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Abstract
Inspired by the standard set theoretic Tarskian semantics, we propose

a novel interpretation structure for studying the acceptability dynamics
of arguments (i.e., the eventual changes on their acceptability condi-
tion) for logic-based argumentation. Interpretation structures identify
possible scenarios in which a given argument would be accepted, or not,
according to some standard extension-based argumentation semantics.
These scenarios are configured in accordance to the consideration or in-
consideration of other arguments from the given argumentation frame-
work. Thereafter, it would be possible to ensure the acceptability of an
argument by handling the evolution of the argumentation framework
throughout the use of argumentative change operations. Hence, an inter-
pretation structure which is a model of a given argument specifies a pos-
sible epistemic state to which the argumentation framework could evolve
towards the argument’s positive acceptability. Moreover, the analysis of
several models of a given argument brings the opportunity of satisfying
additional restrictions towards the evolution of a framework. Finally, we
propose a revision operator whose rationality is ensured through postu-
lates and a corresponding representation theorem.

Keywords. Argumentation, Belief Revision, Argumentation Dynamics

1. Introduction

We propose a new perspective for studying acceptability dynamics of arguments
upon logic-based argumentation. Although an argumentation change operator is
presented at the end, the main objective of this article is not precisely its proposal,
but the introduction of a new way of reasoning about dynamics in argumentation
by considering the changes on the acceptability status of arguments. We intend
to deal with the question of which arguments provide, or interfere with, the ac-
ceptability of others, studying the interaction between acceptance and rejection
through the consideration of sub-frameworks, and facilitating a theoretical anal-
ysis of the implications of change on a framework in advance, before the formal
application of some argumentation change operation. We get inspiration from the
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standard set theoretic Tarskian semantics and the idea of constructing interpreta-
tion structures for reasoning about dynamics in argumentation. The cornerstone
for such structures relies on the notions of core and remainder sets [11], two dif-
ferent constructions for recognizing acceptance and rejection of arguments. An
interpretation structure proposes a “further” epistemic state in which the accept-
ability of a formula is analyzed in contrast with its acceptability status on the cur-
rent epistemic state, i.e., the current framework. Since that formula is supported
by the claim of certain arguments, the interpretation structure ends up analyzing
their acceptability as well. Afterwards, an interpretation ensuring the acceptabil-
ity on the further epistemic state is referred as a model. Since several different
models may appear, we obtain alternatives of change for analyzing and deciding
which should be the most appropriate according to rationality conditions. On its
basis, we propose thereafter an acceptance revision operator which deals with the
matter of incorporating a new argument while ensuring its acceptance. Finally, its
rationality is guaranteed through the axiomatic characterization and correspond-
ing representation theorem according to classic belief revision [2] literature and an
argument-based belief revision model like Argument Theory Change (ATC) [12].

2. Fundamentals for Reasoning on Logic-based Frameworks

We refer to the argument domain set AL for identifying (logic-based) arguments
a ∈ AL built with formulae ϑ ∈ L, where L is some underlying logic. Arguments
are expressed through a pair 〈S, ϑ〉 where S ⊆ L is the argument’s support,
and ϑ ∈ L its claim. The functions cl : AL−→L and sp : AL−→℘(L) are used
for identifying the claim cl(a) ∈ L and support set sp(a) ⊆ L, of an argument
a ∈ AL. The function sp will be overloaded to apply over sets of arguments, sp :
℘(AL)−→℘(L), such that sp(Θ) =

⋃
a∈Θ sp(a) will identify the base determined

by the set of supports of arguments in Θ ⊆ AL. The logic L will be considered
along with its corresponding inference operator |=. Thus, we can say that an
argument a ∈ AL supports, or is a supporter of ϑ, to specify that cl(a) |= ϑ
holds. In order to avoid multiple representation of arguments with a same support
set, we will restrict their construction to the canonical form [4], in which for
any argument a, its claim is cl(a) =

∧
sp(a). Hence, we will assume AL as the

domain of canonical arguments. In consequence, for any pair a, b ∈ AL, a = b
iff if sp(a) = sp(b) then cl(a) = cl(b). We write a � b for expressing that an
argument a ∈ AL is a sub-argument of argument b ∈ AL (and also that b is a
super-argument of a), implying that sp(a) ⊆ sp(b) holds. When sp(a) ⊂ sp(b),
we say that a is a strict sub-argument of b, by writing a � b. Arguments with
no strict sub-arguments inside are referred as atomic arguments, thus a ∈ AL
is atomic iff |sp(a)| = 1. The atoms function at : AL−→℘(AL) identifies the
set at(a) ⊆ AL of all the atomic arguments of a ∈ AL. The atoms function
will be overloaded as at : ℘(AL)−→℘(AL) to apply over sets Θ ⊆ AL such that
at(Θ) =

⋃
a∈Θ at(a). The set RΘ ⊆ AL×AL identifies the defeat relation between

pairs of arguments from Θ ⊆ AL. A pair (a, b) ∈ RΘ implies that a ∈ Θ defeats
b ∈ Θ, or equivalently, a is a defeater of b, meaning that sp(a) ∪ sp(b) |= ⊥ and
a�b, where � ⊆ AL × AL is an abstract preference relation assumed to be total
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–thus, for any pair of arguments a, b ∈ AL we know either a�b or b�a (or both).
This is a necessary condition to ensure a functional construction of the defeat
relation R : ℘(AL)−→℘(AL × AL), verifying sp(a) ∪ sp(b) |= ⊥ iff (a, b) ∈ RΘ or
(b, a) ∈ RΘ, for any pair a, b ∈ Θ. In addition, for guaranteeing sp(Θ) |= ⊥ iff
RΘ �= ∅, we will rely upon closed sets of arguments: a set containing all the sub-
and super-arguments that can be constructed from its arguments. We provide
such implementation through an argumentation closure operator C such that for
any Θ ⊆ AL, C(Θ) = {a ∈ AL|at(a) ⊆ Θ or a � b, for any b ∈ Θ}. Thus, we will
say A ⊆ AL is closed iff A = C(A), and will usually note as A any closed set.

Example 1 Assuming a propositional logic L and a set Θ ⊆ AL such that
Θ = {a, b, c} where a = 〈{p}, p〉, b = 〈{q}, q〉, and c = 〈{¬p ∨ ¬q},¬p ∨ ¬q〉;
the functional construction of the defeat relation will trigger a set RΘ = ∅, al-
though sp(Θ) |= ⊥ holds. However, the argumentation closure renders a closed
set A = C(Θ) = {a, b, c, d, e, f}, where d = 〈{p, q}, p ∧ q〉, e = 〈{p,¬p ∨ ¬q},
p∧ (¬p∨¬q)〉, and f = 〈{q,¬p ∨ ¬q}, q ∧ (¬p ∨ ¬q)〉. Afterwards, the defeat rela-
tion ends up as RA = {(a, f), (b, e), (c, d), (d, e), (d, f), (e, d), (f, d)}, for a prefer-
ence relation prioritizing arguments in Θ over others, being symmetric otherwise.

A (canonical logic-based) argumentation framework (AF) is identified through
the structure 〈Θ,RΘ〉, where Θ ⊆ AL, and whenever A ⊆ AL is known to be
closed, the structure 〈A,RA〉 identifies a closed AF. Since the defeat relation is
a function over AL-arguments, we refer to an operator FΘ as the AF generator
from Θ iff FΘ = 〈Θ,RΘ〉. Note that FΘ is the AF constructed from Θ. Finally,
we refer to an AF FA, implying that FA is the closed AF 〈A,RA〉, and thus,
A = C(A). Given an AF FA, for any not necessarily closed set Θ ⊆ A, it is
possible to construct the sub-framework FΘ. In such a case, we overload the sub-
argument operator ‘�’ by also using it for identifying sub-frameworks, writing
FΘ � FA. Observe that, if C(Θ) = A′ and A′ ⊂ A, then FA′ is a closed strict sub-
framework of FA, i.e., FA′ � FA. Our intention is to simplify AFs for concentrating
on acceptability dynamics of arguments. Consequently, for an AF τ , we refer to
its set of arguments through the set A(τ) and to its set of defeats through R(τ).

Given an AF FA, as usual in abstract argumentation [8], for any Θ ⊆ A we say
that Θ defeats an argument a ∈ A iff there is some b ∈ Θ such that b defeats a;
Θ defends an argument a ∈ A iff Θ defeats every defeater of a; Θ is conflict-free
iff RΘ = ∅; and Θ is admissible iff it is conflict-free and defends all its members.
However, as seen before, a logic-based framework should be closed to ensure that
all sources of conflict are identified through the defeat relation. For instance,
in Ex. 1, Θ ⊆ A is admissible given that it is conflict-free and defends all its
members, however sp(Θ) |= ⊥. This is undesirable since an admissible set could
trigger an inconsistent set of supports. Thus, we reformulate the classic notion of
admissibility for abstract argumentation into logic-based admissibility [11]:

Definition 1 (Logic-based Admissibility [11]) For any Θ ⊆ A we say that Θ is
admissible iff Θ is closed, conflict-free, and defends all its members.

We will just say admissibility to refer to logic-based admissibility. (In Ex. 1,
Θ cannot be admissible since it is not closed, thus, the only admissible sets are
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{a}, {b}, and {c}.) The extension semantics, which rely upon admissibility, will
also be affected by the notion of logic-based admissibility without inconvenience.
We will only refer to the complete semantics in some examples, however, any of
the extension semantics could also be applied. Thus, given an AF τ = FA, a set
E ⊆ A is a complete extension if E is admissible and contains every argument
it defends. Afterwards, the set Es(τ) ⊆ ℘(A) identifies the set of s-extensions
E from τ , where an s-extension is an extension in τ according to some specific
extension semantics s. Observe that any extension E ∈ Es(τ) is admissible and
thus, it contains a consistent support base, i.e., sp(E) �|= ⊥ holds.

We refer as acceptance criterion to the determination of acceptance of argu-
ments in either a sceptical or credulous way. Several postures may appear. For in-
stance, a sceptical set may be obtained by intersecting every s-extension

⋂
Es(τ),

while a credulous set may arise from the selection of a single extension E ∈ Es(τ)
according to some specific preference. For instance, selecting “the best” extension
among those of maximal cardinality. We will abstract the implementation of any
acceptance criterion by referring to an acceptance function δ : ℘(℘(A))−→℘(A)
where δ(Es(τ)) determines the outcome of the adopted criterion. In addition, we
refer as (argumentation) semantics specification S to a tuple 〈s, δ〉, where s stands
for identifying some extension semantics and δ for an acceptance function imple-
menting some acceptance criterion. Afterwards, we refer to the set AS(τ) ⊆ A as
the acceptable set of τ according to S iff AS(τ) = δ(Es(τ)). Finally, for any a ∈ A,
a is S-accepted in τ (resp. of, S-rejected) iff a ∈ AS(τ) (resp. of, a �∈ AS(τ)).

3. Acceptability Analysis through Core and Remainder Sets

We rely upon the notions of admissible and core sets ([11]) of an argument as the
fundamentals for recognizing the sources of an argument’s acceptability condition,
and upon rejecting sets for the argument’s rejecting condition.

Definition 2 (Admissible Sets of an Argument) Given an AF τ = FA and an ar-
gument a ∈ A; for any Θ ⊆ A, we say that: 1) Θ is an a-admissible set in τ iff Θ
is an admissible set3 such that a ∈ Θ, and 2) Θ is a minimal a-admissible set in
τ iff Θ is a-admissible and for any Θ′ ⊂ Θ, it follows that Θ′ is not a-admissible.

Definition 3 (Core Sets) Given an AF τ = FA and an argumentation semantics
specification S, for any C ⊆ A, we say that C is an a-core in τ , noted as a-coreS
iff C is a minimal a-admissible set and a is S-accepted in τ .

Definition 4 (Rejecting Sets of an Argument) Given an AF FA, a semantics spec-
ification S, and an argument a ∈ A; for any Θ ⊆ A, we say that Θ is a S-a-
rejecting set in FA iff a is S-rejected in FA but it is S-accepted in FA\Θ.

We have defined rejecting sets in an intuitive manner. For constructing re-
jecting sets of an argument a (see [11]) we need to identify those arguments that
interpose to the construction of an a-coreS set. This is the seed for further con-

3Recall that from now on by admissibility we refer only to its logic-based definition.
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structing remainder sets. However, the acceptability analysis must apply upon
closed frameworks for avoiding inconveniences as described in Ex. 1. We only can
be sure that a is S-accepted in FA\Θ if we can ensure that FA\Θ is a closed AF.
An expansive closure is a sort of “complementary closure operator” which ensures
that removing an expanded set from a closed set delivers a closed set.

Definition 5 (Expansive Closure) Given Θ ⊆ A, P is an expansive closure iff
P(Θ) = {a ∈ A|b � a, for every b ∈ at(P0(Θ))}, where P0(Θ) = {a ∈ Θ| there is
no b ∈ Θ such that b � a}. We say that Θ is expanded iff it holds Θ = P(Θ).

Example 2 Suppose {a1, a2, a, b1, b, c} ⊆ A, where a � b and b � c, at(a) =
{a1, a2}, and at(b) = {a1, a2, b1}; and Θ = {a, b}. This means that P0(Θ) = {a}.
Removing a from A should prevent its construction, thus, a1 and a2 should not be
simultaneously present (since a ∈ C({a1, a2}), A = C(A \ {a})). The expanded
set ends up being P(Θ) = {a1, a2, a, b, c}, which ensures that A \ P(Θ) is a closed
set. Observe however that P(Θ) is not a minimal expanded set for the removal of
arguments a and b: for instance if Θ′ = {a1, a, b} then P(Θ′) = {a1, a, b, c}, which
is a minimal alternative for such purpose.

Proposition 1 Given two sets A ⊆ AL and Θ ⊆ AL, where A is closed; if Θ ⊆ A
then A′ = A \ P(Θ) is a closed set, i.e., A′ = C(A′).

Remainder sets identify “responsible” arguments for the non-acceptability of
an argument. Intuitively, an a-remainder is a minimal expanded S-a-rejecting set.

Definition 6 (Remainder Sets) Given an AF FA and a semantics specification S,
for any R ⊆ A, R is an a-remainder in FA, noted as a-remainderS iff R is a
minimal expanded S-a-rejecting set: 1) R is a S-a-rejecting set, 2) R = P(R),
and 3) for any set Θ ⊂ R such that Θ = P(Θ), it holds a is S-rejected in FA\Θ.

Example 3 Assume L as the propositional logic and AL as the domain of canonical
arguments. Let Θ = {a, b, c, d} ⊆ AL be a set of canonical arguments such that
Θ = {a, b, c, d}, where a = 〈{p ∧ q1}, p ∧ q1〉, b =
〈{p ∧ q2}, p ∧ q2〉, c = 〈{¬p},¬p〉, and d = 〈{¬q2},¬q2〉.
The argumentation closure renders the closed set of argu-
ments A = C(Θ) = {a, b, c, d, e, f, g}, where:
e = 〈{p ∧ q1, p ∧ q2}, p ∧ q1 ∧ q2〉 (a � e, b � e)
f = 〈{p ∧ q1,¬q2}, p ∧ q1 ∧ ¬q2〉 (a � f , d � f)
g = 〈{¬p,¬q2},¬p ∧ ¬q2〉 (c � g, d � g)
Thus, FA is closed and due to some preference relation: FA

RA = {(a, c), (b, c), (d, b), (e, c), (e, d), (b, f), (f, c), (a, g), (b, g), (e, f), (e, g), (f, g)}.
Assuming S = 〈s, δ〉, where s is a complete semantics and δ selects “the best” s-
extension of higher cardinality (credulous), a b-coreS Cb = {a, b, e} is constructed
by C({b, e}). Since c and d are S-rejected, we have remainders for both of them:
a c-remainderS Rc = {a, e, f} and two d-remainderS sets Rd = {a, e, f} and
R′

d = {b, e}. Note {a, b, e, f} = P({e}) is not a d-remainderS since it is not
minimal given that it contains P({a, e}) = Rd and P({b, e}) = R′

d.
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Proposition 2 Given an AF FA, it holds: 1) a ∈ AS(FA) iff there is some a-coreS
in A, 2) a �∈ AS(FA) iff there is some a-remainderS in A, and 3) there is some
a-coreS in A iff there is no a-remainderS in A.

4. Argumentation Dynamics Contra-Semantics

The idea behind the theory of Argumentation Dynamics Contra-Semantics is to
analyze the current epistemic state determined by an AF τ = FA for answering
whether a formula ϑ ∈ L is S-accepted in τ , and in the case ϑ is S-rejected in τ ,
whether it is possible, and how, to provoke the evolution of τ to reach a further
epistemic state in which ϑ would end up S-accepted. The language L is inter-
preted in terms of a specialized set theoretic semantics à la Tarski, through an ar-
gumentation dynamics interpretation structure IS = 〈ΔI ,ΓI , ·I〉, which considers
an (acceptability dynamics) interpretation function ·I and two different domains
containing the “constants” of the AF which would be the lower-case letters naming
arguments from A. The positive domain ΔI referred as interpretation domain,
describes which arguments are considered in the proposed interpretation, and the
negative domain ΓI referred as interpretation contra-domain, describes undesired
arguments. Through the interpretation function, the acceptability dynamics of a
formula ϑ ∈ L are interpreted as ϑI ⊆WL, where WL ⊆ AL × ℘(AL)× ℘(AL).

Definition 7 (Dynamics Interpretation Structure) Given an AF FA and a seman-
tics specification S; a structure IS = 〈ΔI ,ΓI , ·I〉, where ΔI ⊆ A, ΓI ⊆ A, and
·I : L−→℘(WL); is referred as (argumentation dynamics) interpretation struc-
ture iff 1) ΔI ∪ ΓI = A, 2) ΔI ∩ ΓI = ∅, 3) ΔI is closed, and 4) for any ϑ ∈ L,
ϑI is the set of interpretation triples (a,X, Y ) ∈WL verifying:

a) a ∈ A, is a support for ϑ, i.e., cl(a) |= ϑ

b) X ⊆ ΔI, is an a-coreS in F
ΔI or else the empty set

c) Y ⊆ ΓI, is an a-remainderS in FA or else the empty set

We refer to ΔI as the interpretation domain, ΓI as the interpretation contra-
domain, and ·I as the (acceptability dynamics) interpretation function.

The interpretation function related to an interpretation IS brings the pos-
sibility to understand the consequences of discarding arguments (those in the
contra-domain) from the acceptability analysis. IS proposes a further epistemic
state, i.e., an evolutive step of the AF, in which we can see the concrete implica-
tions by observing the corresponding interpreted formula and its triples. As being
specified above, the interpretation structure counts with two mutually exclusive
domains and with an interpretation triple composed by an argument a ∈ A which
is a support of the interpreted formula ϑ, and two sets of arguments, an a-coreS
and an a-remainderS . The a-remainderS indicates which are the arguments con-
tained in the contra-domain that interfere with the acceptability of a and the
a-coreS specifies which is the core set of arguments that will ensure a positive
acceptability for a in the interpretation’s proposed evolutive step, i.e., the AF

determined by the interpretation domain: F
ΔI . Note that the evolved AF is closed.
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Example 4 (From Ex. 3) Assume an interpretation IS = 〈ΔI ,ΓI , ·I〉 for the
AF FA, where ΔI = A \ ΓI and ΓI = {a, b, e, f}. The interpretation func-
tion ·I applied over a formula ϑ = ¬p ∨ ¬q2 ends up containing four triples,
ϑI = {(c, {c, d}, {a, e, f}), (d, {d}, {a, e, f}), (d, {d}, {b, e}), (g, {g}, {a, b, e, f})}.
For a formula like p ∧ q2, the function ·I brings some empty triples: (p ∧ q2)

I =
{(b, ∅, ∅), (e, ∅, ∅)} since both b and e are part of the contra-domain, and moreover,
for a formula like ¬q1, the function ·I ends up empty, i.e., (¬q1)I = ∅, since there
is no argument in A supporting ¬q1.

A dynamics interpretation may be accurate for the positive acceptability of
some formulae. This is captured by the notion of interpretation model.

Definition 8 (Interpretation Model) Given an AF τ , an interpretation IS , and a
formula ϑ ∈ L; we say IS is a model of ϑ in τ , noted IS |≈ ϑ iff there is some
triple (a,X, Y ) ∈ ϑI such that X �= ∅ holds. On the contrary, if there is no such
triple, we say IS is not a model of ϑ, writing IS �|≈ ϑ.

Proposition 3 if IS |≈ ϑ then for any (a,X, Y ) ∈ ϑI, it holds 1) a is S-accepted
in F

ΔI and 2) a is S-accepted in FA\Y .

The previous proposition shows that when Y ⊂ ΓI , the argument’s accept-
ability is unaffected by the additional contra-domain’s arguments given that they
do not belong to the associated remainder set Y . This brings about the need
for restricting the contra-domain only to the exclusively necessary arguments to
achieve a further positive acceptability. This can be understood as a pathway to
minimal change (discussed later). We look for a construction which minimizes the
contra-domain. This means that a minimal model will ensure that each argument
in the contra-domain is necessarily there in order for ϑ to be accepted.

Definition 9 (Minimal Model of a Formula) Given an AF τ , an interpretation IS ,
and a formula ϑ ∈ L such that IS |≈ ϑ, we say IS is a minimal model of ϑ in τ
iff there is no interpretation I ′S such that I ′S |≈ ϑ, where ΓI′ ⊂ ΓI holds.

Proposition 4 IS is a minimal model of ϑ iff for every (a,X, Y ) ∈ ϑI, Y = ΓI.

Example 5 (From Ex. 4) Although IS models ϑ, it is not a minimal model
since its contra-domain ΓI strictly contains {a, e, f} ⊆ ΓI and {b, e} ⊆
ΓI, defining two minimal models I1S = 〈{b, c, d, g}, {a, e, f}, ·I1〉 and I2S =
〈{a, c, d, f, g}, {b, e}, ·I2〉. Observe that ϑ is supported by c, d, and f ; several al-
ternatives are available. Through the minimal model I1S , ϑ is S-accepted through
the acceptance of c and d, while in the case of the second minimal model I2S , ϑ is

S-accepted through the acceptance of d and f . Finally, ϑI1

= {(c, {c, d}, {a, e, f}),
(d, {d}, {a, e, f})} and ϑI2

= {(d, {d}, {b, e}), (f, {a, d, f}, {b, e})}.
It is observable a fine distinction between what an interpretation says about

the acceptability of a modeled formula in the current epistemic state and its
acceptability dynamics on a further epistemic state. As we have already discussed,
an interpretation IS proposes an alternative framework F

ΔI in which a modeled
formula ϑ would end up accepted. However, much more than this can be said.
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We refer as dynamic model to that which proposes an alternative of change for
modifying the current acceptability state of ϑ, from rejected to accepted. Such a
situation can be observed when for every triple (a,X, Y ) ∈ ϑI both X and Y are
always non empty sets, showing that in the current epistemic state there is always
an a-remainderS set, i.e., a set of arguments blocking the acceptability of the
supporter of ϑ, i.e., a. On the other hand, when there is some triple (a,X, Y ) ∈ ϑI

where X �= ∅ and Y = ∅, we have that there is no a-remainderS given the
a-coreS X, which means that ϑ is already accepted through argument a in the
current epistemic state FA, and also in the further epistemic state F

ΔI where the
a-coreS X is built. We refer to such interpretation as static model. In summary,
if IS statically models ϑ we can ensure ϑ is accepted in the current framework FA

as well as in F
ΔI , on the other hand, if IS dynamically models ϑ we can ensure

ϑ is rejected in the current framework FA whereas it is accepted in F
ΔI .

As we have seen before, when for every triple (a,X, Y ) ∈ ϑI , X is an empty
set, we would be considering an interpretation which does not model ϑ. However,
this can be still meaningful. Whenever, Y is a non-empty set, we have an inter-
pretation which ensures that ϑ is rejected in the current epistemic state, given
that it is possible to identify a set of arguments blocking its acceptability (the
a-remainderS set Y ), but since no a-coreS set can be built considering only ar-
guments from the interpretation domain ΔI , we can infer that the contra-domain
contains arguments that are needed for constructing an a-coreS set. We refer to
such an interpretation as a contra-model. On the other hand, when both X and
Y are empty, we know ϑ will not be accepted in F

ΔI , however the interpretation
does not tell anything about ϑ’s acceptability in FA –given that it may be the
case (or not) that some a-remainderS set is constructible but not from the argu-
ments in the contra-domain– and therefore, the acceptability dynamics of ϑ will
be unknown. Such an interpretation will be referred as a failure for ϑ.

X �= ∅ Y �= ∅ a ∈ AS(FA) a ∈ AS(FΔI ) Referred as

� � × � Dynamic Model

� × � � Static Model

× � × × Contra-Model

× × ? × Failure

Example 6 (From Ex. 5) Both I1S and I2S are dynamic models for ϑ. Let ϑ′ = p∧
q2, and two interpretations I3S = 〈{a, b, d, e, f}, {c, g}, ·I3〉, where (b, {a, b, e}, {}) ∈
ϑ′I3

, and I4S = 〈{a, b, c, e}, {d, f, g}, ·I4〉, where (b, {b}, {}) ∈ ϑ′I4

. Both inter-
pretations are static models for ϑ′ since b is S-accepted in FA and its positive
acceptability is maintained in each evolved AF since b-coreS sets are identified in
each case. Note that the “canonical interpretation” 〈A, ∅, ·Ic〉 is always a static
model for any S-accepted formula, like ϑ′. A contra-model can be seen by con-
sidering I5S = 〈{b, c}, {a, d, e, f, g}, ·I5〉 where the formula (¬p) is interpreted as
(c, {}, {a, e, f}) ∈ (¬p)I5

. Here we have no c-coreS set since a part of it is in the
contra-domain (d would be required), which implies I5S �|≈ ¬p and thus (¬p) will
be S-rejected in F

ΔI5 . However, since we can build a c-remainderS , we know that
there is a set of arguments responsible for the non-acceptability of c and therefore,
we can also ensure that (¬p) is also S-rejected in FA. Two cases of failure can be
referred to Ex. 4 through the interpretation IS for (p ∧ q2) and (¬q1).

M.O. Moguillansky and G.R. Simari / A Specialized Set Theoretic Semantics398



We will refer to the special notational convention IS , a |≈ ϑ for specifying
that a ∈ A is an specific argument by which IS |≈ ϑ holds. In this sense, it will be
also possible to restrict the construction of an interpretation model of a formula
ϑ through the acceptability of a specific argument a by requiring IS , a |≈ ϑ to
be satisfied. Notice that it will be possible to have an interpretation model for
a formula ϑ, that is, IS |≈ ϑ which does not model ϑ through the acceptability
of a particular argument a, i.e., IS , a �|≈ ϑ. It is clear that, if IS , a |≈ ϑ then a ∈
AS(FΔI ) and cl(a) |= ϑ, and moreover, if IS is a static model, we also know that
a ∈ AS(FA). For the specific case in which ϑ = cl(a) we will make a slight abuse of
notation (for simplicity), writing IS |≈ a instead of IS , a |≈ cl(a). In such a case,
we may say that IS is amodel of argument a, although, its formal meaning is more
likely to correspond to: IS models cl(a) through the acceptability of argument
a. Afterwards, with a slight abuse of notation, it will also be possible to write
(X,Y ) ∈ aI as a shortcut for (a,X, Y ) ∈ cl(a)I . Finally, we say IS is a minimal
model of argument a iff IS |≈ a and for every (X,Y ) ∈ aI , Y = ΓI holds.

5. Argumentation Dynamics through Contra-Semantics

We say that an argument a ∈ AL is external to the AF FA (or just, external) iff
a �∈ A. An expansion operation incorporates an external argument ensuring a new
resulting closed AF. Thus, given an AF FA and an external argument a ∈ AL, the
operator + stands for an expansion iff FA + a = FC(A ∪ {a}).

We identify the domain of all interpretation structures of a given AF τ through
the set IτS ⊆ ℘(AL)×℘(AL)×WL, in addition, we identify the set of all minimal
models of an argument a ∈ AL in τ through the operator MS(a, τ) ⊆ I

τ
S . Next

we define a selection function for identifying “the best” minimal model.

Definition 10 (Minimal Model Selection) Given an AF τ = FA, a semantics spec-
ification S, and an argument a ∈ A; a minimal model selection is obtained by a
selection function γ : ℘(IτS)−→I

τ
S applied over the setMS(a, τ) for selecting some

minimal model of a in τ , where γ(MS(a, τ)) ∈ MS(a, τ) is such that for every
IS ∈ MS(a, τ) it holds γ(MS(a, τ))�γIS , where �γ is a selection criterion by
which it is possible to select the best representative minimal model.

The selection criterion can be any method for ordering sets of arguments
which takes in consideration any possible perspective of minimal change. Probably,
the simplest perspective is to prefer the models of smaller contra-domain in order
to remove as less arguments as possible (for instance, in Ex. 5, I2S should be
preferred over I1S), however, the criterion should look deeper into the set for
deciding among several models with contra-domains of identical cardinality. A
different perspective of minimal change could be to prefer those minimal models
whose proposed evolutive step removes as less as possible conflicts between pairs
of arguments, thus looking for a minimal change regarding the morphology of the
graph of arguments. But probably, the most powerful and distinctive advantage
of relying upon contra-semantics, for analyzing and selecting minimal models, is
that we can study the impact of change directly over the resulting acceptable set.
Not only for deciding to reduce as less as possible the acceptable set, but also for
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making a selective change operation which could valuate the positive acceptability
of certain arguments more than others, or even for analyzing the classification of
models in order to keep as controlled as possible the number of dynamic models,
and to avoid reducing the number of static models while keeping as low as possible
the cardinality of contra-models. Such a discussion deserves to be deepened with
more space, and is part of the ongoing work about this theory. An acceptance
revision will incorporate an external argument a to the AF ensuring the positive
acceptability of a by referring to a minimal model selection.

Definition 11 (Acceptance Revision) Given an AF τ , a semantics specification S,
and an external argument a ∈ AL; the operator � stands for an acceptance
revision iff τ�a = F

ΔI , where ΔI is the interpretation domain of the selected
minimal model IS = γ(MS(a, τ + a)). When necessary we will write τ�γa to
identify the minimal model selection γ by which the revision τ�a is obtained.

The axiomatization of the acceptance revision is achieved by analyzing the
different characters of revisions from classical belief revision [2,10] and from ATC
revision [12], for adapting the classical postulates to argumentation. For space
reasons, we will not discuss the intuitions motivating each postulate. For a detailed
discussion on this matter, the interested reader may refer to [11,12].

(closure) if A(τ) = C(A(τ)) then A(τ�a) = C(A(τ�a))
(success) a is S-accepted in τ�a
(consistency) AS(τ�a) is conflict-free
(inclusion) A(τ�a) ⊆ A(τ + a)
(vacuity) If a is S-accepted in τ + a then A(τ + a) ⊆ A(τ�a)
(core-retainment) If b ∈ A(τ) \A(τ�a) then exists an AF τ ′ such that A(τ ′) ⊆

A(τ) and a is S-accepted in τ ′ + a but S-rejected in (τ ′ + b) + a
(uniformity) if a ≡ b then A(τ) ∩A(τ�a) = A(τ) ∩A(τ�b)

The uniformity postulate makes reference to an equivalence relation “≡” for
arguments (see [12]) to ensure that the revisions τ�a and τ�b have equivalent
outcomes when arguments a and b are equivalent. For any pair of arguments
a, b ∈ AL, we say that a and b are equivalent arguments, noted as a ≡ b iff
cl(a) |= cl(b) and cl(b) |= cl(a) and for any a′ � a there is b′ � b such that a′ ≡ b′.
Inspired by smooth incisions in Hansson’s Kernel Contractions [10], we introduce
an additional condition on minimal models selection functions for guaranteeing
uniformity. Under the consideration of two equivalent arguments a and b, the idea
is to ensure that the selection function will trigger one minimal model for each
argument (a and b) whose interpretation domains are identical except for the
presence of a or b in each corresponding case. Note that we refer to the expansion
closure operator P for looking at the common base of each interpretation domain.

Definition 12 (Smooth Minimal Model Selection) Given an AF τ and two exter-

nal arguments a, b ∈ AL. If a ≡ b then ΔIa \ P({a}) = ΔIb \ P({b}), where
IaS = γ(MS(a, τ + a)) and IbS = γ(MS(b, τ + b)).

An operation τ�γa is a smooth acceptance revision iff τ�γa is an acceptance
revision obtained through a smooth minimal model selection ‘γ’.
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Representation Theorem 1 Given an AF τ , a semantics specification S, and an
external argument a ∈ AL; τ�a is a smooth acceptance revision iff ‘�’ satisfies
closure, success, consistency, inclusion, vacuity, core-retainment, and uniformity.

6. Related Work & Conclusions

A revision approach in an AGM spirit is presented in [6] through revision for-
mulae that express how the acceptability of some arguments should be changed.
As a result, they derive argumentation systems which satisfy the given revision
formula, and are such that the corresponding extensions are as close as possi-
ble to the extensions of the input system. The revision presented is divided in
two subsequent levels: firstly, revising the extensions produced by the standard
semantics. This is done without considering the attack relation. Secondly, the
generation of argumentation systems fulfilling the outcome delivered by the first
level. Minimal change is pursued in two different levels, firstly, by ensuring as
less change as possible regarding the arguments contained in each extension, and
secondly, procuring as less change as possible on the argumentation graph. The
methods they provide do not provoke change upon the set of arguments, but only
upon the attack relations. Their operator is more related to a distance based-
revision which measures the differences from the actual extensions with respect
to the ones obtained for verifying the revision formula. They give a basic set of
rationality postulates in the very spirit of AGM, but closer to the perspective
given in [9]. They only show that the model presented satisfies the postulates
without giving the complete representation theorem for which the way back of
the proof, i.e., from postulates to the construction, is missing. However, the very
recent work [7], which is in general a refinement of [6] and [5], proposes a generic
solution to the revision of argumentation frameworks by relying upon complete
representation theorems. In addition, the revision from the perspective of argu-
mentation frameworks is also considered. A different approach, but still in an
AGM spirit was presented in [3], where authors propose expansion and revision
operators for Dung’s abstract argumentation frameworks (AFs) based on a novel
proposal called Dung logics with the particularity that equivalence in such logics
coincides with strong equivalence for the respective argumentation semantics. The
approach presents a reformulation of the AGM postulates in terms of monotonic
consequence relations for AFs. They finally state that standard approaches based
on measuring distance between models are not appropriate for AFs.

The aforementioned works differ from ours in the perspective of dealing with
the argumentation dynamics. This also renders different directions to follow for
achieving rationality. To our knowledge, [12] was the first work to propose AGM
postulates for rationalizing argumentation dynamics, providing also complete rep-
resentation theorems for the proposed revision operations built upon logic-based
argumentation. The rationalization done here is mainly inspired by such results.

The main objective of the dynamics contra-semantics is to bring a new the-
oretical structure conceived from scratch to deal with acceptability dynamics of
arguments. The expected virtue of this theory is to ease the proposal and rational-
ity analysis of new models of argumentative change. We believe that it could be
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simpler to show that the outcome of a “rational” change operator coincides with
an interpretation model than showing the complete rationality through a repre-
sentation theorem. If this hypothesis is true, the full rationality of new change
operators could be achieved by means of the representation theorem here pre-
sented. In this sense, the intuitions behind the notions of core and remainder sets
exceed the scope of the standard argumentation semantics. Their constructions
can be redefined for being applied over other kind of frameworks like abstract and
dialectical argumentation. For instance, the concept of remainders could match
well as a generalization of the idea proposed in ATC [13,12] about selectable con-
arguments from a set of attacking lines in a dialectical tree [14] (argumentation
lines whose parity interfere with the possibility of acceptance of the root argu-
ment). The study of the dynamics contra-semantics upon dialectical argumenta-
tion seems to be possible also, given that the reference to standard argumenta-
tion semantics in this work has been parametrized, thus allowing the modeling of
marking criteria for trees of arguments. The intention would be to bring a formal
methodology for studying acceptability dynamics upon an argumentation which
fits better for reasoning about a main issue in dispute, i.e., a root argument, as
done in dialogues and legal reasoning. This is part of the ongoing work.
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