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Abstract. Knowledge of at least elementary mathematics is essential for success in 
many areas of study and a large number of careers. However, many people find 
this subject difficult, partly due to specialised language and notation. These 
problems tend to be even more marked for people with disabilities, including 
blindness or impaired vision, and people with limited motor control or use of their 
hands. 
Learning activities are increasingly carried out in mobile computing environments, 
replacing the roles of textbooks or handwritten lecture notes. In the near future we 
expect the modality of use of mobile devices to shift from predominantly output to 
both input and output. The generally poor performance and usability of text input 
on these devices motivates the quest for alternative input technologies. One viable 
alternative input modality is automatic speech recognition, which has matured 
significantly over the last decade. 
We discuss tools that allow the creation and modification of mathematical content 
using speech, which could be of particular benefit to the groups of disabled people 
mentioned above. We review previously proposed systems, including our own 
software for use on desktop PCs, and conclude that there is currently a lack of 
tools implementing these requirements to a satisfactory level. 
We address some technical challenges that need to be solved, including the 
problem of defining and parsing of suitable languages for spoken mathematics, 
and focus on the parsing of structured mathematical input, highlighting the 
importance of incrementality in the process. We believe our incremental parsing 
algorithm for expressions in operator precedence grammar languages will improve 
upon previous algorithms for such tasks in terms of performance. 

Keywords. Learning mathematics, mobile learning, disabled students, Automatic 
Speech Recognition, parsing 

Introduction 

Learning is increasingly enhanced by technology, and the surge in use of mobile 
devices such as Tablet PCs and smart phones offers new learning opportunities [1]. 
Students benefiting from mobile learning technology include, for example, online 
(distance) learners, people working or studying “on the move”, and sometimes 
disadvantaged users such as people with physical disabilities or other special needs [2]. 

Until relatively recently, automatic speech recognition was only available to a 
small group of highly specialised scientists. Even around twenty five years ago, in 
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order to use what was then considered state-of-the-art speech recognition software, 
highly expensive equipment was required. Today, even hand-held devices such as iOS 
or Android smartphones, tablet PCs and game consoles such as the Xbox and Nintendo 
Wii are often equipped with some form of speech recognition software. The reasons 
behind this rapid evolution are the tremendous progress that has been made in speech 
recognition technology, the advances in available memory and processing power of 
personal computers and the fact that complex and computationally intensive tasks can 
now be carried out with the help of powerful cloud-based applications. At present, 
speech recognition is used in a large number of application domains. As a consequence, 
speech input plays an increasingly important role in making computer tasks accessible 
to users who wish or need to rely on input modalities other than conventional keyboard 
and mouse. However, despite its great importance within the curriculum, both at school 
level and in higher education, for specialists and non-specialists (including students of 
Science, Engineering, Economics and Business subjects), the development of such 
technology for making Mathematics more accessible both to disabled and other users 
lags a long way behind its use in more conventionally alphabetic text-based subject 
disciplines. 

One of the main motivations behind our work is to make speech-driven systems as 
suitable as possible for users who typically might wish to engage in hands-free 
computing, and in particular to facilitate mobile learning of Mathematics. This is 
realised through our TalkMaths project [3] which has delivered several prototype 
systems and interfaces, as described in Section 2, the latest under development being a 
mobile app. 

The main contribution of this paper is, as part of a progress report of recent 
activities within the TalkMaths project, a high-level description of an efficient 
implementation of incremental processing of speech-input, commonly referred to as 
incremental parsing. Our algorithm, an improvement of an existing algorithm by 
Heeman, consumes less battery power and provides a more responsive interface, and is 
hence suitable for a mobile version of the existing TalkMaths system.  

This paper is organised as follows: in Section 1, after briefly reviewing existing 
commercial and freely available automatic speech recognition tools, we discuss past 
work on speech-driven editors for mathematics and the challenge of defining spoken 
mathematics. In Section 2, we present the current architecture of the TalkMaths system 
and the used parsing technique. Section 3 describes our main contribution of this paper. 
We conclude our findings and propose future developments in Section 4. 

1. Interfacing Mathematics using Speech Technology 

In this section, we discuss issues that arise when creating mathematical content using 
speech as input. We review the state of the art of automatic speech recognition 
technology and discuss approaches to formalised spoken mathematics, including more 
in detail the language used in the TalkMaths system. 

1.1. Review of Speech Recognition Technologies 

Automatic speech recognition (ASR) is the process of converting human spoken words 
to human- or computer-readable text [4]. Most ASR systems are speaker dependent – 
i.e. they require to be trained by a particular user in order to provide the best and most 
accurate recognition of that user’s speech. 
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There are several commercial ASR packages available in the current market, with 
the most widely available ones being sold by Nuance and Microsoft. With claims of 
99% word accuracy under good conditions, Nuance Dragon NaturallySpeaking (DNS) 
[5] is the market leader. Originally developed for Windows, recent versions of DNS 
also run on Mac OS X. Microsoft has included Windows Speech in Windows 7 
onwards, and their speech recognition solution is likely to be further improved in future 
versions of their operating systems. At present, it remains unclear which of these two 
main players will eventually dominate the market. 

A free alternative to the commercial products is Sphinx, an Open Source toolkit for 
speech recognition [6] developed at Carnegie Mellon University. With Sphinx, 
additional data such as prosodic and intonation information can be captured. Currently, 
the recognition accuracy is inferior to that of the commercial ASRs. 

Increasingly, vendors are adding speech support to their software. For example, 
Google has enabled speech recognition in its Chrome web browser, specifically 
designed for speech-enabled applications, such as “Google Voice Search” [7]. In 
particular, mobile devices and gaming consoles are widely speech-enabled, with speech 
controlled assistants being offered by Google and Apple. 

Complementary to ASR technology is speech synthesis (or Text To Speech, TTS) 
technology, whereby a computer system tries to create a comprehensible set of sounds 
approximating the way a person would read a particular word, or sequence or words, 
aloud. However, detailed discussion of TTS technology is beyond the scope of this 
paper, and we refer the reader to [8] for further details. 

1.2. Previous Work and Overview of Existing Systems 

We are aware of a number of systems translating spoken mathematical input to 
different output formats and displaying the structure of the mathematical expressions. 
These work together with ASR systems installed on the user's machine. 

MathTalk [9] is a commercially available system that implements speech macros 
for use within the Scientific Notebook environment. Its functionality, even when 
compared with the other academic prototype systems mentioned below, is quite limited. 

Fateman has undertaken work leading to Math Speak & Write [20], a multimodal 
approach combining spoken input with handwriting recognition. Unfortunately, the 
ambitious aim of simultaneous multimodal input was not achieved. Another system is 
CamMath, described in [10], which needs the same support environment as MathTalk 
but seems to offer a better developed command language. 

Previous approaches to allowing spoken input of mathematics include the research 
prototype systems of Bernareggi & Brigatti [11] (which only works in Italian) and 
Hanakovič and Nagy [12] (restricted to use with the Opera web browser due to it using 
X+V (XML + voice) technology).  

While various mobile apps exist that parse mathematical input, entered either via 
an on-screen keyboard or by drawing symbols on the screen, none offer dictation as an 
input modality. Although speech to text input is widely available, its functionality 
conforms to standard ASR offerings, and does not handle specialised languages such as 
those needed to dictate mathematics or computer program code. 

We conclude that all these systems are not yet robust enough for day-to-day use by 
(potentially inexperienced) users. 

Our work on the TalkMaths system effectively touches all these aspects. 
TalkMaths is a web-based structure editor, which accepts natural language commands 
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to control the editing process. We will assume that spoken mathematics commands 
have been recognised by the ASR system, or perhaps have been directly typed into a 
suitable user interface. As a consequence, we have a string of transcribed spoken 
mathematics which we would like to further analyse with the ultimate goal of 
displaying it on-screen or on a printed page. Each successive prototype version of 
TalkMaths achieves this, within the constraints of their respective limitations. 
TalkMaths has also been employed in a pilot study to investigate whether its use could 
also enhance students’ learning of mathematical terminology and concepts [13]. 

1.3. Defining Spoken Mathematics 

A somewhat specialised language is required to describe mathematical expressions, 
imposing a compromise between removing ambiguity and making the language too 
complicated to use. This is covered by the work of Chang [14], Raman [15], Wigmore 
[16] and Attanayake [17].  

Defining a standard for spoken mathematics is an essential starting point when 
creating speech-based mathematical editing systems. In this section, we will review 
several approaches that have been taken for this. 

The question of how to define rules for speaking (or reading aloud) mathematics 
has been posed by several authors in the past. The motivation behind these attempts to 
find standards seems to be linked to three different contexts: dictating or describing 
mathematics to other human beings, parsing mathematics by computer systems to 
further process the input, and defining rules for converting mathematical content to 
audio synthetic speech output (text-to-speech, TTS). 

One of the first attempts to give a standard for speaking mathematical equations 
and objects in English appears to be Chang's handbook “Larry's Speakeasy” [14]. He 
defines spoken forms for a broad range of mathematics, from basic symbols, algebra, 
trigonometry, logic, geometry, statistics, calculus, linear algebra, topology to 
mathematical diagrams and graphs. Chang, himself being a blind mathematician, 
primarily focuses on dictating mathematics to other human beings. 

As far as we are aware, the most complete investigation into spoken mathematics 
to date is presented by Fateman [18, 19]. This focuses on introducing a vocabulary that 
is intuitive and easy to learn by novices, and at the same time allows as little ambiguity 
as possible. This work was carried out within the context of the Math Speak & Write 
system [20]. Fateman provides a detailed analysis of how to speak numbers, non-
numeric tokens, nested arithmetic expressions, integrals and sums. He also discusses 
the problem of ambiguity, to which in some cases no easy solution seems to be 
available. 

Apparently unaware of this work, Elliott and Blimes [10] developed a similar 
approach, although their language design is oriented towards the use of “two-
dimensional mathematics” (such as expressions describing integrals) in combination 
with an existing mathematics editor (Scientific Notebook). 

In [16, 21], spoken mathematics is also investigated, based on empirical evidence 
of how people – notably mathematics students and teachers – actually speak 
mathematical expressions. This was carried out by analysing transcriptions of recorded 
mathematics classes from the British National Corpus (BNC) [22] and an experiment 
where participants read out given expressions. The study focusses on the potential of 
prosodic information providing clues to resolve ambiguity. However, this did not 
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influence the design of the language used in older versions of TalkMaths, and Wigmore 
[16] uses an approach very similar to that of Fateman. 

Rules for spoken mathematics have also been developed for text-to-speech 
conversion of mathematics, which can be of particular interest to blind and visually 
impaired students. For example, Raman, another blind mathematician, gave a 
framework in his ASTeR system [15], which gave synthetic readings of LaTeX/TeX 
documents including describing equations and formulae in words for blind users. A 
rather more recent system for the same purpose is STEMReader [23], based on 
MathML rather than LaTeX. Another initiative is the MathSpeak project [24] in which 
a set of grammar rules for speaking mathematics have been designed. However, rules 
for speaking mathematics that have been developed for text-to-speech appear less 
suitable for use with spoken input due to the tedious learning curve and usage they 
require. In other words, a text-to-speech system would use more descriptive language, 
probably employing more words, to give the listener as much information as possible 
to describe and explain the expression on screen, which might be too long, verbose and 
complex for dictating and inserting relatively simple formulae [19]. One approach for 
evaluating such systems is EAR-Math, developed by Kacorri et al [25]. 

It should be mentioned that some commercial systems are gradually starting to 
support spoken mathematics. The most commonly-known example is the Computer 
Algebra System Mathematica, that actually provides a function spokenString() [26] for 
converting mathematical objects into their spoken language form. 

1.4. Spoken Mathematics as Input Language 

In this section, we present the main characteristics of the language for spoken 
mathematics that we use in the TalkMaths system, for which we a parser has been 
developed [17, 27] that includes error recovery strategies. 

Our language consists of a set of spoken forms for operators and operands. This 
approach is not new and, arguably, most previous attempts follow the same scheme. 
However, we improve several aspects of spoken mathematics, as explained in the 
remainder of this section. We note that writing LaTeX or MathML is not convenient or 
suitable for novices such as school pupils, or some disabled students. 

1.4.1. Ambiguity 

As already stated, and noted in the literature [16, 19], spoken descriptions of 
mathematical expressions often contain ambiguity. Precedence rules, normally 
expected to be known by mathematically trained users, can help with resolving this 
ambiguity. For example, the phrase “alpha plus bravo over charlie”2 could mean either 

 or . If a display of the expression were available – perhaps in a teaching 
session or during a mathematical talk – there would be no confusion.3 Otherwise, if we 
need to interpret the transcribed spoken mathematics without additional clues, our 
system should follow the rule that division (the fraction operator) binds more strongly 
than addition. Hence, following this precedence rule, we would decide on the first 

                                                           
2 The NATO alphabet is used to avoid confusion between similar sounding common English names of 

various letters, such as “b” (“bee”), “p” (“pee”) and “v” (“vee”) [19]. 
3 In the case of blind or severely visually impaired people, an appropriate spoken version, or tactile 

rendering (e.g. by Braille), of the mathematics would need to be delivered. 
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expression rather than the second. However, it should be noted that people may not 
always follow these rules precisely when speaking mathematics! 

In other cases there is not always an obvious solution. Consider the transcribed 
spoken mathematics, “square root of bravo squared minus alpha”. This could either be 
interpreted as , or . No obvious operator precedence rule would help 
in this example. There is no common standard that indicates exactly how much input 
relates to the argument of the square root function. 

The approach taken by Fateman [19] is to use additional “locutions” (spoken 
delimiter/marker commands) to clearly indicate boundaries between arguments. The 
first expression would be spoken as “square root of bravo squared all minus alpha”. 
Here, the term “all” acts as an “invisible” end marker to separate the square root 
function from the subtraction operation. An additional construction (“quantity”) 
implements a corresponding “begin” marker. The expression   for example 
would be dictated as “alpha plus quantity bravo plus charlie all over delta”. Note that 
these commands could also be used as a spoken form for brackets, as for example in 
the input “alpha plus bravo all times charlie” which is the spoken form of the 
expression . 

The emphasis of the basic design of spoken mathematics in [19] is on simplicity 
and convenience for the user. For these reasons, the author of [19] does not consider 
the use of additional commands other than “quantity” and “all”. 

1.4.2. Speech Templates 

Attanayake [17] extends this scheme to include the use of speech templates4. Speech 
templates are (typically, relatively short) spoken natural language commands. A speech 
template consists of one or several groups of words. Between each group, any other 
spoken language elements (including speech templates) might occur. Effectively, these 
groups act as “boundaries”. Hence, a speech template can take zero or more arguments 
and can be nested. 

For example, consider the expression  (see Section 3.6 in [19]). 
Using Fateman’s approach we would say “alpha plus bravo over quantity charlie plus 
delta all all times echo”. Suppose we define a speech template for fractions as follows. 

"fraction" .. "over" .. "end fraction" 
Using this, the expression is now pronounced as “alpha plus fraction bravo over 

charlie plus delta end fraction all times echo”. This appears more natural, as it avoids 
the need for the repeated “all all” construction. 

Speech templates without any arguments can also make sense. These consist of a 
single command such as “edit expression” or “what can I say”. Such commands can be 
useful, for example, in a system that offers additional functionality such as editing 
mathematical expressions or displaying help information. 

An example of a speech template with more than two arguments could be for 
speaking or typing definite integrals, as: 

"integral from" .. "to" .. "of" .. "end integral" 

                                                           
4 These should not to be confused with the type of acoustic templates used for pattern matching in speech 

signal processing. 
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The expression  would be spoken as “integral from x-ray 
equals alpha to bravo of foxtrot of x-ray plus golf of x-ray all delta x-ray end integral”.   

2. Parsing and Architecture of the TalkMaths system 

In this section, we review previous work on parsing spoken mathematics using 
appropriate grammar and parser design, the majority of it having been carried out for 
the TalkMaths system. 

This system is concerned with parsing suitably defined spoken forms of 
syntactically correct mathematical expressions, or else converting syntactically 
incorrect input to a format for display or further processing. Given a syntactically 
correct spoken mathematical expression, parsing will result in a parse tree that is useful 
for additional manipulations. 

As mentioned by Fateman [18], it is difficult to specify a grammar that will parse 
the full set of mathematical terminology that one may typically encounter in research 
papers, text books or lecture notes. Hence for parsing our input, we will have to restrict 
ourselves to an appropriate sub-language, namely our standard of spoken mathematics, 
which has a well-defined vocabulary and relatively prescribed syntax, and which may 
be parsed with a context-free grammar, combined with some input pre-processing. 

Fateman [19] adopts this approach in order to specify a subset of spoken 
mathematics, taking into account the fact that mathematical expressions use prefix, 
infix or suffix conventions and have occasionally ambiguous operator precedences. 

In the first version of TalkMaths, described by Wigmore [16, 28], an attribute 
grammar [29, 30] for the Yapps2 parser generator is described that recognises spoken 
mathematics terminology at an elementary. However, it did not support incomplete 
input, which was a major drawback as users will tend to dictate more complex 
expressions in several distinct utterances with pauses. 

As adding support for incomplete expressions to this attribute grammar appeared 
difficult, a new framework was developed by Attanayake [17, 27] that explored the use 
of special “mixfix” operators to construct our input language, and which used operator 
precedence parsing for the syntactical analysis of this language. To deal with 
ambiguities at lexical level, the XGLR parsing algorithm presented by Begel and 
Graham [31] was adapted for the operator precedence setting. Finally, robust error 
recovery strategies for the parser were designed, implemented and integrated in the 
subsequent version of TalkMaths, which by then had evolved into a web-based system 
[27]. 

The work presented in the next section is carried out in the context of the potential 
extension of TalkMaths to the mobile setting. Whereas Isaac et al [32] focus on an 
improved user interface design, this paper discusses an improved internal parsing 
algorithm that will be essential for use within the constraints of an environment such as 
a mobile app. 

3. Incremental Parsing Algorithm 

We now present our novel approach for incremental parsing of spoken mathematics. In 
order that spoken mathematics can be displayed or evaluated properly, operator 
precedence needs to be taken into account when parsing such content. The operator 
precedence parser developed by Attanayake [17, 27] does this, allows for incomplete 
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content, and handles errors in the user input. Although this is efficient for dictation 
from scratch, when the user wishes to edit an expression, the entire text needs to be 
reparsed before it may be rendered on screen or otherwise used, causing a perceptible 
delay for non-trivial expressions, which could cause problems for people using a web 
service and a mobile device. To ameliorate this, we need to be able to parse the input 
incrementally when the user performs an edit operation. Because we are working with 
mathematical expressions, our incremental parser needs to take operator precedence 
into account, producing a tree that represents the new expression that preserves 
operator precedence. 

Incremental parsing was originally developed in the context of computer 
programming, to provide timely feedback to developers as they worked [33, 34]. 
Typically, the aim is to minimise the amount of source code that needs to be reparsed 
to reconstruct the parse tree, thus reducing the total time taken to produce an updated 
tree. While most incremental parsing approaches are designed to work with the types of 
grammar used by programming languages, some deal with operator precedence (OP) 
grammars, motivated either by the need to handle mathematical expressions within 
computer programs or specifically to parse mathematical content. 

In the programming context, Lalonde & des Rivières [35] permit the parse tree for 
the OP grammar content to be built up without regard to OP, and then process it by 
rearranging nodes that violate the OP rules, until the tree is valid. Kaiser & Kant [36] 
approach the problem in the context of an editor for mathematical expressions, 
stipulating how the tree nodes are to be processed by the Lalonde & des Rivières 
transformations as a result of an editing action. The algorithms presented by Heeman 
[37] work on entire parse trees of the mathematical expressions, allowing any edit 
action to be achieved using two basic operations, split and merge.  

All three approaches handle binary operators, brackets, and at least in concept, 
unary operators and functions, but only Heeman deals explicitly with incomplete 
expressions. However, none of them handle composite structures such as integrals, 
which are processed by the Attanayake [17] parser, effectively as n-ary operators. Our 
algorithm achieves this by extending those of Heeman [37] and making use of the 
Lalonde & des Rivières transformations [35]. It also improves upon Heeman’s 
inefficient method of bracket matching, and has been implemented for use with the 
Attanayake [17] parser. 

To illustrate the benefit of manipulating parse trees rather than reparsing a 
modified spoken expression, consider the situation where the user has already spoken 
“x-ray times echo to the power of x-ray” for  and wants to add “plus charlie”, 
giving . Without incremental parsing, as a first step, either the tree for  
would have to be converted back to words, or the spoken text version would have to be 
made available. Next, the new text needs to be concatenated to the original, and the 
result reparsed.  Using incremental parsing, only the “plus charlie” needs to be parsed 
from scratch, and the tree for that concatenated with the original parse tree using the 
merge operation.  For this particular example, that would consist of replacing the empty 
node to the left of “plus” with the tree for . 

Work has started to evaluate the performance of these incremental parsing 
algorithms when compared to reparsing the entire text, and initial findings show that 
there is much less of a delay when carrying out edit operations than for reparsing. This 
is a crucial requirement for integration into a mobile app, and will significantly enhance 
the usability and hence the learning experience of the tool. In the future, we will 
thoroughly evaluate the full implementation of the algorithm in a mobile setting. 
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4. Conclusion 

We have presented some of the potential benefits offered by speech input of 
mathematics, particularly for “mobile learning” and for disabled students. However, we 
also noted a number of difficulties associated with entering mathematical equations and 
formulae by speech, and proposed an approach that seeks to permit users to dictate 
mathematical expressions in a relatively natural way. The TalkMaths system was 
designed to implement this method for the dictation of mathematical equations and 
formulae; however, functionality is also required to allow users to edit and modify their 
mathematical content easily and efficiently. We have proposed a method for achieving 
this using an improved incremental parsing algorithm, based on that of Heeman [37], 
which is currently being evaluated for its performance parsing a set of typical equations. 

In the future, we also hope to use these algorithms to permit creation and editing of 
computer programming code via spoken input. Both these systems – for dictation of 
mathematical expressions and of program code – should be of significant benefit 
disabled students, those wanting to engage in mobile learning, and “working on the go”, 
using mobile devices which are less well suited to more conventional modes of input 
such as a keyboard and mouse. 
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