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Abstract. This paper introduces a novel and unobtrusive wearable monitoring de-
vice to be used for stress recognition. The paper offers details on the hardware
design as well as on the software processes needed to classify between calm and
stressed subjects. Only one physiological variable, the electrodermal activity, is
used in this work. Moreover, the experimentation, training and testing of the math-
ematical classification model are also provided. A correctness of 82.5% is achieved
by the combination of three skin conductivity response features. It is also inter-
esting to highlight that the proposed approach reports a sensitivity of 89% when
differentiating stressed from calm people.
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1. Introduction

Nowadays, emotion intelligence plays a key role in improving Human-Machine Inter-
action (HMI). One objective of HMI is to fill the gap between the emotional state of
the human and the reaction of the computer in accordance with this behaviour. In this
relationship, emotion recognition is the first step towards the development of Affective
Computing (AC) systems. Indeed, emotion-aware computing builds emotional interac-
tions between a human and a computer by developing computational models. The main
objective consists in creating affective user interfaces to improve the user experience [1].

From a psychological point of view, emotions are defined by a discrete or dimen-
sional model. In the discrete model, a finite set of emotions are defined. Some of these
emotions are happiness, surprise, sadness, fear, disgust and anger [2]. Nevertheless, the
number of defined emotions depends on the proper model. Thus, you can find a model
with up to fifty different emotions [3] in the literature. Now, in dimensional models, emo-
tions are defined by two (or more) variables. The most used dimensional model was pro-
posed by Russell [4] in the eighties. Here, emotions are defined by the levels of arousal
and valence. Arousal corresponds to the degree of excitement or calmness that a stim-
ulus produces, while valence assesses how pleasant or unpleasant a stimulus is to the
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subject [4]. Albeit a high number of emotions can be defined by combining different
levels of arousal and valence, negative stress (high arousal, low valence) has gained a
special attention in the last years [5]. The main reason relays in the fact that stress may
interfere negatively in hazardous tasks. In this regard, stress has been measured dur-
ing a real-world driving task to determine a driver’s relative stress level [6]. Similarly,
stress has been studied on aircrew to quantify the performance during military strategies
[7], and in medicine for the duration of stressful surgical procedures [8]. Short stress
episodes may not suppose any risk for the health of people, being even advantageous for
facing some complex situations. Indeed, stress is considered as a reaction from a calm
to an excited state for the sake of protecting ourselves [6]. Nevertheless, when people
suffer from stress in a long term, it may suppose a high risk and trigger some kind of
mental disease such as generalised anxiety disorder and depression [9]. Moreover, some
physical disorders seem to be related with a continuous stress, like irritable bowel syn-
drome, gastro-esophageal reflux disease or back pain [10]. Furthermore, the relationship
between stress and cardiac complications like hypertension or coronary artery disease
[9] is well-known.

From a neuro-physiological point of view, there exists several aspects that cause
physical or mental stress on people. Nevertheless, each individual feels a different stress
degree when facing a same stimulus. In this sense, each personality type has a differ-
ent impact in the response to stress [11]. Indeed, stress affects differently each person
because humans are all different from each others. Since they have different personali-
ties and come from several cultures, they show different personal histories [11]. How-
ever, regardless of the subjects’ personalities, neuro-physiological researchers coincide
that feeling stress leads to changes in physical and physiological activity [12]. Therefore,
the development of new devices capable of detecting and discriminating stress are very
useful in the improvement of HMI, as well as in the creation of intelligent environment
where the control of stress is crucial.

In this work, a novel mathematical algorithm capable of detecting stress is intro-
duced. Moreover, the associated hardware design, as well as the training and test model
to be embedded in the wearable, are included. Finally, the classification performance
is described and some conclusions are commented. The main objective of this work is
the description of a system, and its associated architecture, that is useful to take certain
actions in order to control or decrease the stress level in multiple environments.

2. Stress Recognition Using Physiological Signals

In the last years, there has been a growing number of works that determine stress by
means of physiological signals [13]. On the contrary that physical variables like facial
and speech recognition, physiological features are more robust against cross-cultural dis-
cordances, since it is almost impossible to control the physiological reactions. Moreover,
acquisition sensors can be easily embedded in the environment, this way improving their
acceptance. Indeed, recent advances in micro-controllers of ultra low power consump-
tion allow to insert the sensors on clothes. In addition, such hardware architecture per-
mits an intelligent management of the consumption, increasing the operation time [14].
On the other hand, the emergence of devices with transceivers integrated in the own
micro-controller, as well as efficient communication protocols, enables the development
of sensor networks that communicate with each other.
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All these novelties allow a continuous monitoring of different physiological sig-
nal simultaneously. Some of the most used variables in stress management are Heart
Rate Variability (HRV), Electro-Dermal Activity (EDA), ElectroMyoGraphy (EMG),
and ElectroEncephaloGraphy (EEG), among others. All of them are in some way con-
nected with the Autonomous Nervous System (ANS) and, consequently, they are repre-
sentative of physiological changes produced in the human body. Nevertheless, the suit-
ability of each physiological variable has to be studied. Thus, it has been reported that
EMG measures unconscious myo-neural responses, thus assessing exclusively partial as-
pects of emotions (e.g., arousal level) [15]. On the other hand, EEG seems to be the best
option to measure stress. Indeed, EEG detects a wide range of the emotional state dy-
namics by directly accessing the fundamental structure in the brain [5]. It seems logical
to measure within the source where emotions are originated. However, although new de-
vices are emerging in the last years, EEG is still far from being considered wearable. Fur-
thermore, HRV is linked with the sympathetic and para-sympathetic components of the
ANS. Although it has been reported that HRV is able to access some subspaces of emo-
tion [15], HRV is highly affected by confounding variables like exercise, heart disease,
allergic reactions and inhalation of irritants, among others [16]. Finally, EDA variable
has been validated as suitable to measure stress and calm states [6,17]. Indeed, EDA is
linked with the sympathetic component and reflects the changes produced by an increase
of alert [18].

Therefore, in this work the hardware development and the mathematical classifi-
cation model are focused in conditioning the signal and maximising the performance
through using exclusively the EDA variable.

3. Description of the Wearable

A deep study of the behaviour of EDA signals is required to carry out the electronic
design. Indeed, the choice of electronic components thoroughly depends on the electric
characteristics of the signal under study. EDA measures the conductivity changes pro-
duced in the skin due to the increase of the activity of the sweat glands. An EDA sig-
nal is formed by the superposition of two different components. On the one hand, the
Skin Conductivity Response (SCR) corresponds to the activation of the sudomotor nerve,
which is fired by the ANS. Given this relationship, the SCR component has been pre-
viously used to measure stress [19]. SCR is represented morphologically as a peak or
burst of peaks with different durations, intensities and decays depending of the stimu-
lus produced. On the other hand, the Skin Conductance Level (SCL) corresponds to the
baseline, overlapped to the SCR component. SCL variates due to several aspects like skin
type, genetic aspects, and autonomic regulation [13] and, consequently, it is different for
each person. Therefore, SCL uses to act as a confounding variable when developing a
model for classifying stress in different subjects.

In our design, the EDA sensor measures the DC exosomatic EDA through a couple
of Ag/AgCl disc electrodes with a contact diameter of 10 mm, as it can be appreciated
in Figure 1. A small DC current is applied into the skin through the electrodes. The
amount of current applied is limited to 10 mA/cm2 to prevent damage in the sweat glands
[20]. The SCL component is rejected in origin by applying an electronic third-order
Butterworth low-pass filter in a Sallen-Key topology, and with a cut-off frequency of
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Figure 1. A photograph of the wearable for electrodermal activity acquisition.

0.05 Hz. Similarly, the SCR component is acquired by applying a similar low-pass filter
with 1.5 Hz cut-off frequency. These frequencies correspond to the reported bandwidth
of both EDA components [21]. Finally, the SCR component is amplified by means of a
single-supply, rail-to-rail precision operational amplifier based on the AD860x (Analog
Devices).

Once the signal has been acquired, filtered and amplified, a 12-bit Analog-to-Digital
Converter (ADC) is used to register the signal with a sampling rate of 10 Hz. The micro-
controller rules the global system and controls the sampling frequency for signal acqui-
sition. In this work, an 80 Mhz low-power 32-bit ESP2866 micro-controller is used [22].
This micro-controller is specifically designed for mobile, wearable electronics and In-
ternet of Things applications. The system is capable of managing the power consump-
tion by acting on the power saving architecture and changing the operation mode. More-
over, the iBus RAM/ROM interface permits access to an external flash memory to store
the data. The most interesting feature of the system relays in that a 2.4 GHz transmit-
ter/receiver transept is completely embedded in the micro-controller. Therefore, the co-
existence of wireless technologies such as Wi-Fi or Bluetooth is permitted. Moreover, the
micro-controller features contemplate the use of network protocols for high connectivity
like TCP/IP with DNS support over 802.11 b/g/n protocol. In this work, Wi-Fi technol-
ogy is used to communicate the wearable with the control station, as well as with the rest
of devices foreseen within the same network.

Having this context on mind, during the training step the wearable is connected with
a base station that records the SRC signal and registers the timestamps for the elicited
stimuli. This data is posteriorly processed and characterised to compute the classification
model (see Section 5). Nevertheless, it is worth noting that the classification model is
embedded into the wearable in a final version, where the device communicates with the
rest of nodes that connected in the same network, in order to provoke changes in the
environment.

4. Experimental Setup

In order to assess the functionality of the stress detection proposal, this section introduces
the experimental design and the description of the study population, respectively.
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Figure 2. Phases of the experiment.

4.1. Experimental Design

An experiment has been designed with the objective of assessing the correct performance
of the described system for stress detection. The core of the experimentation relies in
the use of pictures from the International Affective Picture System (IAPS). These have
been chosen in order to trigger predefined arousal and valence values [23]. The IAPS
database is used in our case to show a series of images to some volunteer participants. All
the pictures used in the experiment belong to one of the two following categories: high
arousal-low valence and low arousal-high valence. These corresponding to stressed and
calm, respectively, according to the circumplex affect model by Russell [4]. In addition,
the images taken as representative for the calm category possess a given arousal value
lower than 4 and a valence value in the range 4 to 6. In a similar manner, the stressed
category of images consists in samples with an arousal value higher than 5 and a valence
value lower than 3.

Next, we describe the way the experiment has been run (see Figure 2). A given
participant sits in front of a computer monitor and the devices are put in the right wrist.
The monitor is a high resolution 28 inches screen. Once the correct functioning of the
devices and their communication with the software has been verified, the experiment can
start. First of all, the participant carefully reads the instructions of the experiment. Then,
the participant is shown ten pictures that are labeled with high arousal and low valence
consecutively during 6 seconds. Blank images, which are used as silences, are inserted
between each pair of consecutive images with a fixed duration of 1 second. The pictures
are randomly selected from those images fulfilling the condition. Next, the participant
is offered a distracting task in order to modify his/her emotional state to neutral. This
task consists in asking the participant to express his/her feelings in terms of arousal and
valence by using the SAM pictographs. Afterwards, the experiment randomly shows
another set of ten low arousal/high valence valued images from IAPS. Again, silences are
used between each pair of images. Lastly, the distracting task is offered a second time.

The duration of the experiment for each participant longs 140 seconds from the ap-
pearance of the first image. The pauses are designed to allow the participant to recover
from the previously provoked affect. Notice that the pictures are randomly shuffled, such
that the visualisation order is different for each participant. It is also important to high-
light that the experiments are carried out in the safest possible way. This is why the par-
ticipants are informed that they can stop visualising the sequence whenever necessary.

4.2. Study Population

Fifty participants (twenty-eight men and twenty-two women, aged 20 to 28) have en-
rolled as volunteers in the described experiment. All the participants were informed about
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the high emotional contents of some pictures and they agreed to take part in the study.
All of them were students from the Cuenca Technical School (Spain). Before being ac-
cepted in the study, the students had to pass the PHQ-9 Depression Test Questionnaire.
Four students were not accepted, and one experiment was not valid due to technical prob-
lems. So, the number of valid experiments was forty-five (twenty-five males and twenty
females).

This study was carried out in accordance with the ethical standards of the responsible
institutional committee on human experimentation. All subjects gave written informed
consent in accordance with the Declaration of Helsinki.

5. Feature Extraction

During the model’s training phase data from the experiment are recorded and stored in the
base station. Then, the data are post-processed in order to extract the most representative
features for the prediction model. Firstly, the SCR signal is filtered again by using a
1.5 Hz cut-off low-pass FIR filter in order to decrease noise produced in the different
electronic stages. Afterwards, different temporal features are extracted from the SCR
signal for the two groups under study, that is calm and stressed. A total of ten time-related
features are calculated over the SCR signal. More concretely, the mean (MSC), standard
deviation (SDSC), maximum (MASC), minimum (MISC) and dynamic range (DRSC)
are estimated. In order to highlight the sudden changes in skin conductivity, also the
means of the first (FDSC) and second derivative (SDSC) of SCR are computed. Finally,
also the integral (INSC), normalised average power (APSC) and normalised root mean
square (RMSC) of SCR are calculated with the aim of identifying the morphological
alterations produced when SCRs are present in the EDA signal.

6. Results

Shapiro-Wilk test was used to assess distribution normality for each single parameter,
whereas homocedasticity was verified with Levene’s test. Consequently, Table 1 shows
the statistical differences between both calm and stressed groups throughout a one-way
ANOVA test. Only those parameters that show some statistical significance are presented
(ρ ≤ 0.05). In this sense, all parameters, except MISC and SDSC, show some discrimi-
natory power. Furthermore, all relevant parameters report comparable differences among
the groups’ means.

In addition, each feature’s individual ability to discriminate between groups is eval-
uated by using a Receiver Operating Characteristic (ROC) curve. It is important to high-
light that a ten-fold stratified cross-validation is used in this analysis. The reason for
stressing the data is to avoid the possibility of classification results to be highly dependent
on the choice of a given training-test segmentation. More precisely, the entire database is
separated into ten equally-sized folds, such that each fold is a good representative of the
data. Then, ten learning and test iterations are performed. At each iteration, nine folds
are randomly used to train the system, while the remaining fold is used to test the perfor-
mance. Furthermore, at each iteration a threshold is obtained for maximising the ROC
performance. Such threshold is then used to assess the performance on the test set.
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Table 1. Sensitivity (Se), specificity (Sp) and accuracy (Ac) for all parameters under study, as well as for
training and test subsets, are shown. Moreover, the statistical significance through one-way ANOVA test is
depicted.

Feature One-way Learning Test

Acronym ANOVA Se (%) Sp (%) Ac (%) Se (%) Sp (%) Ac (%)

MSC 1.03×10−5 75.95 83.10 79.52 69.00 76.78 72.95

SDSC 1.33×10−5 85.06 78.95 82.43 78.57 76.07 77.38

MASC 2.68×10−5 81.45 76.35 78.91 74.07 72.28 73.34

DRSC 2.67×10−5 82.92 75.42 79.18 76.64 71.00 73.62

FDSC 1.50×10−4 74.58 80.43 77.50 69.21 74.85 71.81

INSC 1.11×10−5 79.40 79.03 79.25 67.57 74.78 71.00

APSC 0.0026 84.98 79.88 82.43 79.92 78.71 79.28

RMSC 1.20×10−5 85.92 78.92 82.42 81.57 78.85 79.94

All the significant parameters achieve a considerable performance in the classifica-
tion. Statistical parameters show a comparable classification power, where the accura-
cies range from 71% to 77%. SDSC reports the highest accuracy among the statistical
parameters. Nevertheless, the markers based on signal power show better performance
than other statistical parameters. Indeed, RMSC achieves the highest performance, clas-
sifying correctly 79.94% of the subjects. However, INSC shows a distinct trend, being
the worst parameter in the classification with 71% of correctness.

In order to increase the classification performance and to study the possible rela-
tionship among all the features, the parameters are combined by means of a tree-based
classification model. These models are characterised by their simplicity and suitability
to be embedded into small devices where computational capacity is limited. Indeed, in
such models the decisions are taken by simple binary conditions, where different param-
eters are involved. In this work, the criteria to build up the tree is that any node only
contains samples from the same group or less than 20% of the samples belonging the
same group. Furthermore, the splitting criteria, which defines the number of tree levels,
is performed by following the Gini index. Figure 3(a) shows the decision tree structure,
calculated by using a ten-fold cross-validation technique to avoid biased results depen-
dent of the training and test subsets. It is important to remark that all the significant pa-
rameters were included in this analysis. However, only tree parameters were selected,
when the aforementioned building criteria were accomplished. Thus, SDSC is chosen as
the most significant parameter to maximise the classification. Then, MSC and RMSC are
also chosen to discriminate among groups. It is worth noting that these parameters show
a relevant performance when analysed individually. In this regard, a global accuracy of
82.5% is achieved by the combination of the three temporal parameters, as shown in Fig-
ure 3(b). Moreover, the global performance increases more than 2.5% regarding the ac-
curacy achieved by the best single parameter. It is also important to remark that the ratio
of correctness within stressed subjects increases up to 89%, augmenting the sensitivity
more than 9%. On the contrary, the specificity of the model decreases less than 3%.
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Figure 3. Combination of temporal parameters. (a) Decision tree structure. (b) Confusion matrix.

7. Conclusions

This work has introduced a novel and unobtrusive wearable monitoring device to be used
in stress control environments. The details about the hardware, experimentation, training
and testing of the mathematical classification model have been provided. Although only
one physiological variable (EDA) has been used in this work, a correctness of 82.5% has
been achieved by the combination of three SCR features. It is also interesting to highlight
that the proposed model reports a sensitivity of 89% when differentiating stressed from
calm people. In this sense, it is preferable to reach a high sensitivity, even at the expense
of decreasing the specificity. Indeed, in terms of applicability, it is better to treat calm
people with relaxing stimuli than not treating stressed subjects.

A number of works can be found in the literature covering the calm-stress differen-
tiation. Nevertheless, only a few studies have focused their efforts on portable devices
[17]. The main reason is that most of the works use complex classification approaches
to raise the performance, using support vector machines or neuronal networks. In this
regard, wearables need a special attention to keep the computational burden as low as
possible. In this work, much efforts have been put to reduce the amount of information
to be processed. Thus, only one physiological variable is acquired and processed. More-
over, all the features are calculated in the time domain, where the operations are reduced
to simple sums and divisions. These specifications permit not only to embed the whole
analysis into the wearable, but also analyse the data in real-time. Nevertheless, in order to
decrease the consumption and to increase the wearable’s autonomy, the device is in sleep
mode most of the time. Only in concrete periods, the device wakes up, runs its routine
and goes back to sleep. This sequence allows a drastic reduction in power consumption,
specially in wireless systems where radio communication is by far the most expensive
element within the whole system.

The applicability of this kind of systems are enormous, given the wide range of sit-
uations where stress control plays a key-role. Moreover, the continuous advances in chip
miniaturisation and connectivity between devices makes ambient intelligence systems
more unobtrusive and ubiquitous,offering a better acceptance by the user. Figure 4 shows
a simple system where this application can be used. It consists of a home where the de-
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Figure 4. A possible application of the proposal.

vice is worn by the user. It evaluates the stress level each certain time and communicates
with the rest of the nodes operating as actuators within the system. Thus, background
music, lighting and temperature are regulated depending on the stress level of the user.
Indeed, these variables have reported certain degree of influence in stress control [11].
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