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1. Introduction

Abstract Dialectical Frameworks (ADFs) have been introduced in [8,7] as an abstract
argumentation formalism purported to capture more general forms of argument interac-
tion than just attacks among arguments, which form the basis of the original, Dung’s
argumentation frameworks. To achieve this, each argument in an ADF is associated with
an acceptance condition, which is some propositional function determined by arguments
that are linked to it. Using such acceptance conditions, ADFs allow to express that argu-
ments may jointly support another argument, or that two arguments may jointly attack a
third one, and so on. Dung’s argumentation frameworks are recovered in this setting by
acceptance condition saying that an argument is accepted if none of its parents is.

The authors of ADFs have repeatedly stressed that they primarily see their formal-
ism not as a knowledge representation tool, but rather as a convenient and conceptually
neutral abstraction tool (‘argumentation middleware’) that is intended to encompass a
broad range of more specific argumentation and other nonmonotonic formalisms. On the
other hand, [16] has considered ADFs as a particular knowledge representation formal-
ism. In our study also, we will view ADFs as a specific knowledge representation formal-
ism and show its close conceptual connections with the formalism of causal reasoning.
This will also help us to single out some of the basic principles behind the construction
of ADFs and their semantics, as well as to situate the latter in the range of closely related
KR formalisms.

The plan of the paper is as follows. We present first a brief description of the for-
malism of ADF and the relevant parts of the causal calculus. Then we will establish a
simple modular translation of ADFs into the causal calculus, and explore the counter-
parts of the main semantics introduced for ADFs under this translation. It will be shown,
in particular, that the basic operator Γ of ADFs can be significantly enhanced by taking
into account disjunctive information. This translation will also suggest a natural gener-
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alization of ADFs to a general rule-based formalism that will already subsume Logic
Programming.

2. Preliminaries I: Abstract Dialectical Frameworks

An abstract dialectical framework (ADF) is a directed graph whose nodes represent state-
ments or positions which can be accepted or not. The links represent dependencies: the
status of a node s only depends on the status of its parents (denoted par(s)), that is, the
nodes with a direct link to s. In addition, each node s has an associated acceptance condi-
tion Cs specifying the exact conditions under which s is accepted. Cs is a function assign-
ing to each subset of par(s) one of the truth values t, f . Intuitively, if for some R⊆ par(s)
we have Cs(R) = t, then s will be accepted provided the nodes in R are accepted and
those in par(s)\R are not accepted.

Definition 1. An abstract dialectical framework is a tuple D = (S,L,C) where

• S is a set of statements (positions, nodes),
• L ⊆ S×S is a set of links,
• C = {Cs}s∈S is a set of total functions Cs : 2par(s) →{t, f}, one for each statement

s. Cs is called acceptance condition of s.

A more ‘logical’ representation of ADFs can be obtained simply by assigning each
node s a classical propositional formula corresponding to its acceptance condition Cs
(see [11]). In this case we can tacitly assume that the acceptance formulas implicitly
specify the parents a node depends on. It is then not necessary to give the links L, so
an ADF D amounts to a tuple (S,C) where S is a set of statements, and C is a set of
propositional formulas, one for each statement from S. The notation s[Cs] is used by the
authors to denote the fact that Cs is the acceptance condition of s.

A two-valued interpretation v is a (two-valued) model of an ADF (S,C) whenever
for all statements s ∈ S we have v(s) = v(Cs), that is, v maps exactly those statements
to true whose acceptance conditions are satisfied under v. This notion of a model pro-
vides a natural semantics for ADFs. In addition to this semantics, however, the authors
define appropriate generalizations for all the major semantics of Dung’s argumentation
frameworks. In [7], all these semantics are defined by generalizing the two-valued in-
terpretations to three-valued ones. All of them are formulated using the basic operator
ΓD over three-valued interpretations that was introduced, in effect, already in [8]. In the
formulation of [7], for an ADF D and a three-valued interpretation v, the interpretation
ΓD(v) is given by the mapping

s �→ ∏{w(Cs) | w ∈ [v]2},

where ∏ is the product operator on interpretations, while [v]2 is the set of all two-valued
interpretations that extend v.

For each statement s, the operator ΓD returns the consensus truth value for its accep-
tance formula Cs, where the consensus takes into account all possible two-valued inter-
pretations w that extend the input valuation v. If v is two-valued, we get ΓD(v)(s) = v(Cs),
so v is a two-valued model for D iff ΓD(v) = v. In other words, two-valued models of D
are precisely those classical interpretations that are fixed points of ΓD.
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The grounded model of an ADF D can now be defined as the least fixpoint of ΓD.
This fixpoint is in general three-valued, and it always exists since the operator ΓD is
monotone in the information ordering ≤i, as shown in [8]. This grounded semantics is
viewed by the authors as the greatest possible consensus between all acceptable ways of
interpreting the ADF at hand1.

The operator ΓD also provides a proper basis for defining admissible, complete and
preferred semantics for arbitrary ADFs.

Definition 2. A three-valued interpretation v for an ADF D is

• admissible iff v ≤i ΓD(v);
• complete iff ΓD(v) = v;
• preferred iff it is ≤i-maximal admissible.

As can be shown, the above definitions provide proper generalizations of the corre-
sponding semantics for Dung’s argumentation frameworks and, moreover, preserve much
of the properties and relations of the latter. Thus, the grounded semantics is always a
complete model, and each complete model is admissible. In addition, as it is the case
for AFs, all preferred models are complete, the grounded model is the ≤i-least complete
model, and the set of all complete models forms a complete meet-semilattice with respect
to the information ordering ≤i.

In [8], the standard Dung semantics of stable extensions was generalized only to a
restricted type of ADFs called bipolar, but [7] has suggested a new definition that avoids
unintended features of the original definition, and covers arbitrary ADFs, not only bipolar
ones (see also [16]). This new definition is based on the notion of a reduct of an ADF,
similar to the Gelfond-Lifschitz transformation of logic programs. We will discuss the
representation of the stable semantics in ADFs later in this study.

3. Preliminaries II: Causal Reasoning

The causal calculus has been introduced in [14] as a nonmonotonic formalism purported
to serve as a logical basis for reasoning about action and change. This line of research
has led to the action description language C+, which is based on this calculus [12]. A
logical basis of the causal calculus was described in [1], and it has been argued in [2]
that this calculus is not necessarily restricted to temporal domains, but has actually a vast
potential and representation capabilities for serving as a general-purpose nonmonotonic
formalism (see also [3,4,5]).

We will assume in this section that our underlying language is an ordinary classical
propositional language with the usual connectives and constants {∧,∨,¬,→, t, f}. � and
Th will stand, respectively, for the classical entailment and the associated logical closure
operator. We will reserve also the letters p,g,r, . . . for denoting propositional atoms,
while A,B,C, . . . will denote arbitrary classical propositions of the language.

By a causal rule we will mean an expression of the form A⇒B (“A causes B”),
where A and B are propositional formulas. A causal theory is a set of causal rules. A
causal rule A⇒B is determinate, if B is a literal. A determinate causal theory is a set of
determinate causal rules.

1We will qualify this claim in what follows.
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We will begin with a general notion of production inference which is actually just a
slight modification of the input-output logic from [13].

Definition 3. A production inference relation is a binary relation ⇒ on the set of classical
propositions satisfying the following conditions:

(Strengthening) If A � B and B⇒C, then A⇒C;
(Weakening) If A⇒B and B �C, then A⇒C;
(And) If A⇒B and A⇒C, then A⇒B∧C;
(Truth) t⇒ t;
(Falsity) f⇒ f.

A characteristic property of production inference is that the reflexivity postulate
A⇒A does not hold for it.

We extend causal rules to rules having arbitrary sets of propositions as premises
using the familiar compactness recipe: for any set u of propositions, we define

u⇒A ≡
∧

a⇒A, for some finite a ⊆ u

C(u) will denote the set of propositions caused by u, that is

C(u) = {A | u⇒A}

As could be expected, the causal operator C plays much the same role as the usual
derivability operator for consequence relations. Note that C(u) is always a deductively
closed set (due to And, Weakening, and Truth). Also, it satisfies monotonicity:

Monotonicity If u ⊆ v, then C(u)⊆ C(v).

Actually, due to compactness, C is not only monotonic, but also a continuous op-
erator. Still, it is not inclusive, that is, u ⊆ C(u) does not always hold. Also, it is not
idempotent, that is, C(C(u)) can be distinct from C(u).

3.1. Regular, basic and causal inference

A production inference relation is regular if it satisfies the following well-known rule:

(Cut) If A⇒B and A∧B⇒C, then A⇒C.

Cut is one of the basic rules for ordinary consequence relations. In the context of
production inference it plays the same role, namely, allows for a reuse of produced propo-
sitions as premises in further productions2. It corresponds to the following characteristic
condition on the causal operator:

C(u∪C(u))⊆ C(u).

Following [13], a production inference relation will be called basic if it satisfies

2Such production relations correspond to input-output logics with reusable output in [13].
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(Or) If A⇒C and B⇒C, then A∨B⇒C.

For basic production inference, the set of propositions caused by a theory u coincides
with the set of propositions that are caused by every world containing u:

C(u) =
⋂
{C(α) | u ⊆ α & α is a world}

Another important fact about basic production inference is that any causal rule is
reducible to a set of clausal rules of the form

∧
li⇒∨

l j, where li, l j are classical literals.
Finally, a production inference relation will be called causal if it is both basic and

regular.

3.2. General nonmonotonic semantics

Production inference determines a natural nonmonotonic semantics, and provides
thereby a logical basis for a particular form of nonmonotonic reasoning.

Definition 4. • A set u of propositions is an exact theory of a production inference
relation if it is consistent, and u = C(u).

• A set u of propositions is an exact theory of a causal theory Δ, if it is an exact
theory of the least production relation ⇒Δ that includes Δ.

• A general nonmonotonic semantics of a causal theory is the set of all its exact
theories.

• A causal nonmonotonic semantics of a causal theory is the set of its exact theories
that are worlds (complete deductively closed sets).

An exact theory describes an information state in which every proposition is caused,
or explained, by other propositions accepted in this state. Accordingly, restricting our
universe of discourse to exact theories amounts to imposing a kind of an explanatory
closure assumption. Namely, it amounts to requiring that any accepted proposition should
also have an explanation, or justification, for its acceptance.

The general nonmonotonic semantics is indeed nonmonotonic in the sense that
adding new causal rules to a causal theory may lead to a nonmonotonic change of the
associated semantics, and thereby to a nonmonotonic change in the derived information.
This happens even though the causal rules themselves are monotonic, since they satisfy
Strengthening (the Antecedent).

Exact theories are consistent fixed points of the operator C. Since the latter operator
is monotonic and continuous, exact theories (and hence the nonmonotonic semantics)
always exist. Moreover, there always exists a least exact theory. In addition, the union of
any chain of exact theories (with respect to set inclusion) is an exact theory, so any exact
theory is included in a maximal such theory.

It has been shown in [2] (using an appropriate strong equivalence theorem) that
regular production inference provides an adequate and maximal logical framework for
reasoning with general exact theories.

As an interesting application of this result for our present study, it can be shown that
the least exact theory of a regular inference relation coincides with the set of propositions
that are caused by truth t. Thus, we obtain the following
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Lemma 1. The least exact theory of a causal theory Δ coincides with the set of proposi-
tions that are provable from Δ using the postulates of regular production inference.

Finally, it has been shown that the causal nonmonotonic semantics, as defined above,
is equivalent to the original semantics described in [14]. In addition, as a consequence of
the corresponding strong equivalence theorem, it has been shown that the full system of
causal inference relations (that is both regular and basic) constitutes an adequate logical
basis for reasoning with respect to this semantics.

4. The Causal Representation of ADFs

Now we are going to provide a uniform and modular translation of ADFs into the causal
calculus. An essential precondition of this causal representation, however, will consist in
transforming the underlying semantic interpretations of ADFs in terms of three-valued
models (used, e.g., in [7]) into ordinary classical logical descriptions. This latter trans-
formation will also allow us to clarify to what extent the various semantics suggested for
ADFs admit a classical logical reading. In fact, the very possibility of such a classical
reformulation stems from the crucial fact that the basic operator Γ of an ADF, described
earlier, is defined, ultimately, in terms of ordinary classical interpretations extending a
given three-valued one. Nevertheless, our reformulation will also reveal a significant dis-
crepancy between these semantics and their immediate causal counterparts.

4.1. Three-valued interpretations versus classical theories

To begin with, any three-valued interpretation v on the set of statements S can be faith-
fully encoded using an associated set of literals [v] = S0 ∪¬S1 such that S0 = {p ∈ S |
v(p) = t} and S1 = {p∈ S | v(p) = f}. Moreover, this set of literals generates a unique de-
ductively closed theory Th([v]) that corresponds in this sense to the source three-valued
interpretation v. Conversely, let us say that a deductively closed set u is a literal theory, if
it is a deductive (classical) closure of some set of literals. Then the latter set of literals will
correspond to a unique three-valued interpretation v such that u = Th([v]). These simple
facts establish a precise bi-directional correspondence between three-valued interpreta-
tions and classical literal theories. Moreover, we will see in what follows that the main
operator Γ of ADFs will correspond under this reformulation to a ‘literal’ restriction of
the causal operator C of basic production inference.

4.2. Acceptance conditions as causal rules

As our starting point, we note a striking similarity between the official definition of an
ADF and the notion of a causal model, used by Judea Pearl in [15].

According to [15, Chapter 7], a causal model is a triple M = 〈U,V,F〉, where

(i) U is a set of background (or exogenous) variables.
(ii) V is a set {V1,V2, . . . ,Vn} of endogenous variables that are determined by vari-

ables in U ∪V .
(iii) F is a set of functions { f1, f2, . . . , fn} such that each fi is a mapping from

U ∪ (V\Vi) to Vi, and the entire set, F , forms a mapping from U to V .
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Symbolically, F is represented as a set of equations

vi = fi(pai,ui) i = 1, . . . ,n

where pai is any realization of the unique minimal set of variables PAi in V\{Vi} (par-
ents) sufficient for representing fi, and similarly for Ui ⊆U .

In Pearl’s account, every instantiation U = u of the exogenous variables determines
a particular “causal world” of the causal model. Such worlds stand in one-to-one corre-
spondence with the solutions to the above equations in the ordinary mathematical sense.
However, structural equations also encode causal information in their very syntax by
treating the variable on the left-hand side of = as the effect and treating those on the right
as causes. Accordingly, the equality signs in structural equations convey the asymmetri-
cal relation of “is determined by”.

Being restricted to the classical propositional language, Pearl’s notion of a causal
model can be reduced to the following notion of a Boolean causal model, used in [6]:

Definition 5. Assume that the set of propositional atoms is partitioned into a set of
background (or exogenous) atoms and a finite set of explainable (or endogenous) atoms.

• A Boolean structural equation is an expression of the form p = F , where p is an
endogenous atom and F is a propositional formula in which p does not appear.

• A Boolean causal model is a set of Boolean structural equations p = F , one for
each endogenous atom p.

As can be seen, the above definition is much similar to the logical reformulation of
ADFs, with equations p = F playing essentially the same role as the acceptance condi-
tions p[F ]. The differences are that only endogenous atoms are determined by their as-
sociated conditions in causal models, but on the other hand, there are no restrictions on
appearances of atoms on both sides in ADF’s acceptance conditions. Furthermore, plain
(two-valued) models of ADFs correspond precisely to causal worlds of the causal model,
as defined in [6]:

Definition 6. A solution (or a causal world) of a Boolean causal model M is any propo-
sitional interpretation satisfying the equivalences p ↔ F for all equations p = F in M.

Now, a modular representation of Boolean causal models as causal theories of the
causal calculus has been given in [6], and it can now be seamlessly transformed into the
following causal representation of ADFs:

Definition 7 (Causal representation of an ADF). For any ADF D, ΔD is the causal theory
consisting of the rules

F ⇒ p and ¬F ⇒¬p

for all acceptance conditions p[F ] in D.

The above representation is fully modular, and it will be taken as a uniform basis for
the correspondences described in this study.

To begin with, based on the correspondence results from [6], we immediately estab-
lish
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Theorem 2. The two-valued semantics of an ADF D corresponds precisely to the causal
nonmonotonic semantics of ΔD.

As a consequence, the full system of causal inference provides a precise logical basis
for this nonmonotonic semantics.

4.3. General correspondences

Now we are going to show that the above causal representation also survives the transi-
tion to three-valued models of ADFs. To this end, however, we will have to retreat from
the system of causal inference to a weaker system of basic production inference.

A broader correspondence between various semantics of ADFs and general non-
monotonic semantics of the causal calculus arises from the fact that the operator Γ of an
ADF naturally corresponds to a particular causal operator of the associated causal theory.

Let L denote the set of classical literals of the underlying language. We will denote
by C

L the restriction of a causal operator C to literals, that is, CL(u) = C(u)∩L. As we
are going to show, the operator Γ of ADFs corresponds precisely to this ‘literal restric-
tion’ of the causal operator associated with a basic production inference. As before, [v]
will denote the set of literals corresponding to a three-valued interpretation v.

Lemma 3. For any three-valued interpretation v,

[ΓD(v)] = C
L
D([v]),

where CD is a basic causal operator corresponding to ΔD.

The above equation has immediate consequences for the broad correspondence be-
tween the semantics of ADFs that are defined in terms of the operator ΓD and natural
sets of propositions definable wrt associated causal theory. Thus, we have

Theorem 4. Complete models of an ADF D correspond precisely to the fixed points of
C

L
D:

v = ΓD(v) iff [v] = C
L
D([v])

As a result, we immediately conclude that preferred models of an ADF correspond
to maximal fixpoints of CL

D (with respect to set inclusion), while the grounded model
corresponds to the least fixpoint of CL

D.
It turns out, however, that when viewed in a classical logical setting, the restriction of

the causal operator to literals inadvertently leads to an information loss. More precisely,
though disjunctive formulas can appear in acceptance conditions used by Γ in an ADF,
the operator itself records, in effect, only literals that are produced, and thereby disre-
gards all other information that can be obtained from its output. The following example
illustrates this.

Example 1. Let us consider the following ADF D:

q[p] r[¬p] s[q∨ r]
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The grounded model of this ADF is empty (all atoms are unknown). However, the
associated causal theory ΔD comprises the following rules:

p⇒q ¬p⇒r q∨ r⇒s

¬p⇒¬q p⇒¬r ¬q∧¬r⇒¬s

In view of Lemma 1, the least exact theory of CD is precisely the set of propositions
that are provable from the above theory using the postulates of causal inference (since
it is both basic and regular). Now, the first two rules imply t⇒q∨ r (by Or), and hence
t⇒s by Cut. Similarly, the fourth and fifth rule imply t⇒¬q∨¬r. As result, the least
exact theory of CD is much more informative, namely Th({q ↔¬r,s}).

It can also be seen from the above example that the restriction of exact theories to
literals does not necessary produce fixed points of the corresponding literal operator CL.
Still, it can be shown that for any fixpoint of the latter (that is, for any complete model
an ADF) there exists a least exact theory that contains it. The latter theory may contain,
however, more information than its literal source.

5. Justification Frames, Logic Programs and Generalized ADFs

A revised definition of a stable model has been given in [7], generalized already to arbi-
trary ADFs. Roughly, a two-valued model v of an ADF D is a stable model of D if the
set of statements that are true in it coincides with the grounded extension of the reduced
ADF Dv obtained from D by replacement of all false statements in v by their truth value
in each acceptance formula. As has been shown by the authors, this definition properly
generalizes stable extensions of Dung’s argumentation frameworks.

It should be noted, however, that from the ‘non-abstract’ knowledge representation
view of ADFs that we pursue in the present study, the above definition of a stable se-
mantics constitutes a certain departure from the original formulation of ADFs that was
based on classical acceptance conditions. Indeed, the above definition of a stable model
implicitly breaks the classical symmetry between positive and negative statements, so
the acceptance conditions cannot already be viewed as classical formulas. Instead, they
acquire a non-classical reading that is quite familiar from logic programming.

It is well-known that the formalism of ADFs, taken in its original sense, does not
capture all the semantic distinctions that are expressible in the language of Logic Pro-
gramming (see, e.g., [16]). Still, the causal representation of ADFs, described in the pre-
ceding section, can also suggest a proper generalization of ADFs that would cover Logic
Programming under its various semantics, while still preserving the original classical
reading of their acceptance conditions (end even their original two-valued semantics).
Due to space limitations, however, we can only be brief here.

To begin with, the causal representation of ADFs, described earlier, transforms them
into rule-based causal theories, while the latter constitute, in turn, a very special, ‘clas-
sical’ case of justification frames, introduced in [9]. In particular, the justification rules
of the latter have the general form x ← S, where x is a literal, while S is a set of literals.
In the case of the classical negation, such justification frames correspond precisely to
determinate causal theories under basic production inference.
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However, the causal rules of the causal calculus have an additional expressivity in
that they allow arbitrary classical formulas not only in the bodies, but also in the heads of
the rules. It turns out that this expressive capability is already sufficient for representing
logic programming rules and their semantics.

A causal representation of logic programming rules under various semantics for the
latter has been described in [3]. It was defined for general program rules of the form

not d,c ← a,not b (*)

where a,b,c,d are finite sets of atoms.
A general understanding of logic programs presupposes an asymmetric treatment of

negative information, which is reflected in viewing the negation not as denoting nega-
tion as failure. This understanding can be formally captured in the causal calculus by
accepting the following additional postulate:

(Default Negation) ¬p⇒¬p, for any propositional atom p.

The above postulate makes negations of propositional atoms self-explainable propo-
sitions (or abducibles), so it expresses, in effect, the Closed World Assumption (CWA).

Given this postulate, a causal representation of logic programs under the stable se-
mantics is provided by interpreting a program rule (*) as the following causal rule:

d,¬b⇒
∧

a →
∨

c

This interpretation provides a classical understanding for not, so its non-classicality
amounts solely to the non-classicality of ⇒. Nevertheless, it has been shown that the
stable semantics of logic programs corresponds precisely to the causal nonmonotonic se-
mantics of the resulting causal theories, that is, to the exact worlds of the latter. Further-
more, the same causal nonmonotonic semantics has turned out to be appropriate also for
logic programs under the supported semantics, provided we interpret the program rule
(*) differently, namely as the following causal rule:

a,d,¬b⇒
∨

c

The only difference with the previous stable interpretation amounts to treating pos-
itive premises in a as explanations rather than as part of what is explained. Note that a
normal program rule p ← a,notb corresponds under this interpretation to the causal rule

a,¬b⇒ p

which can be directly transformed into (part of) an acceptance condition for p in ADFs.
The above considerations and results suggest a natural generalization of an ADF

to acceptance conditions of the form A[B], where both A and B are classical formulas.
This would supply the Abstract Argumentation Frameworks with further representation
capabilities, and thereby even contribute to the original aim of the authors of providing a
powerful and widely applicable abstraction tool for Argumentation and Reasoning.
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6. Summary, Related Work and Conclusions

It has been shown in this study that Abstract Dialectical Frameworks can be uniformly
translated into the causal calculus in a way that creates a broad correspondence between
the main semantics for ADFs and their causal counterparts.

Among many other things, the suggested translation can be used for determining the
place of ADFs (viewed as a specific KR formalism) in the broad range of formalisms
for argumentation and reasoning. Thus, it has been shown in [4] that a great number
of key systems for argumentation and nonmonotonic reasoning, including the causal
calculus, can be viewed as direct instantiations of the original Dung’s argumentation
frameworks in different logical languages. Due to the results of the present study, the
Abstract Dialectical Frameworks also find their natural place in this larger picture. This
topic deserves, however, a separate discussion that goes beyond the scope of the present
study. Still, a couple of general comments are in order here.

The field of formal argumentation is abundant with different formalisms, which cre-
ates a fertile ground for extensive and rapid development. But there is also a lot of con-
ceptual affinity among these argumentation formalisms, as well as between the latter and
the major KR representation languages. It is this affinity that allows us to use many of
them for basically the same reasoning tasks. This situation creates, however, an obvious
incentive for unification, namely for constructing a general theory of argumentation and
reasoning where these formalisms could find their proper and hospitable place.

An algebraic approach to unification of different KR formalisms has been suggested
in [10], which describes a general method for deriving approximations of operators as-
sociated with particular knowledge representation systems. This approach has been suc-
cessfully applied to ADFs in [16], which also contains comparisons with Logic Program-
ming.

The above approximation theory can be viewed as a paradigmatic abstraction ap-
proach, in which a general algebraic formalism is shown to be capable of encompassing
many particular KR systems. In contrast, our present study can be seen as an instance of
a somewhat more specific generalization approach, which aims to single out conceptual
principles common to a number of formalisms for argumentation and reasoning3. For
instance, we take it to be a virtue of the original ADFs that they employ classical descrip-
tions in the acceptance conditions. This makes an ADF a natural extension of classical
reasoning (instead of being a replacement for the latter), an extension that incorporates,
however, some key features of our commonsense reasoning that go beyond pure logical
inference.

There is a number of concepts and features that are pervasive in commonsense rea-
soning, though they escape a purely logical description. The general field of nonmono-
tonic reasoning has considerably advanced our understanding of these features, which
include concepts like explanation, justification, causation, and even definition. The key
notions of the modern formal argumentation theory such as support, defeat and attack
also belong to this class. It could even be argued that the main contribution of Dung’s
abstract argumentation theory has consisted not so much in suggesting a new abstract
framework for argumentation, but rather in incorporating these notions as the main con-
ceptual ingredients of argumentation. It is this conceptual advancement that has given

3The formal theory of justifications [9] could also be seen as a step in this direction.
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the formal argumentation theory its current impetus. Accordingly, a systematic study of
these novel features of argumentation should be viewed as one of the principal tasks of
argumentation theory in general.

Finally, it is an undeniable fact that all the above mentioned notions are also inti-
mately related, which could be seen as the ultimate reason why there are mutual transla-
tions between the associated formalisms, as well as why they are so often interchange-
able in specific reasoning and argumentation settings. Accordingly, a large part of the
task of studying and clarifying the scope of the main building blocks of argumentation
consists in determining the relationships and translations among these diverse concepts
(often formulated in entirely different formalisms). The correspondence between accep-
tance conditions of ADFs and causal rules of the causal calculus, established in this
study, should hopefully facilitate this general effort.
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