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Abstract. Argumentation is based on the exchange and the evaluation of interacting
arguments. Unlike Dung’s theory where arguments are either accepted or rejected,
ranking-based semantics rank-order arguments from the most to the least accept-
able ones. We propose in this work six new ranking-based semantics. We argue that,
contrarily to existing ranking semantics in the literature, that focus on evaluating
attacks and defenses only, it is reasonable to give a prominent role to non-attacked
arguments, as it is the case in standard Dung’s semantics. Our six semantics are
based on the propagation of the weight of each argument to its neighbors, where
the weight of non-attacked arguments is greater than the attacked ones.
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1. Introduction

Argumentation is a very natural framework for representing conflicting information. A
proof of its appeal is the recent development of online platforms where people partici-
pate in debates using argumentation graphs (e.g. debategraph.org or arguman.org) such
representation tools become more and more popular.

The question now goes towards the reasoning part: how to automatically use these
argumentation graphs that are constructed this way? Argumentation has been a very ac-
tive topic in Artificial Intelligence since more than two decades now, and Dung’s work
on abstract argumentation framework [1] can be used to represent the graphs (even if
some additional information should be also represented, like the number of people that
agree/disagree with an argument and/or an attack, or a support between arguments, . . . ).
But the main issue is about the semantics that one should use in this case. In fact clas-
sical Dung’s semantics, using extensions [1] (or equivalently labellings [2]), with their
dichotomous evaluation of arguments (accepted/rejected) do not seem very well suited
for such applications. As discussed in [3], on such online platforms, with a big number
of arguments, and a lot of individuals participating, it can be problematic (in particular
quite unintuitive for the participants) to have such a drastic evaluation, that is not that in-
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formative (since there are only two levels of acceptability), or to propose several possible
results (different extensions). So in this case a finer evaluation of arguments seems to be
more adequate. The idea is then to have ranking-based semantics, that allow to produce
a full ranking of the arguments, from the most to the least acceptable ones. This kind of
semantics seems very natural, and it is then quite surprising that they have received little
attention until recently [3,4,5,6,7,8,9,10]. These semantics basically rely on the attacks
and defenses of each argument in order to evaluate its acceptability rank.

In this work we propose a new family of semantics, that relies on attacks and de-
fenses, like previous semantics, but that also puts a strong emphasis on non-attacked ar-
guments. While many principles remain discussed and controversial, all semantics agree
on the fact that non-attacked arguments should have the highest rank. The idea of our
semantics is that these arguments should also have a greater impact on the evaluation of
the other ones.

In this paper, we propose six new semantics based on the idea of propagation. Each
argument has an initial weight that depends on its status (non-attacked arguments have a
greater value than attacked ones), and then these weights are progressively propagated to
their neighbors. Of course at each propagation the polarity of the weight changes in order
to comply with the attack relation meaning. The difference between these semantics lies
in the method that is chosen to differentiate non-attacked arguments and attacked ones,
and in the choice of considering one or all paths between arguments.

In the next section, we define the notions and notations we will need to define our
six propagation semantics in Section 3. Section 4 recalls the logical properties proposed
in the literature for ranking-based semantics, and studies which ones are satisfied by our
semantics. In Section 5, we study the links between our semantics and previous ones.
Section 6 provides an example in order to illustrate the behaviour of the propagation
semantics and to relate them to other semantics.

2. Background

Following [1], an argumentation system is a (finite) set of arguments together with the
binary conflicts among them.

Definition 1. An argumentation framework (AF) is a directed graph 〈A, ↪→〉 where
the set of nodes A is a finite set of arguments, and the set of edges ↪→ ⊆ A×A is an
attack relation between arguments. A set of arguments C ⊆ A attacks an argument b ∈
A, if there exists a ∈C, such that (a,b)∈ ↪→. C defends a iff ∀b ∈ A such that (b,a)∈ ↪→,
∃c ∈C such that (c,b) ∈ ↪→.

In the following, AF will represent the set of all argumentation frameworks.

Definition 2. Let AF = 〈A, ↪→〉 and a,b ∈ A. A path from a to b, denoted by a� b, is
a sequence of nodes s = 〈a0, . . . ,an〉 such that from each node there is an edge to the
next node in the sequence : a0 = a, an = b and ∀i < n,(ai,ai+1) ∈ ↪→. Its length is noted
|a� b| and is equal to the number of edges it is composed of.

In order to encode the fact that there are several possible paths between two argu-
ments, we introduce the notion of multiset of attackers and defenders of an argument.
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Definition 3. Let AF = 〈A, ↪→〉 and a,b ∈ A. Let ⊕ ∈ {M,S}, where M (resp. S) stands
for multiset (resp. set). The (multi)set of arguments such that there exists a path to a
with a length of n is denoted by ↓⊕n (a) = {b | ∃b� a, with |b� a| = n}. An argument
b ∈ ↓⊕n (a) is a defender (resp. attacker) of a if n ∈ 2N (resp. n ∈ 2N+1). Let us note
↓⊕(a) =⋃

n ↓⊕n (a).
Note that the direct attackers of an argument a belong to ↓⊕1 (a).

a b c d e

f g hAF1

a′′

a′

b′ c′

AF2

Figure 1. Two argumentation frameworks

Let us discuss how using sets or multisets can influence the result of the ranking-
based semantics. Obviously there is no change for the direct attackers because an argu-
ment cannot be directly attacked several times by the same argument. However, several
paths of length greater than one between two arguments can exist: on AF1 (Figure 1)
there are two paths of length 2 from e to g: 〈e,d,g〉 and 〈e,h,g〉. So with sets ↓S

2(g) = {e},
whereas with multisets the result is ↓M

2 (g) = {e,e}.
The use of sets can be seen as a focus on the arguments at the end of the path without

taking into account the number of possible paths, whereas the multisets encodes the fact
that there are several possible paths.

Definition 4. Let ⊕ ∈ {M,S}. A path from b to a is a branch if b is not attacked, that
is if ↓⊕1 (b) = /0. It is a defense branch (resp. attack branch) if b is a defender (resp.
attacker) of a.

One of the main goals of argumentation theory is to identify which arguments are
rationally acceptable according to different notions of acceptability. In [1], the accept-
ability of an argument depends on its membership to some extensions, whereas ranking-
based semantics aim to rank arguments from the most to the least acceptable ones.

Definition 5. A ranking-based semantics σ is a function that transforms any argumen-
tation framework AF = 〈A, ↪→〉 into a ranking �σ

AF on A, where �σ
AF is a preorder (a

reflexive and transitive relation) on A. a �σ
AF b means that a is at least as acceptable as

b (a σ
AF b is a shortcut for a �σ

AF b and b �σ
AF a, and a �σ

AF b is a shortcut for a �σ
AF b

and b �σ
AF a).

When there is no ambiguity about the argumentation framework in question, we will
use �σ instead of �σ

AF .
Finally, we need to introduce the notion of lexicographical order and a shuffle opera-

tion between vectors of real number in order to define our new ranking-based semantics.

Definition 6. A lexicographical order between two vectors of real numbers V =
〈V1, . . . ,Vn〉 and V ′ = 〈V ′

1, . . . ,V
′
n〉 is defined as V �lex V ′ iff ∃i ≤ n s.t. Vi > V ′

i and
∀ j < i,Vj =V ′

j . V lex V ′ means that V �lex V ′ and V ′ �lex V ; and V �lex V ′ means that
V ′ �lex V .

Definition 7. The shuffle ∪s between two vectors of real numbers V = 〈V1, . . . ,Vn〉 and
V ′ = 〈V ′

1, . . . ,V
′
n〉 is defined as V ∪s V ′ = 〈V1,V ′

1,V2,V ′
2, . . . ,Vn,V ′

n〉.
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3. Propagation Semantics

A standard principle of existing ranking-based semantics is to base the evaluation of
an argument on the number of its attackers and of its defenders: the less attackers and
the more defenders an argument, the more acceptable the argument. For example, if we
compare AF1 with AF2 in Figure 1, b is better than b′ because b has less attackers than
b′ (only one for b against two for b′). Inversely, c′ has more defenders than c (two for c′
against one for c) and the same number of attackers so c′ can be considered better than c.

Another important principle to take into account is the role and impact of non-
attacked arguments. For example, in AF1, as a is non-attacked and c is defended by a
against the attack of b, a and c are both accepted with respect to Dung’s semantics. How-
ever, one could go further and say that a is better than c because a is not attacked, whereas
c is attacked and is accepted only because of the defense of a. So, we can clearly see that
a, and more generally the non-attacked arguments, play a key role in the (classical) ac-
ceptability of an argument. Thus, our propagation method will allow those non-attacked
arguments to play a key role in the ranking of arguments.

Our approach is based on these two principles. The propagation methods are defined
in two steps. The first step consists in assigning a positive initial weight to each argument.
The score of 1 attached to non-attacked arguments is set to be higher than the score
of attacked arguments, which is an ε between 0 and 1. The value of this ε is chosen
accordingly to the degree of influence of the non-attacked arguments that we want: the
smaller the value of ε is, the more important the influence of non-attacked arguments on
the order prevails. Then, during the second step, we propagate the weights into the graph
in changing their polarities in order to comply with the attack relation meaning (attack
or defense). For each argument, we accumulate and store the weights from its attackers
and defenders in the argumentation framework.

Definition 8. Let F = 〈A, ↪→〉 be an AF. The valuation P of a ∈ A, at step i, is given by:

Pε,⊕
i (a) =

⎧⎨
⎩

vε(a) i f i = 0
Pε,⊕

i−1 (a)+(−1)i ∑
b∈↓⊕i (a)

vε(b) otherwise

where v : A →R+ is a valuation function giving an initial weight to each argument, with
ε ∈ [0,1] such that ∀b ∈ A, vε(b) = 1 if ↓⊕1 (b) = /0; vε(b) = ε otherwise.

The Propagation vector of a is denoted Pε,⊕(a) = 〈Pε,⊕
0 (a),Pε,⊕

1 (a), . . .〉.
Example 1. Let us calculate the value of P when ε = 0.75 for AF1 (Figure 1). If no
distinction exists between set and multiset then the value is put in the same cell (Table 1).
Otherwise, the cell is divided into two parts (valuation for set at left and for multiset at
right). For instance, when i= 2, P0.75,S

2 (c)=P0.75,M
2 (c)= 1 but P0.75,S

2 (g)= 0.25 whereas
P0.75,M

2 (g) = 1.25.
In Table 1, argument f begins with an initial weight of 0.75 (P0.75,⊕

0 ( f ) = 0.75) be-
cause it is attacked. Then, during the second step, the direct attackers (b and d which
are also attacked) propagate negatively their weights of 0.75 to f , so P0.75,⊕

1 ( f ) =
P0.75,⊕

0 ( f )− (v0.75(d) + v0.75(b)) = −0.75. Finally, during the third step, f receives
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P0.75,⊕
i

a,e b,d,h c f g
S M S M S M S M S M

0 1 0.75 0.75 0.75 0.75
1 1 -0.25 0 -0.75 -0.75
2 1 -0.25 1 1.25 0.25 1.25
Table 1. Computation of propagation vector when ε = 0.75

positively the weights of 1 from a and e which are non-attacked, so P0.75,⊕
2 ( f ) =

P0.75,⊕
1 ( f )+(v0.75(a)+v0.75(e)) = 1.25. As there exists no path to f with a length higher

than 2, this score remains the same, and P0.75,⊕( f ) = 〈0.75,−0.75,1.25,1.25, . . .〉.
It is important to note that Pε,⊕(a) may be infinite (this may occur when an argument

is involved in at least one cycle). Moreover, the valuation Pε,⊕
n (x) of an argument x is not

even necessarily bounded as n → ∞. After a finite number of steps though, an argument
is bound to receive the influence of exactly the same arguments than in a previous step
of the vector (which means that the vector can be finitely encoded). More precisely,
this number of steps is in the order of the least common multiplier of the cycle lengths
occurring in the argumentation graph. As a ranking-based semantics is not concerned
with the exact values of arguments, but only in their relative ordering, this is sufficient
for our purpose.

3.1. Propaε

Once the propagation vector is calculated for each argument in the argumentation frame-
work, we can compare the different vectors in order to obtain an order between all the
arguments. We want the influence of arguments to quickly decrease with the length of
a path, so an option is to use a lexicographical comparison for comparing these vectors.
For the first semantics we just compare the propagation vectors for a given ε .

Definition 9. Let ⊕ ∈ {M,S}. The ranking-based semantics Propaε,⊕
ε associates to any

AF = 〈A, ↪→〉 a ranking �P⊕
AF on A such that ∀a,b ∈ A, a �P⊕

AF b iff Pε,⊕(a)�lex Pε,⊕(b).

So this defines two semantics, one using sets and one using multisets for the attack
and defense branches computations.

Example 1 (cont.). In Table 1, if ⊕ = S, we obtain the ranking a PS e �PS c �PS b PS

d PS h �PS f �PS g. If ⊕= M, we have a PM e �PM c �PM b PM d PM h �PM f PM g.

These semantics focus mainly on the attackers and defenders in adding the fact that
if there exists non-attacked arguments among them, these ones will be more influential
than attacked arguments. But this influence depends also on the value of ε . Indeed, two
values of ε can lead to different orders. On Example 1, with ε = 0.75, if we focus on f ,
which is defended twice, and h, which is attacked (and not defended), we can see that
h is better than f because P0.75,⊕

1 ( f ) < P0.75,⊕
1 (h). But if we take ε < 0.5, we obtain

the opposite case. For example, with ε = 0.3, we have P0.3,⊕( f ) = 〈0.3,−0.3,1.7, . . .〉
and P0.3,⊕(h) = 〈0.3,−0.7, . . .〉. With the lexicographical order, f is now better than h
because P0.3,⊕

1 ( f )> P0.3,⊕
1 (h).

So, with Propaε semantics, an argument with only (but numerous) defense branches
can be worse than an argument only attacked by one non-attacked argument. It is a pos-
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sible point of view to focus only on the attackers in saying that the more an argument is
directly attacked, the less acceptable the argument. It is the case, for instance, with the
semantics proposed by Amgoud and Ben-Naim [8]. But other approaches are possible,
as we shall see now.

3.2. Propa1+ε

If we do not want the influence of non-attacked arguments to be drown in by the influence
of attacked arguments, we have to split and lexicographically compare the influence of
the two kinds of arguments.

Definition 10. Let ⊕ ∈ {M,S}. The ranking-based semantics Propaε,⊕
1+ε associates to

any AF = 〈A, ↪→〉 a ranking �P̂⊕
AF on A such that ∀a,b ∈ A,

a �P̂⊕
AF b iff P0,⊕(a)∪s Pε,⊕(a)�lex P0,⊕(b)∪s Pε,⊕(b)

With these semantics, we simultaneously look at the result of the two propagation
vectors P0,⊕ and Pε,⊕ step by step, using the shuffle operation, starting with the first
value of the propagation vector P0,⊕ (i.e. the one that takes into account non-attacked ar-
guments only). In the case where two arguments are still equally acceptable, we compare
the first value of the propagation vector Pε,⊕. Then, in case of equality, we move to the
second step and so on.

Example 1 (cont.). Let us focus on f with the two propagation vectors: P0,⊕( f ) =
〈0,0,2, . . .〉 (see Table 2 where ε = 0) and P0.75,⊕( f ) = 〈0.75,−0.75,1.25, . . .〉 (see Ta-
ble 1 where ε = 0.75). We use the shuffle ∪s to combine the previous propagation vec-
tors: P0,⊕( f )∪s P0.75,⊕( f ) = 〈0,0.75,0,−0.75,2,1.25, . . .〉. We apply the same method
for all the others arguments and we use the lexicographical order to compare them. So
if ⊕= S, we obtain the ranking a P̂S e �P̂S c �P̂S f �P̂S g �P̂S b P̂S d P̂S h whereas if
⊕= M, we have a P̂M e �P̂M c �P̂M f P̂M g �P̂M b P̂M d P̂M h.

P0,⊕
i

a,e b,d,h c f g
S M S M S M S M S M

0 1 0 0 0 0
1 1 -1 0 0 0
2 1 -1 1 2 1 2

Table 2. Computation of propagation vector when ε = 0

It is also important to notice that Propa1+ε , conversely to Propaε , returns the same
order whatever the value of ε , that removes the problem of choosing “a good” ε:

Proposition 1. Let ⊕ ∈ {M,S}, ∀AF ∈AF and ∀ε,ε ′ ∈ ]0,1],

Propaε,⊕
1+ε(AF) = Propaε ′,⊕

1+ε (AF)

3.3. Propa1→ε

A last possibility is to give a higher priority to the non-attacked arguments, by propagat-
ing only their weights in the graph. And if two arguments are equivalent for this compar-
ison, they are compared using the Propaε method. Technically, the priority to the non-
attacked arguments is given by using ε = 0. So we compare first the propagation vector
P0,⊕. And if the two propagation vectors are identical, we restart with a non-zero ε:
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Definition 11. Let ⊕ ∈ {M,S}. The ranking-based semantics Propaε,⊕
1→ε associates to

any AF = 〈A, ↪→〉 a ranking �P⊕
AF on A such that ∀a,b ∈ A,

a �P⊕
AF b iff P0,⊕(a)�lex P0,⊕(b) or, (P0,⊕(a)lex P0,⊕(b) and Pε,⊕(a)�lex Pε,⊕(b))

Example 1 (cont.). Propa1→ε focuses first in Table 2, where ε = 0, and then in Table 1,
where ε = 0.75. If ⊕ = S, we obtain the ranking a PS e �PS f �PS c �PS g �PS b PS

d PS h whereas if ⊕= M, we have a PM e �PM f PM g �PM c �PM b PM d PM h.

With these semantics, an argument with a lot of defense branches will receive a lot of
positive weights, and conversely, an argument with a lot of attack branches, will receive
a lot of negative weights. Thus, as f and g have one more defense branch than c (with
the multiset), which has also one more defense branch than b, d and h, we have that f
and g are better than c which is better than b, d and h. However, focusing only on ε = 0,
we cannot distinguish the arguments with the same number of defense/attack branches.
This is why we use the propagation vector with ε �= 0 to decide between those.

It is also important to notice that Propa1→ε , like Propa1+ε , returns the same order
whatever the value of ε :

Proposition 2. Let ⊕ ∈ {M,S}, ∀AF ∈AF and ∀ε,ε ′ ∈ ]0,1],

Propaε,⊕
1→ε(AF) = Propaε ′,⊕

1→ε(AF)

4. Properties

4.1. Properties for ranking-based semantics

In the last few years, a set of properties have been proposed in different papers, allowing
to better understand the behavior of the different ranking-based semantics. We adopt the
recent catalogue of properties listed in [11] (for space reasons we point out to this paper
for their formal definitions).

One can find the properties Abs, In, VP, DP, CT, SCT, CP, QP and DDP in [8], the
properties In, VP and SC in [6], the properties ⊕DB, +DB, ↑AB, +AB, ↑DB in [5,11],
and the properties Tot and AvsFD in [11]. We do not claim that all these properties
are mandatory (in particular some of them are incompatible and we do not necessarily
endorse all of them). Let a and b two arguments in an AF.
Abstraction (Abs) The arguments’ ranking should only depend on the attack relation.
Independence (In) The ranking between two arguments should be independent of argu-
ments that are not connected to either of them.
Void Precedence (VP) A non-attacked argument should be strictly more acceptable than
an attacked argument.
Self-Contradiction (SC) An argument that attacks itself should be strictly less accept-
able than an argument that does not.
Cardinality Precedence (CP) If a has strictly more direct attackers than b, then b should
be strictly more acceptable than a.
Quality Precedence (QP) If a has a direct attacker strictly more acceptable than any
direct attacker of b, then a should be strictly more acceptable than b.
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Counter-Transitivity (CT) If the direct attackers of b are at least as numerous and ac-
ceptable as those of a, then a should be at least as acceptable as b.
Strict Counter-Transitivity (SCT) If CT is satisfied and if the direct attackers of b are
either strictly more numerous, or strictly more acceptable than those of a, then a should
be strictly more acceptable than b.
Defense Precedence (DP) If arguments a and b have the same number of direct attackers,
and if a is defended at least once whereas b is not, a should be ranked higher than b.
Distributed-Defense Precedence (DDP) A defense where each defender attacks a dis-
tinct attacker is better than any other.
In order to introduce the next properties, let us define the notion of ancestor’s graph:

Definition 12. Let AF = 〈A, ↪→〉 and a ∈ A. The ancestor’s graph of a is denoted by
Anc(a) = 〈A′, ↪→′〉 with A′ =↓S(a) and ↪→′= {(a1,a2) ∈↪→ | a1 ∈ A′ and a2 ∈ A′}.

Strict addition of Defense Branch (⊕DB) If a and b have the same ancestor’s graph,
except that a has an additional defense branch, then a should be strictly more acceptable
than b.
Addition of Defense Branch (+DB) If a and b have the same ancestor’s graph, which is
not empty, except than a has an additional defense branch, then a should be strictly more
acceptable than b.
Increase of Attack Branch (↑AB) If a and b have the same ancestor’s graph, except
than one attack branch of a is longer than for b, then a should be strictly more acceptable
than b.
Addition of Attack Branch (+AB) If a and b have the same ancestor’s graph, except
that a has an additional attack branch, then a should be strictly less acceptable than b.
Increase of Defense Branch (↑DB) If a and b have the same ancestor’s graph, except
than one defense branch of a is longer than for b, then a should be strictly less acceptable
than b.
Total (Tot) All arguments can be compared.
Attack vs Full Defense (AvsFD) A fully defended argument (without any attack branch)
should be strictly more acceptable than an argument attacked once by a non-attacked
argument.

Finally, we introduce a new property, which generalizes the property Non-attacked
Equivalence [11], that says that all the non-attacked arguments are equally acceptable.
Argument Equivalence (AE) If two arguments have the same ancestor’s graph, then
they are equally acceptable.
It is important to note that the reverse is not always true. Indeed, on Example 1, f and g
have different ancestor’s graphs, but are equally acceptable when taking the multiset.

4.2. Properties Satisfied by Propagation

We are now in a position to check which of these properties are satisfied by our six
ranking-based semantics based on propagation. A first remark is that if we choose ε = 0,
the three kinds of semantics return exactly the same order.

Proposition 3. Let ⊕ ∈ {M,S}, for all AF ∈AF,

Propa0,⊕
ε (AF) = Propa0,⊕

1+ε(AF) = Propa0,⊕
1→ε(AF)
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In this case, only the weights propagated by the non-attacked arguments are taken
into account. This can make sense, but when there is no non-attacked argument in the AF,
all the arguments have a propagation vector composed only of 0, therefore trivializing
the result. So we remove this possibility for studying the properties.

Let us begin to check which properties are satisfied by Propaε

Proposition 4. Let ⊕ ∈ {M,S} and ε ∈ ]0,1]. Propaε,⊕
ε satisfies Abs, In, VP, DP, CT,

SCT, ↑AB, ↑DB, +AB, Tot and AE. The other properties are not satisfied.

Propa1+ε satisfies more properties.

Proposition 5. Let ⊕ ∈ {M,S} and ε ∈ ]0,1]. Propaε,⊕
1+ε satisfies Abs, In, VP, DP, CT,

SCT, DDP, ↑AB, ↑DB, +AB, Tot, AE and AvsFD. The other properties are not satisfied.

Finally, let us list the properties satisfied by Propa1→ε .

Proposition 6. Let ⊕ ∈ {M,S} and ε ∈ ]0,1]. Propaε,⊕
1→ε satisfies Abs, In, VP, DP, DDP,

+DB, ↑AB, ↑DB, +AB, Tot, AE and AvsFD. The other properties are not satisfied.

First it is interesting to remark than choosing sets or multisets for the definitions,
although clearly leading to different semantics, do not have any impact on the satisfac-
tion of these properties. This may suggest that some properties allowing to make such a
distinction are still missing.

Without surprise, the semantics satisfy the properties Abs, In, VP, DP, +AB and Tot,
which are expected according to [11]. Contrastingly, CP, QP, SC and ⊕DB are not sat-
isfied by our semantics, but they describe very specific ranking-based semantics behav-
iors, which differ from the ones designed here. First of all, ⊕DB is incompatible with VP
[11] which is satisfied by all our semantics. CP and QP focus only on the direct attackers
whereas our semantics look also at the impact of the non-attacked arguments in the en-
tire graph. Finally, concerning the property SC, our semantics consider that an argument
that attacks itself is a cycle with a length equal to 1. So an argument which attacks itself
remains better than an argument which is attacked by a non-attacked argument.

Now, comparing the three families, Propaε , Propa1+ε , and Propa1→ε ; Propaε is
the only one that does not satisfy DDP and AvsFD. Finally, we can see that Propa1→ε is
the only one to satisfy +DB and to not satisfy CT and SCT because it is the only one to
consider the defense as a reinforcement for the defended argument.

5. Links between Semantics

In this section, we establish the links between the six ranking based-semantics based
on propagation, but also between these semantics and some ranking-based semantics
existing in the literature. A first important remark is that Propa1+ε can be seen as a
special case of Propaε . Let us make this link more formal.

Let AF = 〈A, ↪→〉∈AF be an argumentation framework, and ⊕∈ {M,S}. We define
maxdeg(AF), the maximal indegree of AF , as maxdeg(AF) = maxa∈A | ↓⊕1 (a)|.
Proposition 7. Let AF = 〈A, ↪→〉 ∈AF. For any ε < 1

maxdeg(AF) ,

Propaε,⊕
1+ε(AF) = Propaε,⊕

ε (AF)
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But as we saw previously with the satisfied properties, even if, in the light of the
above result, Propa1+ε could be considered as particular case of Propaε for a given ε , it
forms a sufficiently interesting subclass for being defined and studied on its own right.

In addition to the case where ε = 0, there is another particular situation where all
the propagation semantics return the same order: when there exists no non-attacked ar-
gument in the argumentation framework.

Proposition 8. Let ⊕∈{M,S}, ∀AF = 〈A, ↪→〉∈AF, ∀ε ∈ ]0,1], if �a∈A s.t. ↓⊕1 (a) = /0
then Propaε,⊕

ε (AF) = Propaε,⊕
1+ε(AF) = Propaε,⊕

1→ε(AF).

Indeed, if there is no non-attacked argument, for Propa1+ε and Propa1→ε , the first
case where ε = 0 returns the same propagation vector for all the arguments (for all argu-
ment a, P0,⊕(a) = 〈0,0, . . .〉). Consequently the only way to make a difference between
arguments is to look at the case where ε �= 0 exactly like Propaε . In other words, when
there is no non-attacked argument, the semantics compare the arguments only on the
number of attackers/defenders.

In this case, a link can be established between our ranking-based semantics and one
semantics of the literature. The Discussion-based semantics [8] compares arguments by
counting the number of direct attackers. If this number is the same for some arguments,
the size of paths is recursively increased until a difference is found:

Definition 13. [8] Let AF = 〈A, ↪→〉, a ∈ A, and i ∈N. Let Disi(a) = (−1)i+1| ↓M
i (a)|,

and Dis(a) = 〈Dis1(a),Dis2(a), . . .〉. The ranking-based semantics Dbs associates to
AF a ranking �Dbs

AF on A such that ∀a,b ∈ A, a �Dbs
AF b iff Dis(b)�lex Dis(a).

Dbs and the propagation semantics share similar principles regarding the way paths
are counting and use the lexicographical comparison. However, let us recall that, in the
general case, our semantics also take into account the role of the non-attacked arguments
which has consequences on the order between arguments. But in the case where there is
no non-attacked argument, the order returned by both semantics is the same.

Proposition 9. ∀AF = 〈A, ↪→〉 ∈ AF, ∀ε ∈ ]0,1], if �a ∈ A such that ↓M
1 (a) = /0, then

Propaε,M
ε (AF) = Propaε,M

1+ε(AF) = Propaε,M
1→ε(AF) = Dbs(AF).

Note that this result is obtained with the multiset version of the three kinds of se-
mantics. The set versions are not equivalent.

6. Example

In this section, we apply the different existing ranking-based semantics and the six se-
mantics based on propagation on an example with few arguments. The objective is to
illustrate their behaviors with regard to some particular situations. We consider the se-
mantics based on Social Argumentation Frameworks SAF [3], the semantics Categoriser
Cat [4,9], the semantics based on tuple2 values Tuples∗ [5], the semantics proposed by
Matt and Toni M&T [6], the semantics proposed by Grossi and Modgil G&M [10], the
Discussion-based semantics Dbs and the Burden-based semantics Bbs [8].

2In order to avoid infinite tuples, we consider this approach for acyclic graph only. See [11] for details.
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Example 1 (cont.). For a better visibility of the obtained orders, we do not consider
the argument e which is similar to a (both are non-attacked) and the arguments d and
h which are similar to b (all attacked once by one non-attacked argument) in the final
pre-order because they are always equally acceptable.

Semantics Order between arguments

Cat a�Cat c �Cat b Cat f Cat g

SAF a�SAF c�SAF fSAFg�SAFb

Tuples∗ a �T f T g �T c �T b

M&T a�MT c MT f MT g�MT b

G&M a�GM c�GM f GM g�GM b

Dbs a�Dbs c�Dbs b�Dbs f Dbs g

Bbs a�Bbs c�Bbs b�Bbs f Bbs g

Propa0.75,S
ε a�PS c �PS b �PS f �PS g

Propa0.3,S
ε a�PS c �PS f �PS g �PS b

Propa0.75,M
ε a�PM c�PM b�PM f PM g

Propa0.3,M
ε a�PM c�PM f PM g�PM b

Propaε,S
1→ε a�PS f �PS c�PS g�PS b

Propaε,M
1→ε a�PM fPM g�PM c�PM b

Propaε,S
1+ε a�P̂S c �P̂S f �P̂S g �P̂S b

Propaε,M
1+ε a�P̂M c�P̂M f P̂M g�P̂M b

Table 3. Order obtained with the different semantics on AF1 (Figure 1).

First of all, all semantics consider a (and e) as the best argument because it is non-
attacked (see property VP). On the contrary, b (but also d and h) is most of the time the
worst argument because it is attacked by the better argument. It is not the case with Dbs
and Bbs because they satisfy the property Cardinality Precedence, where the greater the
number of direct attackers for an argument, the weaker the level of acceptability of this
argument. It is why, for these two semantics, b is better than f and g which are both
defended. Note that it is also the case with Propaε when ε > 0.5.

It is interesting to note that almost all semantics make no distinction between f and
g, both defended twice (by non-attacked arguments). Only our Propagation semantics
using sets make a distinction between the two, preferring f that is defended by two argu-
ments, whereas g is defended twice but by the same argument e.

Finally, concerning the three defended arguments (c, f and g), the order reflects the
position of the semantics about the notion of defense. We can see that, for Propa1→ε and
Tuples∗, f and g are better than c because they consider a defense as a reinforcement,
contrary to all the others semantics.

7. Conclusion

In this work we proposed six new ranking-based semantics based on the propagation of
the weights of arguments, that give a higher weight to non-attacked arguments. The dif-
ferences between the six semantics lie in the choice of the interaction between attacked
and non-attacked arguments (i.e. how much priority do we give to non-attacked argu-
ments), and in the choice of sets or multi-sets as tracking of attacking and defending
arguments.

The basic motivating idea behind these semantics, and one of the main contributions
of this work, is that one can not take into account only information on attacks and de-
fenses of an argument, but also has to take into account the impact of non-attacked argu-
ments. This idea follows the principle of classical Dung’s semantics. However it should
be noted that full compatibility of rankings with extensions (sets of mutually acceptable
arguments) is a difficult to reach objective, as these semantics do not capture the inter-

E. Bonzon et al. / Argumentation Ranking Semantics Based on Propagation 149



action between arguments and remain at the level of the acceptability of single argu-
ments. For instance, two arguments may be highly ranked but mutually incompatible:
ranking-based semantics are blind to this.

We show that these semantics have interesting properties. In particular they satisfy
the properties that should be satisfied by any ranking semantics according to [11]. In par-
ticular the semantics Propa1+ε and Propa1→ε satisfy the very natural AvsFD property,
that is not satisfied by most of previously proposed ranked-based semantics.

We also show some relationships between these semantics and other ones: all the
propagation semantics based on multisets coincide with the semantics Dbs when there
is no non-attacked arguments in the AF. So they can be viewed as improvement of Dbs
allowing to take into account the impact of non-attacked arguments.

Also, by many respect semantics Propa1→ε is close to the Tuples* semantics [5].
The Tuples* semantics does not necessarily provide a total pre-order, and it cannot be
applied (easily) if there is a cycle in the AF. So in a sense Propa1→ε could be seen as an
improvement of the ideas of Tuples* that allows to overcome these limitations.

This work on ranked-based semantics is motivated by applications for online debates
platforms. On these platforms people can usually vote on arguments and/or on attacks.
So this provides weights on the arguments and on the attacks. The SAF framework [3]
allows to take these information into account. We started with the basic framework, with-
out any weights. Now the plan is to study the full framework, with weights on attacks
and on arguments. We want to study how to generalize these semantics with weights, and
to study which are the adaptations of the properties, or the missing ones, in this case.
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