a
Condition is inferred as true, the related Rule becomes enabled and it can activate its
Action composed of entities called Instigation. In the considered Rule, the Action has
one Instigation. In fact, Instigations are linked to Methods of FBEs to execute services.
In the Action of that Rule, the Method Activate_Alarm() is instigated. Commonly,
instigating a Method of an FBE changes the values of Attributes [24][25].

Figure 1. (a) The Representation of a NOP Rule. (b) NOP Components and Notification Chain.

The NOP inference process is innovative. Indeed, the Rules do not become enabled
by matching Attribute values by means of some usual search approach, but by
evaluating their Conditions when they are notified by FBEs that Attributes’ values
changed. Inference happens in the following way: for each change in an Attribute value
of a FBE, based on the new value, just the very pertinent Premises are notified and
make its logical analysis; for each change in a Premise logical state, it notify just the
very pertinent Conditions. In turn, Conditions enable new Rules that may execute
Actions by notifying Instigations which in turn execute Methods of FBEs. The
collaboration between NOP elements by means of notifications is illustrated in Figure 1
(b). This notification chain is created during the software compilation phase [24][25].

3. Proposed Approach for Systems Requirements Engineering

3.1. NOP Modelling Primitives

According to the NOP specification [25], the NOP modelling primitives essentially
includes Rules, FBEs, and Notifications. These building blocks allow describing the
entire logic of software systems. Additional primitives may be employed to specify
particular constraints, aspects of software flow control, and conflict solving, among
other features of the system being modelled. In the proposed approach for systems
requirements engineering, the authors make use of the three main NOP primitives in
order to describe those requirements at the same level of detail then those sentences
expressed previously by the system engineer, according to the information expressed
by the stakeholders. The meaning of the three NOP primitives in the context of this
paper are described in the next topics.

Rule - A Rule in NOP is defined as a logical unit, which commands a set of actions
when its conditions are satisfied. In the proposed approach, a Rule represents part of
or an entire system requirement, including the constraints with regard the needed
conditions (i.e. Rule preconditions) for that requirement and the effects or actions to

J.M. Simão et al. / A Notification-Oriented Approach for Systems Requirements Engineering232

be accomplished (i.e. Rule post-conditions) according to that requirement.
Depending on the system requirement complexity, one or more rules may be
composed to express each requirement. The notation to draw a Rule is depicted in
Figure 2 (a).

Fact Base Element (FBE) - In NOP, an FBE represents a software element, which
may contain Attributes, can carry out functions in Methods, and can interface with
external elements (e.g. user interface, sensors, and devices) also by means of
Methods. In this paper, when specifying systems requirements, authors also propose
to use FBE to represent system elements identified in the requirements statements.
This way, FBEs are limited to the elements known at the requirements specification
phase. FBEs are drawn as dashed rectangles in the proposed notation as illustrated in
Figure 2 (b). They must contain one or more exposed Attributes that represent
notified events or variables. A FBE may also contain incoming arrows that represent
functions called by other FBEs.

Notification - A notification is an explicit advice from a NOP element to another one,
indicating that a change in the system state occurred. This may means that an entity
changed its value or an event happened, for instance. In this paper, authors consider
that a notification represent a link between Rules and FBEs. These links may have
two meanings, according to the link direction. A notification from a FBE to a Rule
(i.e. FBE → Rule) describes a given precondition for that Rule related to the
indicated Attribute of the FBE. A logical expression from a defined algebra must be
assigned over the link to describe the logical condition. Figure 2 (c) illustrates this
type of link. On the other hand, a notification from a Rule to a FBE (i.e. Rule →
FBE) describes that the Rule invokes a function from a Method of an FBE. A
reference to the Action is to be written over the link as illustrated in Figure 2 (d).

Figure 2. Notation used for drawing systems requirements models.

3.2. NOP Based Requirements Modelling

From the primitives established in the previous section, authors propose to construct
the system requirements specification in the form of a system requirements model. This
model may include a single or multiple diagrams using the NOP notation. The input for
the modelling process is the system requirements sentences. A general view of the
adopted modelling technique follows.

For each requirement statement in the system requirements specification:
1. To analyse the requirement sentence aiming at:

i. Identifying the functional or non-functional request in the requirement.
ii. Identifying the Conditions for the functional or non-functional request.

iii. Identifying the Attributes involved in the Conditions.

<<FBE>>
Element ID

call ID attribute

(b) FBE notation

<<Rule>>
Identification of the

requirement to be met

precondition post condition

(a) Rule notation

<<FBE>>
Element ID attribute

(c) Precondition notification notation

<<FBE>>
Element ID

(d) Post condition notification notation

<<Rule>>
Identification of the

requirement to be met

precondition
expression

<<Rule>>
Identification of the

requirement to be met

post condition
call

J.M. Simão et al. / A Notification-Oriented Approach for Systems Requirements Engineering 233

iv. Identifying the Actions for the functional or non-functional request
v. Identifying the functions related to Methods instigated in the Actions.

vi. Identifying the FBEs related to the Attributes for the request.
vii. Identifying the FBEs related to the Methods indicated by the request.

2. To create a Rule for every request identified in step 1.
3. To create a FBE for every entity identified in step 1.
4. To create links (i.e. notifications between Rules and FBEs according to the

Conditions and Actions related to rules) identified in step 1
5. To merge FBEs and Rules with analogous FBEs and Rules previously created.

Step 1 involves analysing every requirement sentence in order to identify the

specific request inside the stated requirement. Commonly, it should exist only one
request per requirement. However, sentences in natural language expressing
requirements for a system may explicitly or implicitly refer to more than one request.
Additionally, the request may specify an intended action to be carried out by the system
(referred to as functional request) or it may specify constraints, properties or conditions
for the system (referred to as non-functional requests). In this step, the elements related
to the conditions and actions of the request are also identified considering the
references to aspects, objects, devices or interfaces with the external elements. Steps
from 2 to 4 are related to the construction of the requirements model from the elements
identified in step 1, i.e. the identified Rules, FBEs and links. Step 5, particularly,
concerns integrating models constructed from each system requirement. This may
involve merging Rules and FBEs and reconnecting links between them.

To illustrate the proposed modelling technique it is taken into account the
following example of system requirement statement: “The system shall activate the fire
alarm when the temperature sensor indicates more than 60oC in the room”. Analysing
this requirement sentence, the system analyst can identify “activate the fire alarm” as
the stated functional request. The condition of the Rule for that request is “temperature
more than 60oC” and the element associated to this condition is “temperature sensor”.
The FBE temperature sensor shall expose an Attribute that contains the current
temperature in the room. Finally, the element responsible for the function “activate” is
the “Fire Alarm” instigated by the action of the rule. Thus, following the steps 2, 3 and
4 of the proposed technique, the resulting model is presented in Figure 3.

Figure 3. System requirement model example.

4. Case Study: Access Security System

This section presents the modelling example of an “Access Security System” extracted
from the INCOSE SE Handbook v3.2 [3]. This study is based on six system
requirements that specify the intended functional and non-functional characteristics of
the system.

J.M. Simão et al. / A Notification-Oriented Approach for Systems Requirements Engineering234

4.1 Case description

According to the SS11 Stakeholder Requirement presented in [3], the secure areas (i.e.
rooms that have limited access) are to be protected by two independent security checks.
One of them is based upon an employee ID and the other one is based upon biometric
data. The time between the two independent security checks shall not exceed a
configurable period. The user is allowed three attempts at biometric and/or card
identification before access is completely disabled. Any denied access attempt is to be
sent to the administrator.

The system requirements statements are:
� SS11 – a: Secure areas shall be protected by security check based upon employee ID.
� SS11 – b: Secure areas shall be protected by a second independent security check

based upon biometric data.
� SS11 – c: The time between the two independent security checks shall not exceed a

configurable period.
� SS11 – d: The user shall be allowed three attempts at biometric identification.
� SS11 – e: The user shall be allowed three attempts at card identification.
� SS11 – f: Any denied access attempt shall be sent to the administrator.

4.2. NOP-Based Requirements Models

This section applies the proposed technique showing the main phases of the
Access Security System requirements modelling.

Requirement SS11-a:
This requirement indicates that the system shall “protect secure areas” what means

that the system shall meet two requests: enabling and disabling access to the secure
area. As consequence, the system will have to command an element (e.g. a blocker)
that carry out these two actions. This requirement also states that a “security check
based upon employee ID” will provide the condition to enable or disable access to
secure areas. The identified attribute for this condition is the “employee ID” read from
an external element (i.e. an ID card reader). Figure 4 shows the model of this
requirement where three Rules and two FBEs are identified.

Figure 4. Model of the SS11-a requirement.

Requirement SS11-b:
This requirement is similar to SS11-a and its model will also include two FBEs

and three Rules. The first FBE represents the Biometric Reader element and the second
the Entry Blocker. The last is the same FBE indicated in the model of SS11-a because
the Entry Blocker will be obviously the same. The first Rule will represent request for

J.M. Simão et al. / A Notification-Oriented Approach for Systems Requirements Engineering 235

checking the employee biometric. The two other Rules represent the request to enable
and disable access to the secure area as modelled to SS11-a.

Because of their inter-relationship, SS11-a and SS11-b models can be integrated,
as illustrated in Figure 5. The Rule “Protect Secure Areas” receives a <<disjunction>>
operator to indicate that any or both conditions enable this Rule. The Rule “Allow
Access” in turn receives a <<conjunction>> operator to indicate that both conditions
must be satisfied to enable this rule.

Figure 5. Model of SS11-a and SS11-b requirements.

Requirement SS11-c:
This requirement adds a new time constraint with respect the secure checking of

ID and BIO. It leads to a new functional request involving checking the elapsed time
between the ID and BIO secure checking. It also sets new conditions for enabling or
disabling access and establishes two new Attributes for the current system time
(Cur_Time) and system configured time period (Conf.Period). This way a new Rule
(Check Elapsed Time) and two new FBEs (System Clock and System Config) are
inserted in the model as illustrated in Figure 6.
Requirement SS11-d and Requirement SS11-e:

These requirements are very similar once both limit the number of user attempts.
The request in both requirements can be merged in a single request that counts the
number of ID and BIO checking attempts. A new FBE (User Attempts Counter) is
created and new conditions about the status of the user attempts are inserted for the
Rules that represent the request to enable and disable access to the secure area as
illustrated in Figure 6.
Requirement SS11-f:

This last requirement defines a new functional request for notifying the
administrator when a user access attempt is denied. This leads to a new Rule to
represent this notification. However, because the conditions for that Rule are identical
to those of the “Protect Secure Areas” Rule, they can me merged and a new link is
create to command the notification action by the Administrator Interface FBE. Figure 6
illustrates the final system requirements model for the considered example.

J.M. Simão et al. / A Notification-Oriented Approach for Systems Requirements Engineering236

Figure 6. Final system requirements model.

5. Conclusions and Future Works

This paper proposed a novel approach for systems requirements modelling that makes
use of concepts and the notation of the previously developed Notification Oriented
Paradigm (NOP). NOP has been successfully applied for modelling, programming, and
executing software applications based upon three fundamentals primitives: Rules, FBEs,
and notifications. Based on these concepts, this paper presented a technique for
constructing a graphical model of the expressed system requirements. An example of
an access security system illustrated the proposed approach.

The presented approach uses a graphical notation, thus facilitating the analysis of
the requirements and identifying hidden knowledge. Additionally, this approach makes
explicit the logical dependencies (Rules with their conditions and actions) between the
requirements through linked and shared Attributes and Methods of involved elements
(FBEs). These characteristics allow modelling the whole set of requirements taking
into account their inter-relationships. In the context of larger scaled systems, the
proposed approach should provide means and tools for semi-automatically generating
systems requirements models.

However, the proposed approach does not yet take into account the meaning
behind the requirements in order to identify hidden semantics inter-relationships.
Indeed, this semantics is generally domain-dependent and thus related to some deep
and implicit knowledge of the related skills of the stakeholders. Authors’ working in
progress explore using ontologies as a suitable solution for expressing these aspects of
requirements together with the modelling approach presented in this paper.

Acknowledgement

This research was partially supported by CAPES (Coordenação de
Aperfeiçoamento de Pessoal de Nível Superior) from Brazil.

J.M. Simão et al. / A Notification-Oriented Approach for Systems Requirements Engineering 237

References

[1] ISO/IEC, ISO/IEC 15288:2012 - Systems and Software Engineering - Software Life Cycle Processes,
2012, International Organization for Standardisation, Geneva, Switzerland

[2] A. J. Lopes, R. Lezama, and R. Pineda, Model Based Systems Engineering for Smart Grids as Systems of
Systems, Procedia Computer Science, vol. 6, pp. 441–450, 2011.

[3] INCOSE, INCOSE Systems Engineering Handbook: A Guide for Life Cycle Processes and Activities, The
International Council on Systems Engineering, C. Haskins, ed. 3, 2006.

[4] R. R. Young, The Requirements Engineering Handbook, 1 ed, Artech House, Boston, 2004.
[5] BKCASE, The Guide to the Systems Engineering Body of Knowledge (SEBoK), v. 1.6. R.D. Adcock

(EIC). Hoboken, Accessed: 12/04/2016. Available: www.sebokwiki.org
[6] INCOSE, What is Model Based System in Engineering (MBSE), version 1.0, 2012.

http://www.incoseonline.org.uk/Documents/zGuides/Z9_model_based _WEB.pdf.
[7] J. N. Mazón, J. Pardillo and J. Trujillo, A Model-Driven Goal-Oriented Requirement Engineering

Approach for Data Warehouses. In: J.-L- Hainault et al. (eds.) Advances in Conceptual Modelling –
Foundations and Applications, Springer Berlin / Heidelberg, pp. 255–264, 2007.

[8] A.L. Szejka, A. Aubry, H. Panetto, O. Canciglieri Jr., E. Rocha Loures, Towards a conceptual framework
for requirements interoperability in complex systems engineering, 9th International Workshop on
Enterprise Integration, Interoperability and Networking (EI2N’2014), Amantea, Springer, OTM 2014
Workshops, Oct 27-31, LNCS 8842, pp. 229-240.

[9] G.-C. Roman, A taxonomy of current issues in requirements engineering, Computer, 1985, pp. 14–23.
[10] J. Siddiqi, Requirement engineering: The Emerging Wisdom, IEEE Software, Vol. 13, 1996, pp. 15-19.
[11] I. Sommerville and G. Kotonya, Requirements engineering: processes and techniques, Wiley, New

York, 1998.
[12] M. Daneva, D. Damian, A. Marchetto and O. Pastor, Empirical research methodologies and studies in

Requirements Engineering: How far did we come?, Journal of Systems and Software, 2014, pp. 1–9.
[13] H.F. Hofmann and F. Lehner, Requirements engineering as a success factor in software projects, IEEE

Software, Vol. 18, 2001, pp. 58-66.
[14] G. Locatelli, M. Mancini, and E. Romano, Systems Engineering to improve the governance in complex

project environments, International Journal of Project Management, Vol. 32(8), 2014, pp. 1395–1410
[15] S. Ratchev, E. Urwin, D. Muller, K. S. Pawar and I. Moulek, Knowledge based requirement engineering

for one-of-a-kind complex systems, Knowledge-Based Systems, Vol. 16, 2003, pp. 1–5
[16] J. Valaski, S. Reinehr and A. Malucelli, Environment for Requirements Elicitation Supported by

Ontology-Based Conceptual Models: A Proposal, in: Proceedings of the International Conference on
Software Engineering Research and Practice (SERP), 2014.

[17] Y. Bernard, Requirements management within a full model based engineering approach, Systems
Engineering, Vol. 15, 2012. doi:10.1002/sys.20198.

[18] D. Zowghi and C. Coulin, Requirements elicitation: A survey of techniques, approaches, and tools, in:
A. Aurum et al. (eds.), Engineering and Managing Software Requirements, Springer, 2005, pp. 19–46.

[19] B. Davey and K.R. Parker, Requirements elicitation problems: a literature analysis, Issues in Informing
Science and Information Technology, Vol. 12, 2015, pp 71–82.

[20] ISO/IEC/IEEE, ISO/IEC/IEEE 24765:2010 - Systems and software engineering – Vocabulary, ISO,
Geneva, 2010

[21] R.J. Wieringa, Requirements Engineering: Problem Analysis and Solution Specification, in: N. Koch, P.
Fraternali, M. Wirsing (eds.), Web Engineering, Springer, Berlin, Heidelberg, 2004, pp. 13–16.

[22] P. Bourque and R.E. Fairley, Guide to the software engineering body of knowledge (SWEBOK (R)),
Version 3.0, IEEE Computer Society Press, 2014.

[23] Y. Liao, M. Lezoche, H. Panetto, N. Boudjlida and E.R. Loures, Semantic annotation for knowledge
explicitation in a product lifecycle management context: A survey, Computers in Industry, 71, 2015, pp.
24–34.

[24] J.M. Simão, R.F. Banaszewski, C.A. Tacla and P.C. Stadzisz, Notification Oriented Paradigm (NOP)
and Imperative Paradigm: A Comparative Study, Journal of Software Engineering and Applications
(JSEA), 5/6, 2012, pp. 402-416.

[25] J. M. Simão and P. C. Stadzisz, Inference Based on Notifications: A Holonic Meta-Model Applied to
Control Issues, IEEE Transactions on Systems, Man and Cybernetics, Part A. 39/1, 2009, pp. 238-250.

J.M. Simão et al. / A Notification-Oriented Approach for Systems Requirements Engineering238

