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Abstract. This paper proposes mechanisms for agents to model other
agents’ beliefs and arguments, thus enabling agents to anticipate their
interlocutors’ arguments in dialogues, which in turn facilitates strategis-
ing and the use of enthymemes. In contrast with existing works on “op-
ponent modelling” that treat arguments as abstract entities, the like-
lihood that an interlocutor can construct an argument is derived from
the likelihoods that it possesses the beliefs required to construct the ar-
gument. We therefore address how a modelling agent can quantify the
certainty that its interlocutor possesses beliefs, based on the modeller’s
previous dialogues, and the membership of its interlocutor in communi-
ties.2

Keywords. Second-order belief, Second-order argument, Community of
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1. Introduction

Context and Contributions In argumentation-based dialogues [2], the ability of
agents to model their interlocutors’ arguments enables the strategic choice of ar-
guments that are less susceptible to attack, and the use of enthymemes (i.e. ar-
guments with incomplete logical structures [3,4]) so as to avoid sending informa-
tion already known to interlocutors. Agents therefore need to not only construct
first-order arguments from their own knowledge-bases, but also maintain models
of their interlocutor’s arguments, referred to here as second-order arguments.

In existing works on opponent modelling (e.g. [5,6]), an agent assigns an un-
certainty value [0, 1] to an abstract argument, representing the likelihood that an-
other agent can construct this argument. However, these models of second-order
abstract arguments are incomplete in the sense that they do not account for all
second-order arguments that can be constructed from their constituent beliefs.
Hence in this paper we provide an account of opponent modelling that is dis-
tinctive in its consideration of arguments’ internal structures. Thus, uncertainties
associated with second-order arguments are derived from uncertainties associated
with their constituents; that is to say, quantitative valuations of uncertainty as-
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sociated with a modeller’s belief that his interlocutor possesses the premises and
inference rules for constructing arguments. This then begs the question as to the
provenance of these latter uncertainty valuations, which most existing works on
opponent modelling do not address. Our primary contribution is to therefore pro-
pose two sources for these uncertainty values. The first source is the information
that is exchanged in the dialogues an agent participates in. The second, apply-
ing when dialogical data is insufficient, is a quantitative measure of similarity
amongst all agents, based on their membership in agent communities.
Outline of the paper In Section 2 we recall a general framework for structured
argumentation – ASPIC+ [7] – which we choose as the underlying argumenta-
tion framework due to its generality in accommodating existing argumentation
systems. We then illustrate the need to account for uncertainty valuations over
second-order beliefs when establishing uncertainty values over second-order ar-
guments. Section 3 then describes how dialogical evidence and community-based
estimates are used by agents to assign uncertainty values to second-order beliefs.
Finally Section 4 concludes by discussing applications of our model.

2. Preliminaries

In order to assign uncertainty values to arguments and their constituents, ex-
plicit access to the structure of arguments is required. We base our model on
the ASPIC+ framework [7] which offers a structural account of argumentation
that is both general in accommodating existing approaches to argumentation (e.g.
[8,9,10]), and is shown to satisfy rationality postulates [11]. In what follows, we
recall key concepts of ASPIC+, with some modifications necessary for this work.

We assume all agents are equipped with an ASPIC+ argumentation theory,
a tuple 〈S,K〉, where S is an Argumentation System capturing the reasoning
capability of an agent, and K is a knowledge-base. S is a tuple 〈L,R,−, n〉 where
L is a logical language, R is a set of strict (Rs) and defeasible (Rd) inference
rules, where the latter are assigned names (wff in L) by the naming function n,
and “−” is a conflict function generalising the notion of negation. A knowledge-
base K consists of two disjoint subsets of axiom Kn and ordinary premises Kp,
where Kp and Rd represent (respectively infer) fallible information. On the other
hand, axiom premises Kn and strict rules Rs are non-fallible, thus cannot be
challenged. Typical examples include axioms and inference rules of a deductive
logic (see [12] for more detail), and so we assume a unique set of axiom premises
and strict inference rules shared amongst all agents. Furthermore, we assume that
all agents share the same language L, conflict function ‘−’ and naming function
n.

Given an argumentation theory T, arguments are constructed by iterative
applications of inference rules on premises from K. The following is a tree-based
definition for an argument that is equivalent to the ASPIC+ definition but in
which inference rules are explicitly represented:

Definition 1. [Argument] An argument, based on a knowledge-base K and an
argumentation system 〈L,R,−, n〉, is a tree where each node is either a formula
from L, or a rule from R, and the leaves are premises from K. For every node x:
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Figure 1. Arguments corresponding to Example 2. Here inference rules using → are strict and
those using ⇒ are defeasible.

a) if x is an inference rule of the form φ1, . . . , φn → /⇒ ψ then x has a parent ψ,
and for every φi in x’s antecedent, x has a child φi; b) if x is a wff φ that is not
the root, then x’s parent is an inference rule with φ in its antecedent; c) if x is a
wff φ that is not a leaf, then x’s child is an inference rule with φ as its conclusion.

Henceforth, we will assume [7]’s notation Prem(A) and Rules(A) to respec-
tively denote A’s premises and inference rules.

Example 2. [Running Example] Let i, j be two agents with argumentation theories
Ti,Tj respectively. Now let Kn

j = {}, K
p
j = {p, q, s}, Rs

j = {r, s → t} and

Rd
j = {p ⇒ q, q ⇒ r}. All arguments that are constructable on the basis of Tj

(i.e. A1 to A7) are shown in Figure 1. For argument A7, Prem(A7) = {p, s} and
Rules(A7) = {r, s→ t, q ⇒ r, p⇒ q}.

In this work, we are concerned with how an agent i can evaluate the likelihood
that another agent j can construct a certain argument. Existing works on second-
order arguments [6] treat arguments as abstract entities. Therefore, once an agent
j commits to a set of arguments {A1, . . . , An} in a dialogue, agent i will only
consider A1, . . . , An as arguments j can construct, without taking into account all
other arguments that can be constructed from A1, . . . , An’s constituents.

Example 3. [Cont. Example 2] Suppose agent j submitted only arguments A3, A4,
A5 in Figure 1, in dialogues with i. If i treats arguments as abstract entities, it
would believe that j only has arguments A3, A4, A5. It is however clear that j can
also construct A6 as it has the required beliefs to do so. The same judgement can
be made regarding A7, as it additionally contains the shared strict rule r, s→ t.

The above example illustrates the need for accessing arguments’ internal
structures when determining the likelihood that an agent has a certain argument.
One common approach [13], though studied in the context where uncertainty val-
ues denote likelihoods of truth, is to derive the values associated with arguments
from those associated with their constituent beliefs, which [13] considers to be
arguments’ premises. This is because in [13]’s deductive setting, the set of infer-
ence rules, corresponding to classical inferences, is assumed unique and shared
by everyone. In our context, this means that any uncertainty as to whether an
agent can construct an argument is a function of the uncertainty that it has the
necessary beliefs to do so, which in addition to ordinary premises include defea-
sible rules (since the latter may vary from agent to agent). Therefore, for every
two agents i, j, we will assume a function uij : L ∪R �−→ [0, 1] such that for any
wff or rule α (henceforth referred to as a belief), uij(α) is the likelihood given by
agent i that agent j has α. In case the argumentation formalism enforces that

S.A. Hosseini et al. / Assigning Likelihoods to Interlocutors’ Beliefs and Arguments 341



the set of axiom premises and strict inference rules be shared amongst agents,
we will have the following conditions: C1: if r ∈ Rs

i then uij(r) = 1, and C2: if
φ ∈ Kn

i then uij(φ) = 1 for all agents i, j. In the next section, we will propose two
complimentary mechanisms for evaluating uncertainty over second-order beliefs.

3. Uncertainties over Second-Order Beliefs

In the previous section we established that the uncertainty of a second-order
argument is a function of the uncertainties associated with its constituent beliefs
(premises and inference rules). We now show how an agent i exploits its dialogues
with other agents to assign uncertainty values to these second-order beliefs.

3.1. Dialogical Evidences (DE)

Agents engage in dialogues, which in addition to satisfying a dialogue’s primary
purpose (e.g. persuading, deliberating), also increases the participants’ awareness
of each other’s states of belief. Note that the information exchanged in dialogues
are not necessarily beliefs that agents consider to be ‘true’ i.e. claims of justified
arguments, rather they indicate the beliefs that agents can construct (not nec-
essarily justified) arguments for. The “experience” gained by an agent from its
dialogues with other agents is captured by the assignment d defined below.

Definition 4. For any two agents i, j, a direct dialogical evidence assignment dij :
L∪Ri �−→ [0, 1]∪{⊥} represents the likelihood i assigns to j’s having a premise
or inference rule, based on direct dialogical evidence.

A concrete specification of dij , including how to consolidate different dialog-
ical evidences can only be provided within a specific dialogue framework. For the
purposes of this paper, it suffices to assume that dij(α) = ⊥ indicates that i has
some dialogical evidence suggesting that j does not believe in α. If i has dialogical
evidence that j believes in α, then dij(α) gives a value in [0, 1] representing i’s
degree of confidence that j believes in α based on i’s dialogical data. Initially,
dij(α) = 0, indicating the absence of any dialogical evidence. Examples of how
dij(α) is updated each time i obtains an evidence include: when j commits to α as
part of an argument in a dialogue with i, dij(α) is set to 1; when i gets informed
of j’s belief in α through another agent k, in which case dij(α) could correspond
to i’s level of trust in k;3 in failed information-seeking or inquiry dialogues with
j initiated by i, in which case dij(α) could be set to ⊥; and so forth.

Using d, agents can build models of other agents beliefs and subsequently
arguments by harnessing the information they directly obtain through dialogues.
Naturally, these models rely on communication and the more frequent that takes
place, the more accurate the models become. However, in many cases an agent i
may need to determine whether another agent k is able to construct an argument
A without any dialogical data directly supporting its decision. In these situations,
i must use a different mechanism to estimate k’s ability to construct A. In the next
section, we describe how this can be done via the concept of agent communities.

3As well as trust valuations, there are other mechanisms from which a value between 0 and
1 for dij(α) could be obtained e.g. [5].
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3.2. Community-based Estimates (CE)

In a multi-agent environment agents may have various properties (e.g. organisa-
tional roles). An agent group g can be defined as a set of agents who share a
specific property. Logicians and lawyers are both real-world examples of agent
groups. We use G to denote the set of all agent groups. One can also see a group
g as a predicate specifying the property that the members of g possess.

A general assumption underpinning our framework is that the shared property
between members of a group licenses their sharing of a specific set of beliefs.
For example, logicians are all assumed to be aware of the basics of logic. As
agents may have multiple properties, agent groups may intersect, and each of
these intersections may themselves license the sharing of a separate set of beliefs
between its members. For example, consider A and B to be two groups of agents,
AB = A∩B a third group, and for any group G, let BG be the set of beliefs shared
by agents in G. By assuming a monotonic relationship between group membership
and beliefs, we have BAB ⊇ BA ∪ BB where the set BAB \ {BA ∪ BB} is the set
of beliefs shared exclusively between AB’s members due to their membership to
both A and B.

Therefore, given the set of all groups G, we consider its powerset 2G, call each
member of 2G a community, and associate it with a distinct set of beliefs that is
shared between its members.

Notation 5. Henceforth we assume a finite set of agents AG, a finite set of groups
G ⊆ 2AG, and a finite set of communities C = 2G. Let A, B and C be groups of
agents. To simplify notation, we will represent the community κ = {A,B,C} as
the string ABC, and given a community κ, we will use ag ∈ κ instead of ag∈∩κ.
Remark 6. The community AB is considered more specific than the community A
due to their members having more properties, and A is considered to be more gen-
eral than AB. As such, agents in the community ∅ do not need to have any specific
properties – essentially this community contains all agents in the environment –
and the beliefs shared amongst them is just common knowledge.

We now describe the process of estimating whether an agent has a premise
or inference rule, based on its membership to communities. Here, the goal for an
agent i is to analyse the data it obtains through dialogues regarding other agents’
beliefs, and determine the correlation between having specific premises and rules,
and community membership. The idea is to allow i to estimate the likelihood that
an agent j has a certain belief based on the communities j belongs to.

Definition 7. Let ag ∈ AG. Then Gr(ag) = {g ∈ G | ag ∈ g} is the set of groups
to which agent i belongs, and Cm(ag) = 2Gr(ag).

Example 8. [Running Example] Let L and P respectively denote “lawyers” and
“paralegals” and G = {L,P}. Let α be some technical legal information. The
experience of an agent i after consulting with several legal firms is summarised in
Figure 2, which shows agents’ community memberships and whether i assumes
they believe (+) or do not believe (−) α. In this context, the community ∅,
containing all agents, represents “anyone working in a legal firm”.
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Figure 2. The figure corresponding to Example 2

In order to identify the correlation between believing α and being in a com-
munity, each community must be assigned a value representing the likelihood that
a member of that community has α.

Definition 9. A community estimate for α is a tuple 〈κ, p〉 where κ ∈ C, and
p ∈ [0, 1] is called the p-score of κ w.r.t. α. Let S be a set of community estimates
for a belief α. Then: 1) C(S) = {κ | 〈κ, p〉 ∈ S}; 2) P(S) = {p | 〈κ, p〉 ∈ S}; and
3) maxp(S) = {〈κ, p〉 ∈ S | ∀ 〈κ′, p′〉 ∈ S, p ≮ p′}.

For every agent i, we will consider a community-based estimate function ci :
C × {L ∪Ri} �−→ [0, 1], assigning a p-score to every community κ w.r.t. a belief
α, where ci(κ, α) denotes the likelihood agent i assigns to members of κ having
α. This assignment will be defined in two stages to highlight some of the issues
that arise in its construction. First, we define the p-score of a community as a
standard conditional probability: the probability that members of a community
κ believe α based solely on their membership to κ.

Definition 10. The basic p-score assignment Fb for an agent i regarding α is de-
fined as follows:

F i
b (α) = {〈κ, p〉|κ ∈ C, {x ∈ κ | dix(α) �= 0} �= ∅}where p

def
=

∑
x∈κ, dix(α)>0

dix(α)

|{x ∈ κ | dix(α) �= 0}|
Example 11. [Continuing Example 8] Let us calculate the community estimate of
∅ using Fi

b(α). From amongst the 20 members of ∅ (i.e., all agents), dij(α) assigns
1 to 15 agents and ⊥ to the remaining 5. Thus, the p-score of ∅ is 15/20 = 0.75.
Similar calculations will yield the following: F i

b (α) = {〈L, 1〉, 〈P, 0.71〉, 〈∅, 0.75〉}.
Remark 12. Note that a p-score as given in Definition 10 is normalised by dividing
the sum of the positive dialogical evidences regarding members of the relevant
community by the number of all members of that community about whom some
dialogical evidence (either positive or ⊥) is held (i.e. all agents k s.t. dik(α) �= 0).

Fb gives a p-score to communities as long as there is some dialogical evidence
for at least some of their members. However, there are several issues with Fb.
Firstly, the values returned by Fb are not accurate (we call this issue (P1)). In
Example 11, the community ∅ gets a p-score of 0.75 w.r.t. α. This means that
upon encountering an agent j working in a legal firm, an agent i should rationally
expect j to believe α with 0.75 certainty. However, ‘working in a legal firm’ is not
in and of itself necessarily relevant to believing α. The problem is that Fb simply
takes into account the frequency of agents who belong to ∅ and believe α, without
requiring that those agents believe α due to their membership in ∅. In Example 8,
10 out of the 15 agents who have α and are members of ∅, are also members of L.
Thus, in addition to ∅’s p-score, these agents also contribute to L’s p-score, and it
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may well be that these agents believe α exclusively because of their membership
in L, rendering their membership of ∅ irrelevant w.r.t. believing α.

Identifiying relevant communities with regard to any belief α can be achieved
using the p-scores that are returned by Fb itself. Intuitively, if an agent is in
communities X and Y with p-scores pX and pY, and pX > pY, then community
X is identified as the more likely reason why the agent has α. As a consequence,
this agent should be excluded in the calculation of Y’s p-score. In Example 8, the
agents who are in ∅ are also in L which have Fb values 0.75 and 1, respectively
(see Example 11). Therefore for these agents, membership to L is identified as
the reason for having α, and in the more refined p-score assignment of ∅ defined
below (which we call simply F), these agents are excluded from the calculation.

The new p-score assignment F is defined iteratively. At each step we ensure
that for every community c: a) only those agents who belong to c contribute to
c’s p-score; and b) membership to c is identified as the most likely reason for the
belief of these agents in α (according to the rationale described above). Initially,
we use Fb to calculate the p-score of all communities. We then set the p-scores of
the communities with the highest p-score. The agents who contributed to these p-
scores are implicitly assigned only to these communities, as they have the highest
p-score. On each subsequent iteration, we then re-calculate the p-score of the
remaining communities and set the p-scores of those with the highest value as
before, except that we now exclude from the calculations those agents who have
already been previously assigned to a community.

Another issue (referred to as (P2)) is that according to Definition 10, Fb does
not return a p-score for communities κ for which an agent i has no dialogical
data, i.e., when {k ∈ κ | dik(α) �= 0} = ∅. To illustrate, in Example 11 the p-score
of LP w.r.t. α is undefined. To resolve (P2), note that any agent j who belongs
to LP (LP ∈ Cm(j)), also belongs to the communities of lawyers (L ∈ Cm(j))
and paralegals (P ∈ Cm(j)). Thus, although agent i has no dialogical experience
regarding members of LP4, i can appeal to its dialogical experience regarding
members of the more general communities L and P to estimate the likelihood that
j has α. Specifically i assigns the higher of the Fb values for L and P (i.e. 1).

Finally, we have the issue (P3) of when an agent i has no dialogical data for
any agent w.r.t. a belief α. In these cases, F assigns 0 to all communities ((1) in
the definition below), reflecting that for i, there is as yet no evidence that any
agent has α.

Definition 13. Let i, j ∈ AG, α a premise or inference rule, and C be the set of
all communities. The probability assignment F is inductively defined as follows:5

F i
0(α) =

{{〈κ, 0〉 | κ ∈ C} if maxp(S0) = ∅ (P3) (1)

maxp(S0) otherwise (P1) (2)
where

S0 = {〈κ, p〉|κ ∈ C, {j ∈ κ | dij(α) �= 0} �= ∅} and p
def
=

∑
j∈κ, dij(α)>0

dij(α)

|{j ∈ κ | dij(α) �= 0}|
4L and P could be mutually exclusive, or i’s dialogical data could be incomplete.
5Note that ⊂max represents maximal proper subset
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and for all x > 0

F i
x(α) =

{
F i
x−1(α) ∪ maxp(Sx) if maxp(Sx) �= ∅ (P1) (3)

F i
x−1(α) ∪ S′

x otherwise (P2) (4)
where

Sx =
{〈κ, p〉∣∣κ ∈ C/C(F i

x−1(α)), {k ∈ κ | dik(α) �= 0} �= ∅} ;

S′
x =

{〈κ, p′〉∣∣κ ∈ min⊆(C/C(F i
x−1(α)))

}
;

p
def
=

∑
j∈(κ/∪C(Fi

x−1(α))), dij(α)>0

dij(α)

|{j ∈ κ | dij(α) �= 0}| ; and p′ def
= max

(P ({〈κ′, p′〉 ∈ F i
x−1(α)

∣∣κ′ ⊂max κ
}))

Example 14. [Continuing Example 11] Let us calculate the p-score of all commu-
nities w.r.t. α, using F given in Definition 13. Since maxp(S0) �= ∅, we use (2).
Here, S0 = F i

b (α) = {〈L, 1〉, 〈∅, 0.75〉, 〈P, 0.71〉}. Therefore, F i
0(α) = maxp(S0) so

F i
0(α) = {〈L, 1〉}. We now consider the remaining communities in the second itera-

tion. Since, maxp(S1) �= ∅, then case (3) is triggered and S1 = {〈P, 0.71〉, 〈∅, 0.25〉},
thus F i

1(α) = {〈L, 1〉, 〈P, 0.71〉}. Continuing with the iteration yields F i
2(α) =

{〈L, 1〉, 〈P, 0.71〉, 〈∅, 0〉}. At the next iteration Fi
3(α), since S3 = ∅ and thus

maxp(S3) = ∅, case (4) is activated. At this stage, min⊆(C/C(F i
2(α))) = LP whose

p-score is the maximum of the p-scores of communities which are one level more
general than LP i.e. L with p-score 1 and P with 0.71. Thus, S′

3 = {〈LP, 1〉}, and
F i
3(α) = {〈L, 1〉, 〈P, 0.71〉, 〈∅, 0〉, 〈LP, 1〉}. At the next iteration, case (4) is still

active since maxp(S4) = ∅. Here, min⊆(C/C(F i
3(α))) = ∅, hence S′

4 = ∅. Therefore,
F i
4(α) = F i

3(α)∪∅, thus: F i
4(α) = {〈L, 1〉, 〈P, 0.71〉, 〈∅, 0〉, 〈LP, 1〉}. It is clear that

for all other iterations x > 4, F i
x(α) = F i

x−1(α) ∪ ∅ = F i
x−1(α).

Given any agent i, let us now consider some of Fi’s properties.

Proposition 1. Let α be a premise or inference rule held by an agent i: 1) For every
iteration x, F i

x ⊆ F i
x+1 (Monotonicity). 2) There is an iteration x s.t. C(F i

x(α))=C

(Exhaustion). 3) There is an iteration x s.t. F i
x = F i

x+y, for y ≥ 0 (Fixed-point).

Proof. (Sketch) The function by construction satisfies 1-3. For 1) observe that
for all iterations x > 1, F i

x is the result of a union operation. For 2), because
of the condition C/C(F i

x−1(α)) in Sx and S′
x, the function assigns a value to a

unique community, and since C is finite, it is eventually exhausted. For 3), due
to exhaustion, at some iteration x, the function will run out of communities to
assign a value to, thus, F i

x = F i
x−1, and trivially F i

x = F i
x+y (y ≥ 0).

Proposition 2. For all beliefs α, if F i
x(α) = F i

x+1(α), then F i
x(α) is a function

assigning a unique p-score to every community w.r.t α.

Proof. (Sketch) Because of C/C(F i
x−1(α)) in Sx and S′

x, at each iteration the
function assigns a unique value to each community. Hence, given 2) and 3) in
Proposition 1, the fixed point of F i(α) which exhausts C, is a function.

We define an agent i’s community-based estimate of the likelihood that a
member of κ believes α, denoted ci(κ, α), as the fixpoint of F i.
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Definition 15. Let i ∈ AG, and C be the set of all communities. Agent i’s
community-based estimate function ci : C × {L ∪ Ri} �−→ [0, 1] is defined such
that ci(κ, α) = p where 〈κ, p〉 ∈ F i

x, and x is an iteration such that F i
x = F i

x+1.

Example 16. [Continuing Example 14] The earliest iteration x such that F i
x =

F i
x+1 is 3. Hence: ci(L, α)=1, ci(P, α)=0.71, ci(∅, α)=0, ci(LP, α)=1.

It is useful for an agent i to know the likelihood of a specific agent j believing
in α (denoted by cij(α)), given j’s membership to communities. This is defined
as the p-score of the most specific community that j belongs to (trivially Gr(j)).

Definition 17. Let i, j ∈ AG, and α a premise or rule. Then, cij(α) = ci(Gr(j), α).

Example 18. [Continuing Example 8] Suppose agent i encounters agent j and
identifies that Gr(j) = {L}. We have that Cm(j) = {∅,L} and the agent i’s
community-based estimate regarding j’s belief in α is: cij(α)=ci(L, α)=1.

Remark 19. The complexity introduced by the number of communities is expo-
nential relative to the overall number of properties that agents in the environment
could have. Though this may be problematic with human agents, for computa-
tional agents, the actual number of communities considered may well be less, due
to a) agents’ operation in specialized domains, limiting the number of proper-
ties to consider, and b) possibility of using certain heuristics to limit the number
of properties one needs to consider (e.g. certain property combinations may be
mutually exclusive, thus eliminating communities containing those combinations).

We now combine the dialogical (DE) and community (CE) based estimates
(respectively obtained by assignments d and c) to compute the overall likelihood
that an agent j believes α. One option is to prioritise dialogical evidence over
community-based estimates. Thus, to derive the likelihood that an agent j has an
argument A, i considers each of A’s constituents beliefs (i.e. premises and inference
rules) α, using dij(α) if available, and cij(α) otherwise. Thus, uij would be defined
as follows:

Definition 20. Let d and c be defined according to Definitions 4 and 17, respec-
tively. Then for any two agents i, j and premise or inference rule α: uij(α) =
dij(α), if dij(α) > 0; uij(α) = 0, if dij(α) = ⊥; and uij(α) = cij(α), if dij(α) = 0.

3.3. Uncertainties over Second-Order Arguments

As discussed in Section 2, the uncertainty that is associated with second-order
arguments, is a function of the uncertainties that are associated with their con-
stituent beliefs. For this purpose, we will define a function U, where for any two
agents i, j and argument A, Uij(A) is the likelihood that agent j can construct A
according to agent i.

There are a number of techniques in the literature for propagating uncertainty
values in arguments, e.g. the weakest link principle (using Min) [14], and [15]. For
the purpose of this work, we do not need to commit to any specific method, and
assume a general function F that propagates uncertainty values from premises
and rules, to arguments composed thereof.
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Definition 21. Let Ai be the set of all arguments defined by agent i’s argumen-
tation theory Ti. Let j be an agent and F a t-norm. Then

Uij(A) = F({uij(α) | α ∈ Prem(A) ∪ Rules(A)})
is the likelihood that j can construct argument A from i’s point of view.

Consider a complete example deriving the uncertainty of a second-order ar-
gument using U and the propagation function F = Min.

Example 22. [Continuing Example 2] Assume agent j moves argument A5 in a
dialogue with agent i, and that this yields dij(q) = 1 and dij(q ⇒ r) = 1.6 Sup-
pose later that i is informed, by another agent k, that j has argument A3, and
i’s trust in k yields dij(s) = 0.5. Also assume that through dialogues with other
agents, i makes the following assignments cij(p) = 1, cij(p ⇒ q) = 0.8. Hence,
given dij(p) = 0, dij(p⇒ q) = 0, then by Definition 20:
uij(p) = cij(p) = 1; uij(s) = dij(s) = 0.5; uij(r, s → t) = 1 (by condition C1);
uij(p⇒ q) = cij(p⇒ q) = 0.8; and uij(q → r) = dij(q → r) = 1.
By Definition 21, and using Min as the propagation function F, the likelihood i as-
signs to j having argument A7 is: Uij(A7) = Min

⋃
α∈{p,s,(r,s→t),(p⇒q),(q⇒r)} uij(α) =

Min({1, 0.5, 1, 0.8, 1}) = 0.5.

The above example illustrates how the likelihood that an agent i assigns to
another agent j being able to construct an argument A can be derived from the
likelihoods that i assigns to j having A’s constituent beliefs, which are in turn
based on dialogical evidence and j’s membership in communities.

4. Discussion

In this work, we proposed a mechanism that enables agents to model other agents’
arguments. We began by highlighting the inadequacy of modelling other agents’
arguments as abstract entities, so proposed that a modeller derive the likelihood
that another agent can construct an argument based on the likelihood that the
arguments’ constituent premises and inference rules are held by that agent. We
then addressed the provenance of uncertainty values over the constituents of ar-
guments in dialogical settings – something that is not addressed in other works on
“opponent modelling” (e.g. [5,16]) – by harnessing a modelling agent’s previous
dialogues and utilising the notion of agent communities.

Our work has a number of applications, including the strategic choice of ar-
guments in dialogues. Consider persuasion dialogues [17] in which an agent can
advantageously anticipate its interlocutor’s arguments [18]. For example, suppose
i attempts to persuade j to accept φ, by communicating an argument claiming
φ. From amongst all of i’s arguments claiming φ (denoted Poss(φ)), i can strate-
gically choose that which is least susceptible to being attacked by j. That is,
for each A ∈ Poss(φ), i must first identify every possible counter-argument to A

along with the likelihoods associated with j being able to construct each such

6In Section 4 we will comment further on how uncertainty values are propagated from argu-
ments to their constituent beliefs.
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counter-argument, and then use this information to select from amongst Poss(φ)
the argument which is least likely to be attacked by j.

Another application area is the use of enthymemes, i.e. arguments with incom-
plete logical structure [4,3]. Enthymemes are a ubiquitous feature of human dia-
logue and there are a number of motivations for their use, e.g. to avoid revealing
parts of arguments which are susceptible to attack, or to avoid the exchange of in-
formation already believed by the dialogue’s participants, making their inclusion
in arguments redundant in terms of furthering a dialogue’s goal. To avoid sending
parts (i.e. sub-arguments) of an argument, one needs to determine whether these
sub-arguments are known by the recipients of the enthymeme. Therefore, for i to
construct an enthymeme from argument A for sending to agent j, i needs to ex-
amine all sub-arguments A′ of A in descending order of size, and remove A′ from A

if Uij(A
′) is higher than a predefined threshold. The reconstruction of the original

argument by j would then involve building all complete arguments from which
the received enthymeme can be constructed, such that according to j, i is highly
likely able to construct the removed sub-arguments using its beliefs. Of course
more sophisticated construction and reconstruction procedures would be possible
with a move to a higher order modelling, when i can model the arguments that j
believes i has. However, this type of modelling is outside the scope of this paper.

There remains a number of open challenges and opportunities for further
work. Firstly, as illustrated in Example 22, we have not in this paper formally
defined a function that propagates uncertainty values from received arguments
to their constituent beliefs, when defining the assignment dij to those beliefs.
Ideally, such a function would be the inverse U of the function U that propagates
uncertainties from beliefs to arguments. As Example 22 illustrates, U makes the
assignment dij(α) = x (α a premise or inference rule in A), where x is the likelihood
associated with A (e.g., x maybe 1 if A is directly communicated by j, or x ≤ 1
where x is the degree of trust in the agent k who informs i that j can construct
A). If we assume U makes use of F = Min, then trivially U will assign x to A

when propagating dij(α) to the argument A reconstructed from its constituent αs.
Clearly then, the choice of how F and U are defined needs to be carefully made if
we require that the latter is the inverse of U.

To illustrate, assume that an agent i receives dialogical evidence regarding j
having A4 (in Figure 1) with 0.6 certainty. Assuming that U makes the assignment
dij(α) = 0.6 to all premises and inference rules α in A4, we would have dij(p) = 0.6
and dij(p ⇒ q) = 0.6, thus uij(p) = 0.6 and uij(p ⇒ q) = 0.6. Then later when
A4 is reconstructed, its uncertainty will be derived from the values assigned to its
constituents using Uij . For F = Min, we would have Uij(A4) = Min(uij(p), uij(p⇒
q)) = 0.6, which is the original value i assigned to A4 upon receipt.

Secondly, we can integrate our work with existing models of probabilistic ar-
gumentation (e.g. [13,16]) in which the acceptability of arguments are determined
using probabilities. This would imply that not only can agents anticipate other
agents’ arguments, but also what arguments they deem acceptable, which, for
example, allows for devising more sophisticated strategies in dialogues.

Moreover, in this work we have focused on scenarios in which an agent wishes
to determine the likelihood that another agent can construct a specific argument.
However, another possible scenario is when i wants to determine whether j be-
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lieves some φ in general, regardless of the specific argument justifying that belief.
For example, i might want to know whether j can construct A5 in Figure 1 (i.e.
believes r) but is indifferent as to the reasons why j believes q (i.e., whether j
believes q as a premise or as the claim of another argument such as A4). To ad-
dress these types of questions, some of the underlying formalisations, especially
the community-based estimates, need to be updated to take into account every
possible argument that can be constructed for a given well-formed formula.

Finally given that our proposed formalism models the use of arguments by
computational and human agents, an interesting direction to pursue would be the
evaluation using human subjects.
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