
On Efficiently Enumerating Semi-Stable
Extensions via Dynamic Programming on

Tree Decompositions

Bernhard BLIEM a Markus HECHER a, Stefan WOLTRAN a

a Institute of Information Systems, TU Wien, Austria

Abstract. Many computational problems in the area of abstract argumentation are
intractable. For some semantics like preferred and semi-stable, important decision
problems can even be hard for classes of the second level of the polynomial hi-
erarchy. One approach to deal with this inherent difficulty is to exploit structure
of argumentation frameworks. In particular, algorithms that run in linear time for
argumentation frameworks of bounded treewidth have been proposed for several
semantics. In this paper, we contribute to this line of research and propose a novel
algorithm for the semi-stable semantics. We also present an implementation of the
algorithm and report on some experimental results.

Keywords. Abstract Argumentation, Fixed-Parameter Tractability, Dynamic
Programming on Tree Decompositions

1. Introduction

Dung’s abstract argumentation frameworks [5] are a central concept in many argumenta-
tion formalisms and systems. Efficient and versatile methods for abstract argumentation
are therefore important for further advances in the field. For some important semantics
like the preferred and semi-stable extensions (see [7,12]), the high worst-case complexity
is a major obstacle to finding algorithms that evaluate argumentation frameworks (AFs)
of real-world size in reasonable time. In fact, standard algorithms tend to be problematic
for larger instances even if the inherent structure of the frameworks remains simple; a
situation that is likely to appear when frameworks are obtained during some instantia-
tion process. It is thus valuable to design alternative algorithms, where the size of the
framework has less influence on the runtime.

The field of parameterized complexity theory [4] formally captures this intuition
and is based on the following observation: Many hard problems become tractable if
some problem parameter is bounded by a constant. This property is referred to as fixed-
parameter tractability (FPT). One important parameter of graphs is the treewidth, which
measures the “tree-likeness” of a graph and is thus also applicable to AFs. In the field
of argumentation, research in this direction was initiated by Dunne [6] who showed that
many intractable problems can be solved in linear time for argumentation frameworks
of bounded treewidth. Later these results were extended to the more general structural
parameter of clique-width [9]. Further parameterized complexity results include [8,15].

Computational Models of Argument
P. Baroni et al. (Eds.)
© 2016 The authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/978-1-61499-686-6-107

107

Showing that a problem parameterized by treewidth is FPT often does not yield a
practically useful algorithm automatically. For obtaining such algorithms, dynamic pro-
gramming (DP) algorithms that operate on a tree decomposition (TD) of the input usually
have to be designed. For admissible, preferred, and ideal semantics, such algorithms
have been presented in [11], and the system DYNPARTIX [3] implements algorithms for
admissible, preferred, stable and complete semantics. However, semi-stable semantics
has not been considered so far. This semantics is challenging, as it is among the most
complex ones for abstract argumentation, with credulous acceptance being ΣP

2 -complete
and skeptical acceptance being ΠP

2 -complete [12].
In this work, we present a DP algorithm that computes semi-stable extensions in

linear time on AFs of bounded treewidth. We briefly report on an implementation of our
algorithms and some experimental evaluation.

2. Background

Abstract Argumentation. We first review the Dung argumentation framework [5].

Definition 2.1. An argumentation framework (AF) is a pair F = (AF ,RF), where AF is
a set of arguments and RF ⊆ A×A is a set of attacks. Instead of (a,b) ∈ RF , we write
a �RF b, and we sometimes omit RF if it is clear from the context. For any set S ⊆ AF ,
we write S �RF b if there is some a ∈ S s.t. a �RF b. We say that a is defended by S if
S �RF b for each b ∈ AF with b �RF a. We call S+RF

= S∪{b | S �RF b} the range of S.

A semantics characterizes so-called extensions of an AF, i.e., sets of arguments that are
acceptable. For a semantics ψ ∈ {conflict-free,admissible,preferred,semi-stable,stable}
and an AF F , we write ψ(F) to denote the set of ψ-extensions in F .

Definition 2.2. Let F be an AF and S ⊆ AF . We define (a) S ∈ conflict-free(F) if there are
no a,b ∈ S with a �RF b; (b) S ∈ admissible(F) if S ∈ conflict-free(F) and each a ∈ S
is defended by S; (c) S ∈ preferred(F) if S ∈ admissible(F) and S′ �⊃ S holds for each
S′ ∈ admissible(F); (d) S ∈ semi-stable(F) if S ∈ admissible(F) and S′+RF

�⊃ S+RF
holds for

each S′ ∈ admissible(F); (e) S ∈ stable(F) if S ∈ conflict-free(F) and AF = S+RF
.

One can show that for every AF F it holds that stable(F) ⊆ semi-stable(F) ⊆
preferred(F)⊆ admissible(F)⊆ conflict-free(F).

Tree decompositions (TDs). A parameterized problem is a problem whose instances
are accompanied by an integer that represents a certain parameter of the instance. Such
a problem is called fixed-parameter tractable (FPT) if it is solvable in time f (k) ·nO(1),
where n is the input size and f is a function that only depends on the value k of the
parameter [4]. The parameter we consider is treewidth, which is defined by means of tree
decompositions, originally introduced in [18]. The intuition behind TDs is to obtain a
tree from a (potentially cyclic) graph by subsuming multiple vertices under one node and
thereby isolating the parts responsible for cyclicity.

Definition 2.3. A tree decomposition of a graph G = (V,E) is a pair T = (T ,X) where
T = (VT ,ET) is a (rooted) tree and X = {Xt1 , . . . ,Xtn} assigns to each node t ∈VT a
subset Xt of V (called the bag of t) as follows: (1) For each vertex v ∈V , there is a node

B. Bliem et al. / On Efficiently Enumerating Semi-Stable Extensions via Dynamic Programming108

F : w

x y

z

T : /0t8

{x}t7

{w,x}t6

{w,x} t5

{w,x,z} t4

{w,x}t3

{w}t2

{w,y}t1

r D P
8:I (7:I)

t8

r D P
7:I def(x) (6:I)

t7

r D P
6:I in(w),def(x) (3:I,5:I)

t6

r D P
5:I in(w),def(x) (4:I)

t5
r D P

3:I in(w),def(x) (2:I)
3:II def(w) (2:II)
3:III in(x),def(w) (2:II)

t3

r D P
2:I in(w) (1:I)
2:II def(w) (1:II)

t2

r D P
1:I in(w),def(y) ()
1:II in(y),def(w) ()
1:III ()

t1

r D P
4:I in(w),def(x),def(z) ()
4:II in(x),def(w) ()
4:III ()

t4

Figure 1: DP computation of stable(F) w.r.t. normalized TD T = (T ,X).

t ∈VT such that v ∈ Xt; (2) For each edge e ∈ E, there is a node t ∈VT such that e ⊆ Xt;
(3) For each v ∈V , the subgraph of T induced by {t ∈VT | v ∈ Xt} is connected. We call
maxt∈VT

|Xt |−1 the width of T . The treewidth of G is the minimum width over all its TDs.

For T = (VT ,ET) we often write t ∈T instead of t ∈VT . We only consider TDs of
the following form that can be achieved in linear time without increasing the width [16].

Definition 2.4. We call a TD (T ,X) normalized if its root has an empty bag and each
node t ∈ T is of one of the following types. LEAF: t is a leaf of T . FORGET: t has
only one child t ′ and Xt = Xt ′ \{v} for some v ∈ Xt ′ . INSERT: t has only one child t ′ and
Xt = Xt ′ ∪ {v} for some v �∈ Xt ′ . JOIN: t has two children t ′, t ′′ and Xt = Xt ′ = Xt ′′ .

Example 2.5. Figure 1 depicts a normalized TD T (having width 2) of the AF F.

Dynamic programming (DP) on Tree decompositions. Algorithms for dynamic pro-
gramming on TDs generally traverse the TD in bottom-up order. At each node, partial
solutions for the subgraph induced by the vertices encountered so far are computed and
stored in a table associated with the node (cf. [17]). The size of each table is typically
bounded by the width of the TD, and the number of TD nodes is linear in the input size.
Hence, if the width is bounded by a constant, the search space for the subproblem is
constant as well, and the number of subproblems only grows by a linear factor for larger
instances. Each row in such a table corresponds to partial solutions that take only a part
of the instance into account, namely the part of the instance that has been “encountered”
during the bottom-up traversal:

Definition 2.6. Let F be an AF, (T ,X) be a TD of F, and t ∈ T . We use X≥t to
denote the union of all bags Xs ∈ X such that s occurs in the subtree of T rooted at t.
Moreover, X>t denotes X≥t\Xt . We define Ft as the AF (AF ∩Xt ,RF ∩X2

t) and call it the
subframework in t. Finally, we define F≥t as the AF (AF ∩X≥t ,RF ∩X2≥t) and call it the
subframework induced by t. (Note that F≥t = F holds if t is the root of the TD.)

Example 2.7. We illustrate the DP for stable extensions of the example AF F in Figure 1.
The tables in that figure are computed as follows. For a TD node t, each table row r

B. Bliem et al. / On Efficiently Enumerating Semi-Stable Extensions via Dynamic Programming 109

consists of data D(r), which may assign a status to arguments in Xt . For any argument
a, D(r) contains in(a) or def(a) if for each set S of arguments represented by r it holds
that a ∈ S or S � a, respectively. The set P(r) contains so-called extension pointer tuples
(EPTs) that denote the rows in the children of t where r was constructed from. By following
these pointers, we can obtain the sets represented by r.

We make sure that all sets represented by a row are conflict-free. For instance, at
node t1, Xt1 = {w,y} holds and these arguments attack each other. Hence the table at t1
contains a row for each of the three conflict-free subsets of Xt1 . At t2, the child rows are
extended and the status assignment is updated by removing the status of arguments that
are not contained in Xt2 . Observe that row 1:III is not extended by any row at t2. This is
because the removed argument y (i.e., y ∈ Xt1 \Xt2) has neither status “in” nor “def”: Any
solution S that is constructed using 1:III would satisfy neither y ∈ S nor S � y, so S would
not be a stable extension. At t3, we extend child rows and guess a status for the introduced
argument x. Note that we must discard rows containing both in(w) and in(x) because
otherwise the partial solutions represented by such rows would not be conflict-free. At t6,
only rows that agree on the status of the common arguments may be joined. We continue
this procedure recursively until we reach the TD’s root.

To decide whether there is a stable extension, it suffices to check if the table in the
root node is non-empty. The overall procedure is in FPT time because the number of
nodes in the TD is bounded by the input size, and each node t is associated with a table
of size at most O(3|Xt |) (i.e., the number of possible status assignments). The AF F has
a stable extension due to existence of row 8:I. Solutions (stable extensions of F) can
be enumerated with linear delay by starting at the root and following the EPTs while
collecting arguments with status “in” according to the extended rows. Solution {w} is
constructed by starting at 8:I and following EPTs (7:I), (6:I), (3:I,5:I), (2:I), (1:I) and
(4:I). The union of the arguments having status “in” according to these rows is {w}. It is
easy to see that {w} is the only stable extension of F.

3. Algorithm for Admissible Semantics

We first provide an algorithm for admissible semantics that uses DP on TDs, modifying
concepts from [11], and then extend it to semi-stable semantics in Section 4. The adaption
is needed, since we require to distinguish partial solutions not only with respect to the
status of already processed arguments, but have to guess whether arguments might be
attacked or not by arguments appearing later. As we will see in Section 4, this allows us
to relate partial solutions to those which possess a larger range. For space reasons, we
only provide proof sketches and refer to [14] for full proofs. First we adapt the concept of
restricted-admissible sets from [11] for our purposes.

Definition 3.1. Let F = (AF ,RF) be an AF and B a set of arguments. A tuple (S,D)
satisfying S,D ⊆ AF and S∩D = /0 is a B-restricted admissible tuple for F if (1) S is
conflict-free in F and S defends itself in F against all elements of AF ∩B, and (2) for each
a ∈ AF , whenever S �RF a or a �RF S, then a ∈ D. We call S a B-restricted admissible
set for F if there is a set D such that (S,D) is a B-restricted admissible tuple for F.

Note that for AF ⊆ B, B-restricted admissible sets of AF F = (AF ,RF) are just
admissible sets for F . For AF ∩B = /0, B-restricted admissible sets are just the conflict-free

B. Bliem et al. / On Efficiently Enumerating Semi-Stable Extensions via Dynamic Programming110

sets for F . Intuitively, if (S,D) is a B-restricted admissible tuple, then D consists of at
least those arguments (different from S) that are defeated or still require defeating by S.

Example 3.2. Consider the framework F and TD T given in Figure 1. Let F ′ = (AF ′ ,RF ′)
be the subframework induced by node t3 of T minus the attack (y,w), i.e., AF ′ =
{w,x,y},RF ′ = {(w,x),(x,w),(w,y)}. The {x,y}-restricted admissible sets are /0, {w},
{x}, {y} and {x,y}. The set {y}, however, is not {w}-restricted admissible, since w�RF ′ y
but y does not defend itself against w. From the stated {x,y}-restricted admissible sets we
obtain {x,y}-restricted admissible tuples by adding the required second component. Since
condition (2) of Definition 3.1 is always trivially satisfied if D contains all arguments, we
only state the smallest sets D (w.r.t. subset inclusion) that satisfy condition (2). These are
(/0, /0), ({w},{x,y}), ({x},{w}), ({y},{w}) and ({x,y},{w}).

The following concept of (valid) colorings helps to prove correctness of our algorithm.

Definition 3.3. Let (T ,X) be a TD of an AF F = (AF ,RF) and t ∈T . We call C : Xt →
{in,attc,def,out} a coloring and define [C] = {a |C(a) = in} and [[C]] = {a |C(a) = def
or C(a) = attc}. Moreover, we define et(C) as the collection of X>t -restricted admissible
tuples (S,D) for F≥t that satisfy the following properties for each a ∈ Xt .

(i) C(a) = in ⇐⇒ a ∈ S
(ii) C(a) = def ⇐⇒ S �RF a

(iii) C(a) = attc ⇐= S ��RF a and a �RF S
(iv) C(a) = out =⇒ S ��RF a and a ��RF S
(v) C(a) ∈ {def,attc} ⇐⇒ a ∈ D

If et(C) �= /0, C is called a valid coloring for t; Ct denotes the set of valid colorings for t.
For convenience we use e′t(C) := {S | (S,D) ∈ et(C)}.

Intuitively, the color “in” means that the argument a is in the X>t -restricted admissible
set S and “def” means a is defeated by S. Arguments that attack S without being defeated
(yet) have color “attc”, but this color may also be assigned to other arguments that don’t
need to be colored “in” or “def”. The color “attc” means that the argument is expected to
be defeated in the future. Finally, all remaining arguments are assigned color “out”. Any
valid coloring Ct for a TD node t forms exactly one admissible tuple (S,D), with S being
the X>t -restricted admissible set and D being those arguments that are either defeated by
S (color def) or attack S or shall be defeated by it (both color attc).

Example 3.4. Let F and T be the AF and TD, respectively, from Figure 1. Observe that
Xt3 = {w,x}, X>t3 = {y} and F≥t3 = ({w,x,y},{(w,x),(x,w),(w,y),(y,w)}). Let C be the
coloring for t3 s.t. C(w) = in, C(x) = def. The only tuple in et3(C) that is X>t3-restricted
admissible for F≥t3 and satisfies the conditions of Definition 3.3 is ({w},{x,y}).

We now show that valid colorings indeed correspond to admissible extensions.

Proposition 3.5. Assuming that r is the root of a normalized TD of an AF F and ε is the
valid coloring for r, we have that e′r(ε) = admissible(F).

Proof sketch. Let r be the root of the TD (recall that Xr = /0) and ε the (trivial) coloring for
r. For AF ⊆ B, B-restricted admissible sets of AF F = (AF ,RF) are just admissible sets for
F . Hence e′r(ε) = admissible(F) follows immediately from Definitions 3.1 and 3.3.

B. Bliem et al. / On Efficiently Enumerating Semi-Stable Extensions via Dynamic Programming 111

Because of this correspondence, our goal is to efficiently compute e′r(ε) for the root r
of a TD T of an AF F using coloring ε for r, as we have seen that e′r(ε) = admissible(F).
However, to guarantee FPT w.r.t. treewidth, we cannot afford to compute et(·) explicitly.
In the following, we show how we can compute compact representations of et(·). For this,
we first define the following operations that we will use in our algorithm.

Definition 3.6. Let (T ,X) be a TD of an AF F = (AF ,RF), and let C′ and C′′ be
colorings for nodes t ′ and t ′′, respectively, in T . We define the following operations.

(C′ −a)(b) = C′(b) for each b ∈ Xt ′ \{a}

(C′+attc a)(b) =

⎧
⎪⎨

⎪⎩

C′(b) if b ∈ Xt ′

def if a = b and [C′]�RF a
attc otherwise

(C′ +̂out a)(b) =

{
C′(b) if b ∈ Xt ′

out otherwise

(C′ +̇in a)(b) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

in if a = b or C′(b) = in
out if a �= b,(a,b) �∈ RF ,(b,a) �∈ RF ,C′(b) = out
def if a �= b and ((C′(b) = attc and (a,b) ∈ RF) or C′(b) = def)
attc otherwise

(C′ �� C′′)(b) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

in if C′(b) =C′′(b) = in
out if C′(b) =C′′(b) = out
def if C′(b) = def or C′′(b) = def
attc otherwise

In our algorithm, we will use the “−” operation at FORGET nodes, the three “+”
operations at INSERT nodes and “��” at JOIN nodes. The intuitions behind the three
different “+” operations are the following: The operation C+attc a causes that a newly
introduced atom a is considered an attacking candidate (attc); hence a will have to be
defeated (def) by a resulting extension S (i.e., S �RF a). The operation C +̇in a puts the
new atom a in the resulting extension. Finally, C +̂out a results in a being neither in the
extension nor being an attacking candidate of it. Using these operations, we now define
our algorithm that traverses a TD in a bottom-up manner to compute vcolorings, which
serve as compact representations of valid colorings.

Definition 3.7. Let (T ,X) be a TD of an AF F, and let t ∈T . If t has exactly one child,
let t ′ denote this child; if t has two children, let them be denoted by t ′ and t ′′. We define
the set of vcolorings for t depending on the node type of t:

LEAF: A coloring C′ : Xt → {in,out,def,attc} is a vcoloring for t if the following
conditions hold for all x ∈ Xt: (i) C′(x) = in =⇒ C′(y) ∈ {def,attc} for all y � x;
(ii) C′(x) = def ⇐⇒ ∃y : C′(y) = in and y � x

FORGET (Xt = Xt ′ \ {a} for some argument a): If C′ is a vcoloring for t ′ and C′(a) �=
attc, then C′ −a is a vcoloring for t.

INSERT (Xt = Xt ′ ∪ {a} for some argument a):
(i) If C′ is a vcoloring for t ′, then C′+attc a is a vcoloring for t.

(ii) If C′ is a vcoloring for t ′, [C′] �� a and a �� [C′], then C′ +̂out a is a vcoloring for t.

B. Bliem et al. / On Efficiently Enumerating Semi-Stable Extensions via Dynamic Programming112

(iii) If C′ is a vcoloring for t ′, a �� a, [C′] �� a, a �� [C′] and [[C′]] = [[C′ +̇in a]], then
C′ +̇in a is a vcoloring for t.

JOIN: If C′ and C′′ are vcolorings for t ′ and t ′′, respectively, and [C′] = [C′′] as well as
[[C′]] = [[C′′]] hold, then C′ �� C′′ is a vcoloring for t.

Example 3.8. Let F and T = (T ,X) be the AF and TD, respectively, from Figure 1.
Figure 2 illustrates the bottom-up computation of the vcolorings for the AF and TD of
Figure 1. Each row r contains a vcoloring in the set D(r), and P(r) contains the EPTs
as described in Section 2. By following the EPTs from the row 8:I in the root table, we
obtain the sets /0, {w} and {y}, which are indeed exactly the admissible sets.

We now illustrate how to compute the tables in Figure 2 from the bottom up. Consider
LEAF node t1 with bag {w,y} and F≥t1 = ({w,y},{(w,y),(y,w)}). Its table contains six
vcolorings, which correspond to /0-restricted admissible tuples (that encode conflict-free
sets) for F≥t1 , namely (/0, /0), (/0,{w}), (/0,{y}), (/0,{w,y}), ({w},{y}) and ({y},{w}).

The next node t2 is of type FORGET and removes y (X>t2 = {y}). The vcolorings for
t2 are obtained from vcolorings for t1 except for C′ with C′(y) = attc. Intuitively, such
colorings are not extended further because y is still an undefeated attacking candidate
(i.e., y requires defeating). By properties (2) and (3) of TDs, y is not attacked by any
argument outside X≥t2 , ie., y will not be defeated in nodes further toward the root. The
colorings for t2 correspond to the X>t2 -restricted admissible tuples for F≥t2 = F≥t1 .

Node t3 introduces argument x. Consider the coloring C′ of t2 with C′(w) = attc. We
have now three possibilities for argument x (corresponding to our “+” operations).

• C =C′+attc x: This results in C(x) = attc and C(w) = attc.
• C =C′ +̇in x: If we set C(x) = in, this leads to C(w) = def since x �RF w.
• C =C′ +̂out x: This leads to C(x) = out and C(w) = attc.

The only JOIN node is t6, which combines subframeworks F≥t3 and F≥t5 . Let C′ and
C′′ be colorings for t3 and t5, respectively, and let C′(w) = in =C′′(w) and C′(x) = def =
C′′(x). Since [C′] = [C′′] and [[C′]] = [[C′′]], the colorings coincide on X≥t3 ∩X≥t5 and
we can join these colorings without any conflict, leading to C =C′ �� C′′ with C(x) =
C′(x) =C′′(x) and C(w) =C′(w) =C′′(w) for node t6. Now consider coloring C∗ for node
t3 with C∗(w) = def and C∗(x) = in. It holds that [C′′] �= [C∗], and [C′′]∪ [C∗] = {w,x}
are in conflict, leading to the fact that C′′ and C∗ do not result in a vcoloring for node t6.
In fact, there is no resulting vcoloring for node t7 originating from C∗.

Together with Proposition 3.5, the following theorem proves that the algorithm
described in Definition 3.7 is sound.

Theorem 3.9. Let (T ,X) be a TD of an AF F. For each coloring C for a node t ∈ T ,
C is a valid coloring for t if and only if C is a vcoloring for t.

Proof sketch. The proof is by structural induction over the given TD and shows equiva-
lence between valid colorings and vcolorings for all node types, see [14].

Recall that the AF -restricted admissible sets for an AF F = (AF ,RF) are the ad-
missible sets for F . Because of Theorem 3.9 and Proposition 3.5, we can construct a
valid coloring ε for the root r of any TD T by computing vcolorings in a bottom-up
manner. This allows us to enumerate admissible sets via e′r(ε). Observe that /0 is always
an admissible extension, so ε trivially exists, but for enumerating e′r(ε), the vcolorings for

B. Bliem et al. / On Efficiently Enumerating Semi-Stable Extensions via Dynamic Programming 113

r D P
8:I (7:I),(7:III),(7:IV)

t8

r D P
7:I def(w) (6:VII)
7:II attc(w) (6:V)
7:III out(w) (6:VI)
7:IV in(w) (6:I)

t7

r D P
6:I in(w),def(x) (3:I,5:I)
6:II attc(w),attc(x) (3:III,5:II)
6:III out(w),attc(x) (3:IV,5:III)
6:IV def(w),attc(x) (3:V,5:II)
6:V attc(w),out(x) (3:VI,5:IV)
6:VI out(w),out(x) (3:VII,5:V)
6:VII def(w),out(x) (3:VIII,5:III)

t6

r D P
3:I in(w),def(x) (2:I)
3:II def(w), in(x) (2:II),(2:III)
3:III attc(w),attc(x) (2:III)
3:IV out(w),attc(x) (2:IV)
3:V def(w),attc(x) (2:II)
3:VI attc(w),out(x) (2:III)
3:VII out(w),out(x) (2:IV)
3:VIII def(w),out(x) (2:II)

t3

r D P
2:I in(w) (1:I)
2:II def(w) (1:II)
2:III attc(w) (1:III)
2:IV out(w) (1:VI)

t2

r D P
1:I in(w),def(y) ()
1:II def(w), in(y) ()
1:III attc(w),out(y) ()
1:IV out(w),attc(y) ()
1:V attc(w),attc(y) ()
1:VI out(w),out(y) ()

t1

r D P
5:I in(w),def(x) (4:I)
5:II attc(w),attc(x) (4:III)
5:III attc(w),out(x) (4:V)
5:IV out(w),attc(x) (4:VII)
5:V out(w),out(x) (4:IX)

t5

r D P
4:I in(w),def(x),def(z) ()
4:II attc(w),attc(x),attc(z) ()
4:III attc(w),attc(x),out(z) ()
4:IV attc(w),out(x),attc(z) ()
4:V attc(w),out(x),out(z) ()
4:VI out(w),attc(x),attc(z) ()
4:VII out(w),attc(x),out(z) ()
4:VIII out(w),out(x),attc(z) ()
4:IX out(w),out(x),out(z) ()
4:X def(w), in(x),attc(z) ()

t4

Figure 2: DP computation of vcolorings for F = (AF ,RF) w.r.t. T (see Figure 1).

all the nodes of T are required. Enumeration can be done with linear delay by combining
vcolorings from the different nodes of T according to the EPTs [1].

4. Algorithm for Semi-Stable Semantics

We now present our algorithm for semi-stable semantics by re-using concepts from the
algorithm for admissible semantics from Section 3. First we define the counterparts of
valid colorings and vcolorings for semi-stable semantics, namely valid pairs and vpairs.

Definition 4.1. Let (T ,X) be a TD of an AF F, t ∈ T , and (C,Γ) a pair with C being
a coloring for t and Γ being a set of colorings for t. We call (C,Γ) simply a pair for t and
define et(C,Γ) as the collection of tuples (S,D) that satisfy the following conditions.

(i) (S,D) ∈ et(C);
(ii) For all C′ ∈ Γ, there is an (E,U) ∈ et(C′) such that S∪D ⊂ E ∪U;

(iii) For all tuples (E,U) that are X>t -restricted admissible for F≥t s.t. S∪D ⊂ E ∪U,
there is a C′ ∈ Γ with (E,U) ∈ et(C′).

If et(C,Γ) �= /0, we call (C,Γ) a valid pair for t. We define e′t(C,Γ) = {S | (S,D)∈ et(C,Γ)}.

Given a pair (C,Γ) for a TD node t, the coloring C again represents admissible sets.
Recall that an admissible set S is a semi-stable extension if there is no admissible set S′

B. Bliem et al. / On Efficiently Enumerating Semi-Stable Extensions via Dynamic Programming114

whose range is a proper superset of the range of S. The colorings in Γ represent exactly
such sets S′. Thus, in our algorithm for semi-stable semantics, we will again compute all
colorings that represent admissible sets, but for each such coloring C we store colorings
in Γ that cause all solution candidates represented by C to be rejected.

Definition 4.2. Let (T ,X) be a TD of an AF F = (AF ,RF), and let Γ and Δ be sets of
colorings for nodes t ′ and t ′′, respectively, in T . We define (similar to Definition 3.6):

Γ−a = {C′ −a |C′ ∈ Γ,C′(a) �= attc}
Γ+attc a = {C′+attc a |C′ ∈ Γ, [C′] ��RF a,a ��RF [C′]}
Γ +̇in a = {C′ +̇in a |C′ ∈ Γ, [C′] ��RF a,a ��RF [C′],a ��RF a and [[C′]] = [[C′ +̇in a]]}
Γ +̂out a = {C′ +̂out a |C′ ∈ Γ}
Γ �� Δ = {C′ �� C′′ |C′ ∈ Γ,C′′ ∈ Δ, [C′] = [C′′] and [[C′]] = [[C′′]]}
Definition 4.3. Let (T ,X) be a TD of an AF F and let t ∈ T be a node with t ′, t ′′ its
possible children. Depending on the node type of t, we define a vpair for t.

LEAF: Each (C,Γ) with C ∈ Ct and Γ = {C′ ∈ Ct | [C]∪ [[C]] ⊂ [C′]∪ [[C′]]} is a
vpair for t.

FORGET (Xt = Xt ′ \ {a} for some argument a): If (C′,Γ′) is a vpair for t ′ and
C′(a) �= attc, then (C′ −a,Γ′ −a) is a vpair for t.

INSERT (Xt = Xt ′ ∪ {a} for some argument a): If (C′,Γ′) is a vpair for t ′ and
C′ +̇in a is a vcoloring for t, then (C′ +̇in a,(Γ′ +attc a)∪ (Γ′ +̇in a)) is a vpair
for t; if moreover C′ +̂out a is a vcoloring for t, then (C′ +̂out a,({C′}+attc
a) ∪ ({C′} +̇in a) ∪ (Γ′ +attc a) ∪ (Γ′ +̇in a) ∪ (Γ′ +̂out a)) is a vpair for t;
(C′+attc a,(Γ′+attc a)∪ (Γ′ +̇in a)) is a vpair for t.

JOIN: If (C′,Γ′) is a vpair for t ′, (C′′,Γ′′) is a vpair for t ′′, [C′] = [C′′] and [[C′]] =
[[C′′]], then (C′ ��C′′,(Γ′ �� Γ′′)∪ ({C′} �� Γ′′)∪ (Γ′ �� {C′′})) is a vpair for t.

Example 4.4. Figure 3 illustrates the computation of the vpairs for the AF F and the TD
from Figure 1. For each row r, we store a set Γ of references to rows r′ from the same
table such that r′ represents admissible sets whose range is a proper superset of the range
of each admissible set represented by r. By following the EPTs, we obtain exactly one set,
namely {w}, which is in fact the only semi-stable extension.

For our correctness proof, we need another lemma and a proposition.

Lemma 4.5. Let (T ,X) be a TD of an AF F and t ∈ T . For each X>t -restricted
admissible tuple (S,D) for F≥t , there is a coloring C ∈ Ct s.t. (S,D) ∈ et(C).

Proposition 4.6. Let r be the root of a TD (T ,X) of an AF F = (AF ,RF). It holds that
e′r(ε, /0) = semi-stable(F).

Proof sketch. Recall that e′r(ε) = admissible(F) (see Proposition 3.5, Definitions 3.1
and 3.3). To show e′r(ε, /0)⊆ semi-stable(F), let (S,D) be an arbitrary tuple s.t. (S,D) ∈
er(ε, /0). By condition (i) from Definition 4.1, S is admissible for F≥r = F . Furthermore, by
(iii) and the fact that Γ = /0 we conclude that there is no admissible tuple (E,U) for F with
E ∪U being a proper superset of S∪D, i.e., S is a semi-stable extension of F . It remains to
show that e′r(ε, /0)⊇ semi-stable(F). Let S ∈ semi-stable(F) be an arbitrary semi-stable

B. Bliem et al. / On Efficiently Enumerating Semi-Stable Extensions via Dynamic Programming 115

r D P Γ
8:I (7:I),(7:III) (8:I)
8:II (7:IV)

t8

r D P Γ
7:I def(w) (6:VII) (7:IV)
7:II attc(w) (6:IV) (7:IV)
7:III out(w) (6:V) (7:I),(7:II),(7:IV)
7:IV in(w) (6:I)

t7

r D P Γ
6:I in(w),def(x) (3:I,5:I)
6:II attc(w),attc(x) (3:III,5:II) (6:I)
6:III out(w),attc(x) (3:IV,5:IV) (6:I),(6:II),(6:VI)
6:IV attc(w),out(x) (3:V,5:III) (6:I),(6:II),(6:VI)
6:V out(w),out(x) (3:VI,5:V) (6:i) | i �= V
6:VI def(w),attc(x) (3:VIII,5:II)
6:VII def(w),out(x) (3:VII,5:III) (6:I),(6:II),(6:VI)

t6

r D P Γ
3:I in(w),def(x) (2:I)
3:II def(w), in(x) (2:II,2:IV)
3:III attc(w),attc(x) (2:II) (3:i) | i ∈ {I, II,VII}
3:IV out(w),attc(x) (2:III) (3:i) | i �∈ {IV,VI}
3:V attc(w),out(x) (2:II) (3:i) | i �∈ {IV,V,VI}
3:VI out(w),out(x) (2:III) (3:i) | i �= VI
3:VII def(w),out(x) (2:IV) (3:VIII),(3:i) | I ≤ i ≤ III
3:VIII def(w),attc(x) (2:IV)

t3

r D P Γ
2:I in(w) (1:I)
2:II attc(w) (1:III) (2:I),(2:IV)
2:III out(w) (1:VI) (2:I),(2:II),(2:IV)
2:IV def(w) (1:II)

t2

r D P Γ
1:I in(w),def(y) ()
1:II def(w), in(y) ()
1:III attc(w),out(y) () (1:I),(1:II),(1:IV)
1:IV attc(w),attc(y) ()
1:V out(w),attc(y) () (1:I),(1:II),(1:IV)
1:VI out(w),out(y) () (1:i) | I ≤ i ≤ V

t1

r D P Γ
5:I in(w),def(x) (4:I)
5:II attc(w),attc(x) (4:III) (5:I)
5:III attc(w),out(x) (4:V) (5:I),(5:II)
5:IV out(w),attc(x) (4:VII) (5:I),(5:II)
5:V out(w),out(x) (4:IX) (5:i) | I ≤ i ≤ IV

t5

r D P Γ
4:I in(w),def(x),def(z) ()
4:II attc(w),attc(x),attc(z) ()
4:III attc(w),attc(x),out(z) () (4:I),(4:II)
4:IV attc(w),out(x),attc(z) () (4:I),(4:II),(4:X)
4:V attc(w),out(x),out(z) () (4:X),(4:i) | I ≤ i ≤ IV
4:VI out(w),attc(x),attc(z) () (4:I),(4:II),(4:X)
4:VII out(w),attc(x),out(z) () (4:X),(4:VI),(4:i) | I ≤ i ≤ III
4:VIII out(w),out(x),attc(z) () (4:I),(4:i) | i = 2 · k, i �= VIII
4:IX out(w),out(x),out(z) () (4:i) | i �= IX
4:X def(w), in(x),attc(z) ()

t4

Figure 3: DP computation of vpairs for F = (AF ,RF) w.r.t. T (see Figure 1).

extension of F with range S+RF
. We set D = S+RF

\S to get the arguments that require
defeating. It can be shown [14] that there exists a pair (C,Γ) such that (S,D) ∈ er(C,Γ).
Since the root node has an empty bag, C = ε , and furthermore, by condition (ii) from
Definition 4.1 and the fact that S∪D is maximal (w.r.t. ⊆) in F , Γ = /0 holds as well.

Finally, we state the main theorem of this section, which analgously to Theorem 3.9
can be proved by structural induction [14].

Theorem 4.7. Let (T ,X) be a TD of an AF F. For each pair (C,Γ) for a node t, it
holds that (C,Γ) is a valid pair for t if and only if (C,Γ) is a vpair for t.

Together with Proposition 4.6, this guarantees that we can compute semi-stable
extensions via vpairs. For the root r of a TD T of a framework F , we can compute vpairs
in a bottom-up manner along T and thus obtain valid pairs. For enumerating e′r(ε, /0) (i.e.,
semi-stable extensions of F≥r = F), we combine vpairs from all nodes of T .

Proposition 4.8. Let T be a TD of width w for an AF F of size n. The DP computation
for semi-stable extensions according to Definition 4.3 is feasible in FPT time, i.e., in time
f (w) ·nO(1), for some function f that depends only on w.

Proof sketch. For the induction base, let t be a LEAF node. There are up to O(4w) many
vcolorings and vpairs for t, which can be computed in time g(w) ·nO(1), for some function
g. For the induction step, let t be a FORGET, INSERT or JOIN node and k be the number

B. Bliem et al. / On Efficiently Enumerating Semi-Stable Extensions via Dynamic Programming116

���

�

��

��
���
���
���

����

� ������

	

�

�
�
�
��
��
�

��
������
	��������
������ ��!"#�$��%�
&%'��

Figure 4: Plot on grids, TW ≤ 5, P 0.9.

ASPARTIX CEGARTIX D-FLATˆ2

t[s] t/outs t[s] t/outs t[s] t/outs

TW 4, P 0.9 443.9 (100) 712(160) 232.9 (49)

TW 4, P 0.7 280 (40) 555.4 (90) 34.4 (0)

TW 4, P 0.5 17.3 (0) 127 (20) 2.1 (0)

TW 5, P 0.9 551.4 (90) 938.5(170) 358.2 (29)

TW 5, P 0.7 365.9 (60) 611.6(110) 174.2 (4)

TW 5, P 0.5 41.6 (0) 278.7 (50) 88.2 (0)

TW 6, P 0.9 705.1 (100) 1200(200) 1168.5 (190)
TW 6, P 0.7 394.1 (57) 640.2 (70) 1137.3 (176)
TW 6, P 0.5 31.1 (0) 200.9 (30) 1076.7 (157)

Table 1.: Tabular results on grids.

of children of t, and assume that the time required for computing the tables of the children
is gi(w) · nO(1), for 1 ≤ i ≤ k and some function gi. There are at most O(4w) many
vcolorings for t, and there can be at most O(4w ·24w

) vpairs, which can be computed in
time g(w) ·nO(1) ·Πk

i=1gi(w), for some function g, as described in in Definition 4.3. Since
we may assume that T has size O(n), the claim holds.

Our algorithm for semi-stable semantics can be easily turned into an algorithm for
preferred semantics (as an alternative to [11]) by simplifying Definitions 4.1 and 4.3.

5. Preliminary Evaluation

We implemented the algorithm of Section 4 as an ASP encoding for the D-FLATˆ2
system1. This is an extended version of the D-FLAT system [1] and capable of efficiently
solving problems from the second level of the polynomial hierarchy if the treewidth is
small. We compared D-FLATˆ2 1.0.3 with CEGARTIX 0.4 [10] and ASPARTIX [13].
D-FLATˆ2 internally uses ASP systems Gringo 4.5.4 and Clasp 3.1.4; we also used these
versions for ASPARTIX. DYNPARTIX [3] cannot compute semi-stable extensions yet.

DP on TDs makes sense on instances with small treewidth, but usually yields poor
performance if the treewidth is very large. For instances of the International Competition
on Computational Models of Argumentation (ICCMA), we observed widths between
60 and 200, which is too much for our system. Hence we used randomly generated
instances obtained from grids: Vertices are arranged on an n×m matrix, and edges connect
horizontally, vertically and diagonally neighboring vertices with a certain probability (P).

We considered the problem of enumerating semi-stable extensions and compared
the systems on instances with ≤ 70 nodes and treewidth (TW) ≥ 4; the observed widths
of the TDs are ≤ 11. Each D-FLATˆ2 instance was run ten times with different TDs,
and every run was limited to twenty minutes and three GB of memory. Figure 4 shows
a cactus plot, and Table 1 lists running times in seconds and the number of timeouts.
D-FLATˆ2 exhibited the best performance, while CEGARTIX and ASPARTIX often time
out, especially on larger instances. On the other hand, the performance of D-FLATˆ2
becomes worse with increasing treewidth, thus reflecting our runtime estimation from
Proposition 4.8. For detailed results, we refer to [14].

1The system [2] is open source and available at https://github.com/hmarkus/dflat-2

B. Bliem et al. / On Efficiently Enumerating Semi-Stable Extensions via Dynamic Programming 117

https://github.com/hmarkus/dflat-2

6. Conclusion

We presented a new algorithm for computing semi-stable semantics using dynamic pro-
gramming on tree decompositions that runs in linear time on AFs of bounded treewidth.
For this purpose, we extended the concept of restricted-admissible sets [11]. Our experi-
mental results indicate performance advantages over existing systems in case of bounded
treewidth. It should be noted that such DP algorithms should not be seen as general solvers
that outperform standard techniques on average. Instead, DP algorithms qualify as an
alternative approach when instances are structurally rather “close” to trees.

Acknowledgements This research has been supported by the Austrian Science Fund
(FWF) through projects Y698, P25607, I1102 and I2854.

References

[1] M. Abseher, B. Bliem, G. Charwat, F. Dusberger, M. Hecher, and S. Woltran. D-FLAT: Progress report.
Technical Report DBAI-TR-2014-86, TU Wien, 2014.

[2] B. Bliem, G. Charwat, M. Hecher, and S. Woltran. D-FLATˆ2: Subset minimization in dynamic program-
ming on tree decompositions made easy. In ASPOCP, 2015.

[3] G. Charwat and W. Dvořák. dynPARTIX 2.0 - Dynamic programming argumentation reasoning tool. In
COMMA, volume 245 of FAIA, pages 507–508. IOS Press, 2012.

[4] R. G. Downey and M. R. Fellows. Parameterized Complexity. Monographs in Computer Science.
Springer, 1999.

[5] P. M. Dung. On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic
programming and n-person games. Artif. Intell., 77(2):321–357, 1995.

[6] P. E. Dunne. Computational properties of argument systems satisfying graph-theoretic constraints. Artif.
Intell., 171(10-15):701–729, 2007.

[7] P. E. Dunne and T. J. M. Bench-Capon. Coherence in finite argument systems. Artif. Intell., 141(1/2):187–
203, 2002.

[8] W. Dvorák, S. Ordyniak, and S. Szeider. Augmenting tractable fragments of abstract argumentation. Artif.
Intell., 186:157–173, 2012.

[9] W. Dvořák, S. Szeider, and S. Woltran. Abstract argumentation via monadic second order logic. In SUM,
volume 7520 of LNCS, pages 85–98. Springer, 2012.

[10] W. Dvořák, M. Järvisalo, J. P. Wallner, and S. Woltran. Complexity-sensitive decision procedures for
abstract argumentation. Artif. Intell., 206:53 – 78, 2014.

[11] W. Dvořák, R. Pichler, and S. Woltran. Towards fixed-parameter tractable algorithms for abstract
argumentation. Artif. Intell., 186:1–37, 2012.

[12] W. Dvořák and S. Woltran. Complexity of semi-stable and stage semantics in argumentation frameworks.
Inf. Process. Lett., 110:425–430, 2010.

[13] U. Egly, S. A. Gaggl, and S. Woltran. Answer-set programming encodings for argumentation frameworks.
Argument and Computation, 1(2):147–177, 2010.

[14] M. Hecher. Optimizing Second-Level Dynamic Programming Algorithms; The D-FLATˆ2 System:
Encodings and Experimental Evaluation. Master’s thesis, Vienna University of Technology, 2015.

[15] E. J. Kim, S. Ordyniak, and S. Szeider. Algorithms and complexity results for persuasive argumentation.
Artif. Intell., 175(9-10):1722–1736, 2011.

[16] T. Kloks. Treewidth: Computations and Approximations, volume 842 of LNCS. Springer, 1994.
[17] R. Niedermeier. Invitation to Fixed-Parameter Algorithms. OUP, 2006.
[18] N. Robertson and P. D. Seymour. Graph minors. III. Planar tree-width. J. Comb. Theory, Ser. B,

36(1):49–64, 1984.

B. Bliem et al. / On Efficiently Enumerating Semi-Stable Extensions via Dynamic Programming118

