
Tackling the Winograd Schema Challenge
Through Machine Logical Inferences

Nicos ISAAK a,1, Loizos MICHAEL a

a Open University of Cyprus

Abstract. Levesque has argued that the problem of resolving difficult pronouns
in a carefully chosen set of twin sentences, which he refers to as the Winograd
Schema Challenge (WSC), could serve as a conceptually and practically appealing
alternative to the well-known Turing Test. As he said, probably anything that an-
swers correctly a series of these questions is thinking in the full-bodied sense we
usually reserve for people. In this paper we examine the task of resolving cases of
definite pronouns. Specifically, we examine those for which traditional linguistic
constraints on co-reference as well as commonly-used resolution heuristics are not
useful, or the procedure they follow is very similar to a statistical approach, without
invoking common logic like humans do.

Keywords. Winograd Schema Challenge, WSC, Machine Learning, Knowledge
and Reasoning, NLP

1. Introduction

One of the most important challenges in computer science is the understanding of how
systems that acquire and manipulate commonsense knowledge can be created [1]. With
the creation of cognitive systems that are based on machine learning, humanity aims for
systems that will replace or substitute basic human abilities, so that humans can relate
and interact with them. Past experimental work, that was based on unaxiomatized knowl-
edge acquisition from text, was promising for extracting knowledge from text automat-
ically [2]. It aims to make systems possible to acquire knowledge on a large scale by
learning, and then use it robustly for reasoning. It is widely believed that logical infer-
ences are necessary in order to build natural language representations, as well to reason
about information encoded in representations. In this work, we present a technique that
focuses on commonsense knowledge which can be retrieved and learned via a supervised
learning approach, called auto-didactic [3]. It includes, among others, the acquisition
and the extraction of general inference rules that could help us to solve different RTE
problems, like the WSC problem.

1Corresponding Author: Nicos Isaak, Open University of Cyprus, PO Box 12794, 2252, Latsia, Cyprus;
E-mail: nicos.isaak@st.ouc.ac.cy

STAIRS 2016
D. Pearce and H.S. Pinto (Eds.)
© 2016 The authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/978-1-61499-682-8-75

75

2. The Winograd Schema Challenge (WSC)

The WSC can be seen as a new type of Turing Test. Rather than basing the test on the
sort of short free-form conversation suggested by the Turing Test, a machine should be
able to demonstrate that it is thinking without having to pretend to be somebody [4]. This
shift of interest might have happened because there are systems that have been developed
to deceive, and this is not a demonstration of an intelligent behavior [5,6].

The WSC consists of sentence pairs (twin sentences), and the objective is to resolve
a definite pronoun to one of its two co-referents, in each sentence. The co-referents be-
long to the same gender, and both are either singular or plural. This property makes the
resolution harder because the pronoun can not be resolved just by considering the gender
and its number in order to match it with each of the present entities. Additionally, the
sentence also contains a special word, which when replaced by another word, the answer
also changes. In some WSC works the pronoun is given (e.g., [7]), and in others it has to
be resolved through a question (like in this work).

The following WSC sentence pair illustrates how difficult the problem can be.
(1). The cat caught the mouse because it was clever. (2). The cat caught the mouse be-
cause it was careless. Humans through commonsense ability can resolve the pronoun (it
-> cat), but co-reference and statistical resolvers do not have this ability.

The motive behind the WSC is to simulate human-like reasoning in machines in
order to test the machines ability to answer commonsense questions regarding sentence
comprehension. A machine presents that kind of behavior when it reaches a conclu-
sion from a situation like humans do. The ultimate goal is to build machines that au-
tonomously acquire relevant background knowledge and use it afterwards to solve differ-
ent kind of problems [8]. For learning to be meaningful to solve problems like the WSC,
machines need to be able to deal with missing information and employ new learning
techniques to act as expert assistants able to collaborate with humans. This challenge is
of great significance and that became particularly apparent by the various competitions
that have been announced, like the Nuance Communications annual competition, starting
this summer.

2.1. Previous Work on the WSC

Rahman and Ng’s system [7] tries to find the most probable pronoun candidate, through
a number of lexicalized statistical techniques. Through a Ranking based approach (SVM)
it combines the features derived from different knowledge resources (Web Queries,
Framenet, OpinionFinder, etc.). Although this technique achieves a high score of predic-
tion (73,05%), in the case of sentences that could be equally alike, the system fails [5].
Contrariwise, our system overcomes such problems due to its ability to acquire common-
sense knowledge similar to the one employed by humans [9,10].

There is another work [11] that uses an Integer Linear Programming approach. It
acquires statistics in an unsupervised way from multiple knowledge resources (Gigaword
corpus, Wikipedia Wikifier, Web Queries and polarity information), through the training
of a co-reference model by learning a pairwise mention scoring function. It separates
the sentences into three types and tries to solve the first two (from the previous work’s
dataset). Although it achieves a high score of prediction (76%), the system fails to answer
27% of sentences that belong to the third type.

N. Isaak and L. Michael / Tackling the Winograd Schema Challenge76

The WSC dataset that was used in the presented work, was also used in another
work [12]. However, in that work, only the 34% of the dataset could be tested. Contrary
to our system, it rejects a large amount of sentences and fails to resolve the pronouns that
refer to person names. It consists of four answering modules which use world knowledge
with an aggregation mechanism (ConceptNet, Web Queries, Narrative chains, sentiment
analysis) and achieves a score of 73%.

Another technique that is based on Answer Set Programming (ASP) [5,13] tries
to retrieve the background knowledge directly from Google through fixed queries (e.g.,
“.*not.*lift.*because.*weak.*”), forcing it to return specific sentences that are semanti-
cally and structurally similar to the given WSC sentence. In contrast to our system, which
can test any WSC sentence, the ASP based technique rejects a large amount of WSC
sentences. It can only test two types of WSC sentences, causal and direct causal (38% of
the WSC dataset), and correctly resolves the 70%.

Our work differs from previous work mainly in three aspects. (1.) It tries to solve
the WSC problem through logical inferences similar to that employed by humans. (2.)
It uses only one source for knowledge acquisition (the Wikipedia). (3.) It does not use
any traditionally Web Queries for knowledge acquisition, but an upgrade off-line ver-
sion of the Websense Engine [9,10]. Below we present the Websense Engine’s structure,
followed by our methodology on the WSC problem.

3. The Websense Engine

The Websense engine can output logical inferences, so that we can relate and interact
with it. It is able to respond to user queries provided in natural language text, with infer-
ences that are implied by the given queries according to the collected human knowledge
(see Table 1). It has been developed in the strong sense that even an individual piece of
knowledge might not be stated explicitly in a single Web page, but be implicitly encoded
across the Web. Our goal was to use the Websense engine’s Logical inference feature in
order to solve the WSC problem.

Table 1. User interaction with the Websense engine
Query: Users pay with something.

Scene Constructor transformation: users(t1) ∧ something(t4) ∧ pay(t1, t4)

Logical Inferences: money(t4)
Response: users pay money.

3.1. Websense Engine Structure

The Websense engine works in two modes. In the first mode it can learn anything from
the Web related to a single word. This results from a component called the Crawler
which locates the best results that are consisted in HTML format. Then, it downloads
them and removes the HTML tags. Afterwards, the clean-pages are being split into sen-
tences, through a component called the Splitter, and parsed through the Stanford Parser
[14]. Stanford typed dependencies were designed to provide a simple description of the
grammatical relationships in a sentence that can easily be understood and used by people
to extract textual relations [15]. Afterwards, each parsed sentence is being parsed again

N. Isaak and L. Michael / Tackling the Winograd Schema Challenge 77

through another component (the Scene Constructor), which produces first order seman-
tic scenes (see table 1). Next, the Scene Constructor’s scenes are being given as an input
to another component called the Learner [2], to produce the required knowledge we are
interested in. In the second mode, the Websense engine can accept any user query to re-
turn the commonsense conclusions through another component called the Reasoner [2].
The two-mode procedure is being controlled by a component called the Manager.

4. Our Approach-Methodology

For the purpose of this work, we modified and use an off-line version of the Websense
Engine (we call it the Wikisense) that acquires knowledge from a downloaded version of
the English Wikipedia. We did this for two reasons. Firstly, the web knowledge acquisi-
tion through the Crawler is very lengthy (e.g., for a 9 word sentence, the searching can
last from 30 minutes to 24 hours). Secondly, Wikipedia is being developed on the WWW,
is open source and free for anyone to write. For this reason the Wikipedia is indirectly
related with the Websense Engine development.

Let us take the following WSC example, which it will subsequently be referred to
as the catch example: {[WSC sentence: The cat caught the mouse because it was clever.]
[Question: Who is the clever?] [Possible pronoun targets: cat, mouse] [Correct pronoun
target: cat]}. Wikisense’s purpose is to take the input sentence, the question and the two
possible pronoun targets, to return the correct pronoun target.

4.1. Learning Framework for the WSC

We tested the Wikisense on the WSC through the learning for each word in a WSC
sentence, but we were unable to resolve pronouns. We started wondering how we could
train it to be a pronoun resolution expert. To strengthen its knowledge and reasoning
abilities, we focused on human’s knowledge and reasoning ability. When someone has
to figure out pronouns, he mainly focuses on sentence’s verbs, nouns and adjectives,
and subsequently through these relations tries to find the correct answer (these are very
important words [2]). However, in order to achieve that, we had to steer the Wikisense’s
components to work on the WSC problem.

Initially we made some changes to the Crawler. Because of the Crawler’s idleness
we created an off-line version for the English Wikipedia (we call it the Indexer). We
updated the Indexer to search through a combination of subjects (e.g., noun, verb, ad-
jective) instead to a single one. We added synonym capabilities to search and learn more
widely (e.g., instead of searching only for the word cat, we could also search for the
words moggy, kitty). Furthermore, we added pluralization capabilities and an extra verb
capability which is related to the verb’s root.

We limited the output of the Splitter to return only sentences that contain the words
we are interested in. We did this to drive the learning procedure to a specific domain
excluding generalities and likelihood of confusion and to reduce time complexity.

Also, we updated the Scene Constructor. The Scene Constructor takes as input the
typed dependencies that are produced from the Stanford Parser (see table 2) and returns
first order semantic scenes. For example, if we give as input the catch sentence depen-
dencies, through a pre-running semantic option (e.g., S_DobjNsubj) it returns the scene

N. Isaak and L. Michael / Tackling the Winograd Schema Challenge78

cat(t2) ∧ mouse(t5) ∧ catch(t2, t5), which tells us that a cat catches a
mouse.

Table 2. Stanford and Spacy Parser Output: For the Catch Sentence

Stanford: nsubj(caught-3, cat-2) dobj(caught-3, mouse-5)
Spacy: verb: catch catch_subject: cat, catch_object: mouse

This relation has been created because there is a direct connection between the enti-
ties that are being connected through dobj and nsubj dependencies, and through them we
can create subject-verb-object relations [15]. However, we had to create more semantic
rules like the above for using the Scene Constructor on the pronoun resolution. New re-
lations have been created through the study of the Stanford Parser’s typed dependencies
manual, and at the end the Scene Constructor ended with multiple useful, but time con-
suming relations. This is why we updated the parsing procedure to use it in combination
with a faster one. Stanford parser is a well tested parser which is used widely, but the
speed is not one of its advantages. We wanted to parse thousands of sentences to test our
system abilities and not to be restricted by the parser’s speed. For this reason, we are
using a new parser on the NLP field that is being called the Spacy (see table 2). Spacy
features a high performance parser which offers the fastest syntactic parsing in the world
(https://spacy.io). Hence, we updated the Scene Constructor to work also with Spacy.
Through Spacy, the Scene Constructor finds the sentence’s subjects and objects and tries
to create semantic scenes. Because of Spacy’s speed, and Sanford Parser’s legacy and
acceptance, we decided to use both parsers. We use the Stanford Parser to parse the WSC
sentence to locate the candidate pronoun targets positions in the sentence and to correlate
the question with the WSC sentence. If the Stanford Parser cannot give any useful output
then we also use the Spacy. Afterwards, we use only the Spacy to parse the Wikipedia’s
sentences that are being located by the Indexer.

Since the Wikisense’s procedure was controlled by the Manager, we strengthened
the Manager with the ability to guide it to the pronoun resolution. For better understand-
ing, we are showing the Manager’s controlling procedure through the next simplified
example.

4.2. A Snapshot of a Simplified Running Example

At first the Manager loads and parses the WSC sentence to produce the typed dependen-
cies. Manager also checks the question and in correlation with the two possible answers
that have to be located in the WSC sentence creates the Indexer’s searching keywords. If
at least one of the two possible answers is a proper name, the Chambers and Jurafsky’s
[16] narrative chains are used to replace them. In this way, similar issues faced by other
works (e.g., [12]) are avoided.

For the keyword creation, the Manager keeps only the verbs, nouns and adjec-
tives from the WSC sentence and the question. It splits the keyword procedure into two
parts (sentence and question) and produces the necessary Indexer’s keywords for the
Wikipedia searching. The objective is to have keywords that correlate the two candidate
pronoun targets between them and also with the question (e.g., see table 3). The first sen-
tence’s part keyword (e.g., mouse*cat/catch) is the only one that is created through
the two parsers and the Scene Constructor. If the two parsers are not able to return re-

N. Isaak and L. Michael / Tackling the Winograd Schema Challenge 79

sults, an alternative heuristic procedure is called which creates the keyword, using the
positions of the two candidate pronoun targets. If the first sentence’s part keyword can-
not be created, the current WSC sentence is abandoned. Similarly, if the two candidate
nouns cannot be located then the sentence is also abandoned (e.g., they might be stated
in the answer as mouse, feline instead of mouse, cat; we maximally eliminate these kind
of problems, using another heuristic approach).

If the WSC sentence is not abandoned, then the keyword of the first sentence’s
part can be directly used to output semantic scenes, to the knowledge needed to solve
the pronoun resolution (e.g., cat(t2) ∧ mouse(t5) ∧ catch(t2, t5)). All
semantic-like parsers extract only some of the semantic relations encoded in a given text
and for the other parts logic is needed. Hence, for the other keywords and for finding
the correct pronoun target we have to use the other Wikisense’s components. The other
keywords are being created as follows, in the following order (see table 3): (1). Between
verbs that are included in the first sentence’s part keyword and the verbs, adjectives,
nouns from the question’s part (e.g., 2Q). (2). Between the two candidate pronoun tar-
gets, and the verbs, adjectives, nouns from the question’s part (e.g., 3Q).

Table 3. Indexer’s Keyword Queries for the Catch Sentence

(1Q) cat*mouse/catch, (2Q) catch/clever, (3Qa) cat/clever, (3Qb)mouse/clever

After the keywords creation, the Manager calls the Indexer with the new keyword
(e.g., catch/clever), and waits until it returns the requested amount of sentences.
The default is one thousand Wikipedia’s sentences for each WSC sentence (with this
number our tests show useful results at a minimum time process). For each keyword
the Indexer tries to find the specified number of requested sentences through different
settings. It tries to find one thousand sentences that contains the searching words and
if that amount of sentences cannot be found, it tries with other keyword settings (e.g.,
synonyms). If the specified number cannot be retrieved then the procedure continues with
the current retrieved number (>0).

When the Indexer finishes (it runs in correlation with the Splitter), the Manager
calls the other components that follow. All the sentences that contain keyword synonyms
or keyword verb roots are being replaced with the original keyword words. Then, the
Scene Constructor’s semantic scenes are being given as an input to the Learner, and if
important scenes are being included, then a knowledge file is being produced. This is
the file that will be used for drawing conclusions (reasoning) based on knowledge that
will show the pronoun target. If the knowledge file cannot be produced then the whole
procedure runs again with another Indexer’s searching keyword.

In our example, after adding the keyword’s cat*mouse/catch semantic scenes
and after the running of the keyword catch/clever, a useful knowledge file is being
produced (see table 4). If we carefully observe this knowledge file we can extract the
following meaning: Between the cat and the mouse, the clever cat is catching the mouse.

All variables in the head of each rule are assumed to be universally quantified over
that rule. Furthermore, the variables that appear in a line of the body but not in the head
must be explicitly quantified and their scope is the formula appearing in that line. This
type of rule encodes a linear threshold, where a sufficient number of formulas in the body
of the rule need to hold for the head to also hold (threshold=1.0) [9]. Also, the learning

N. Isaak and L. Michael / Tackling the Winograd Schema Challenge80

Table 4. Learner’s Knowledge. The first rule means that a cat catches a mouse. The second rule that a mouse
is being caught by somebody else, and the third rule that the clever catches somebody.

Rule 1:
cat(x)

∃v : catch(x, v) weight(1.03031)

∃v : catch(x, v) ∧ mouse(v) weight(1.000000)

Rule 2:
mouse(x)

∃v : catch(v, x) weight(1.110000)

Rule 3:
clever(x)

∃v : catch(x, v) weight(1.044202)

algorithm which is being employed provides a priori guarantees on the appropriateness
of the responses [8].

For the final pronoun resolution, the Manager extracts the answer through the Rea-
soner. The Reasoner draws inferences by applying a relational knowledge base on a set
of input predicates. After the Websense modification, the Reasoner automatically takes
a query from the Manager with a preformed scene. The Manager indirectly asks if the
Reasoner can conclude anything else for this query. It asks if it knows anything more
for the first sentence’s part keyword semantic scene. For instance, in our catch example
we are taking as an inference that the cat is also clever (for the query: cat(v1) ∧
mouse(v2) ∧ catch(v1, v2) the Reasoner conclusion is the: clever(v1)).

Generally the Manager overviews the learning procedure’s returned amount of
knowledge. If the problem is solved, it returns the pronoun target. Otherwise, it
keeps into the knowledge base only the first sentence’s part semantic scenes (e.g.,
mouse*cat/catch) and proceeds to the next Indexer’s call. If a keyword is not avail-
able, the Manager returns a message that the pronoun cannot be resolved. Below, we
explain in detail the Wikisense’s knowledge acquisition process.

4.3. Detailed Wikisense Process for knowledge Acquisition

We wanted to learn which one was the best keyword sequence that could return the
best knowledge results, and also to build a principle mechanism to combine in a single
Wikisense’s inference, multiple Wikisense’s inferences.

Other works in the past used different hybrid approaches to combine shallow anal-
ysis (through synonyms) with both theorem to solve different RTE problems [17]. They
mentioned that the use of synonyms helped the learning procedure. Hence, the usage
of the synonyms as a direct keyword plugin could also help the Wikisense. Continuing
from the synonyms we also decided to use the antonyms because both synonyms and
antonyms share common principles.

To discover and use the best keyword sequence or the best keyword setting we used
the WSC sentences from Rahmans and Ng’s work [7]. We call these sentences support-
ing and not training because we used them only as a guide to the Wikisense’s learning
procedure. For this reason, we built another component (The Questionnaire) to transform
the Rahmans and Ng’s WSC sentences to include also a question for each WSC sentence.
Next, we updated the Reasoner to return the value confidence for each WSC sentence’s
running keyword. This is an integer value that shows the Reasoner confidence for the
returning results. For instance, we need to know how many rules in the knowledge file
can specify that the subject of the word catch is also clever (see table 4). Particularly,

N. Isaak and L. Michael / Tackling the Winograd Schema Challenge 81

we were calling the Wikisense forcing it to return a feature vector, that we were going to
examine in a later step. The vector consists of fourteen values which show verb relations,
verb-synonym relations, verb-antonym relations, and noun relations. Below, we explain
how the Manager creates the feature vector for totally 1697 supporting WSC sentences.

(1.) Through the two parsers, the Manager determines if a negation is addressed
to any of the two possible pronoun targets (labeled as negF). Negation is important
because it changes the rules direction [11,7]. (2.) Also, it determines whether the two
nouns appear in reverse order, contrary to the way that they appear in the WSC an-
swers (labeled as revF). (3.) It runs the first keyword that connects the sentence with the
question (e.g., catch/clever) and stores the value confidence without synonyms or
antonyms enabled (labeled as Vx-Vy). Vx is the confidence for the first candidate noun
and Vy is the confidence for the second candidate noun (e.g., Vx shows that the subject
of the verb catch is also clever). (4.) The Manager also runs the same keyword as pre-
viously (e.g., catch/clever) and stores the value confidence directly through syn-
onyms (labeled as Sx-Sy). For instance, if catchSyn1, catchSyn2 are the synonyms of
the word “catch” and cleverSyn1, cleverSyn2 are the synonyms of the word “clever”,
the Manager calls the Indexer for all the correlations between the two word synonyms
(e.g., catch/cleverSyn1, catch/cleverSyn2, etc.). For each correlation it de-
termines the value confidence of the first noun (Sx) and of the second noun (Sy) and
adds them to a score counter (Sxcounter for noun1, Sycounter for noun2). At the end it
exports the counters to the feature vector (e.g., Sy shows that the object of the verb is
also clever). (5.) The same process is repeated for the antonyms of the same keyword
and the resulting value confidence is stored (labeled as Ax-Ay). (6.) It runs the noun key-
words (e.g., cat/clever, mouse/clever) and stores the value confidence without
synonyms and antonyms enabled (labeled as Nx-Ny). Nx shows that the first noun (e.g.,
cat) is clever and the Ny that the second noun (e.g., mouse) is clever. (7.) Through a
heuristic approach, the Manager determines also the times that the first noun (e.g., cat)
appears right before (labeled as NBx) or right after (labeled as NBy) the question’s part
word (e.g., clever). After this, it applies semantic scenes in the knowledge file without
the usage of the Spacy (in case that the Spacy might not returned useful results). Also,
it determines the times that the first keyword’s verb word (e.g., catch) appears before
(labeled as VBx) or after (labeled as VBy) the question’s word (e.g., clever).

Hence, for each WSC we are storing the values: NegF-RevF-Vx-Vy-Sx-Sy-Ax-Ay-Nx-
Ny-NBx-Nby-VBx-VBy. For instance, Rahmans and Ng’s WSC catch sentence (feature
vector) is False-False-0-0-1-0-0-0-0-0-1-0-9-2.

The feature vector procedure ran for almost a week. We found that one of the best
patterns that had to to be followed was the one with the same sequence of steps, men-
tioned above (see Algorithm 1). In each step if the Manager can resolve the pronoun, it
returns the correct pronoun target and proceeds to the next WSC sentence, otherwise it
tries to resolve the pronoun through the next step. If no other step is available, it returns
a message saying that the current pronoun cannot be resolved and proceeds to the next
WSC sentence. We observed that more emphasis is given to the verb-like keyword re-
lations (e.g., catch/clever) than to the noun-keyword relations. If we reverse these
steps then the Wiksense’s success on the pronoun resolution decreases. It also decreases
if we reverse the steps, from bottom to top, showing our parsers usefulness (e.g., Vx-Vy
step is more important than the last two steps). The conf=30% shows that if the Wikisense
inference decision for e,g., the Vx is stronger than Vy by at least 30% then the pronoun

N. Isaak and L. Michael / Tackling the Winograd Schema Challenge82

Algorithm 1. Wikisense’s procedure for each WSC sentence
1: function RESOLVEPRONOUN (sent, negF, revF, question, answers)
2: conf=30%, pairs=[(Vx, Vy), (Sx, Sy), (Ax, Ay), (Nx, Ny), (NBx, NBy), (VBx, VBy)]
3: for pair in pairs do

4: correctIndex=CALCVALUES (pair, negF, revF, conf, sent, question)
5: if correctIndex!=-1 then return answers [correctIndex]
6: return -1
7: function CALCVALUES (pair, negF, revF, conf, sent, question)
8: x, y= RUNANDESTIMATE (pair, sent, question)
9: if negF==True then x,y=y, x

10: if revF==True then x,y=y, x
11: if x > y and (x-y)/x >= conf then

12: return 0
13: else if y > x and (y-x)/y >= conf then

14: return 1
15: else

16: return -1

target is the subject of the verb, and if the opposite exists, then the pronoun target is the
object of the verb. We determined this percentage from our testings with the supporting
data and we observed that it is similar to human decisions. If we are between two options
and cannot easily determine which one is the pronoun target then we return the option
that, according to our experiences, has more weight.

5. Experimental Settings and Results

In this section we present results that were obtained by applying the methodology de-
scribed in this paper. The WSC sentences we use in our testing experiments derived from
a WSC Library which is intended to be used by participants while developing their sys-
tems for the Nuance competition (http://www.cs.nyu.edu/faculty/davise/papers/OldSchemas.xml).
The Library consists of 286 WSC sentences and we do not exploit the fact that each
sentence has a twin sentence.

The Wikisense processed 286 sentences and for each sentence it was asked to de-
termine the correct pronoun target, always replying with a noun name, or with the an-
swers don’t know or unaccomplished. Don’t know means that the Wikisense could not
determine the correct pronoun target, while unaccomplished that it could not proceed
to knowledge acquisition because the first sentence’s part keyword could not be created
(see 1Q on table 3).

5.1. Baselines-Results

Our baseline is the Stanford Core NLP [18]. As shown in table 5, it correctly resolves
107 pronouns, incorrectly resolves 112 of them, and does not make any decision on the
remaining 67.

Our System correctly resolves 170 pronouns, incorrectly resolves 89 and from the
remaining 27, it returns the don’t know answer for 12 sentences and the unaccomplished

N. Isaak and L. Michael / Tackling the Winograd Schema Challenge 83

Table 5. Results of the Stanford Core NLP, and the Wikisense (where _A shows the Adjusted scores)

Correct C_A Wrong W_A Unresolved U_A

Stanford Core NLP 107 140.5 112 145.5 67 0

Wikisense 170 183.5 89 102.5 27 0

answer for 15 sentences (see table 5). Hence, the whole procedure ran for 259 WSC
sentences and our system achieved 65.6% score of prediction.

Since our system accepts as input the WSC sentence with the two possible pronoun
targets, in order to ensure a fair comparison between the two systems, we have to ensure
that the Stanford Core NLP will also resolve the correct pronoun target to one of the two
candidate nouns. We can see this through the “Adjusted Score” (_A) columns of the table
5.

Comparison of the Adjusted scores (_A) shows that our system outperforms the
Stanford Core NLP by 43 points. This suggests that our system is very useful on the
co-reference resolution. It also shows that we can improve the Parser’s usage on the
co-reference resolution. A good pair of sentences that shows our system’s usefulness is
the following (in contrary to our system, Stanford Core NLP wrongly returns in both
sentences the table): (1) The table won’t fit through the doorway because it is too wide.
question: What is too wide? answers: The table, The doorway (2) The table won’t fit
through the doorway because it is too narrow. question: What is too narrow? answers:
The table, The doorway

5.2. Support Vector Machine Method

In order to show our system’s usefulness on the WSC, we also tested the WSC library
through a Support Vector Machine (SVM), that we created. As in Rahman and Ng [7], we
used a ratio of 70-30 (70% of WSC sentences used for training and 30% used for testing).
We randomly selected the 70-30 ratio from the WSC library and ran the procedure 100
times. The median score of prediction was 47% (minimum 32% and maximum 59%),
showing that our initial Wikisense strategy yields better results.

5.3. Observations-Error Analysis

The Wikisense failed to answer 27 WSC sentences (9%). The Manager failed to create
the first sentence’s part keyword in 15 sentences and also failed to locate an important
word from the question to create the necessary Indexer’s searching keywords in another 4
WSC sentences. Moreover, it did not manage to find big amount of Wikipedia sentences
or rich in content sentences for 8 WSC sentences.

WSC sentences were incorrectly answered because of the similar background
knowledge that was found by the Indexer. For instance, for the twin sentences 30) The
firemen arrived after the police because they were coming from so far away 31) The fire-
men arrived before the police because they were coming from so far away, through the
question Who came from far away? the system returned the same pronoun target (the
firemen). We can see that the differences between the two sentences are negligible.

There are WSC sentences that are also very confusing, and this is another reason
why our system incorrectly answers some of them. The majority of our WSC are Hard

N. Isaak and L. Michael / Tackling the Winograd Schema Challenge84

WSC sentences and this is not an easy task [19]. We can see this from other works that
test their systems on corpus subsets [12,5,13].

Also, ambiguity is ubiquitous in natural language and poses a special problem for
text processing, where longer sentences tend to increase grammatical ambiguity. Further-
more, we have seen the Wikisense taking the same decision for some twin sentences and
returning the same pronoun target. By removing these twin sentences the score rises to
70% (131 correct, 56 wrong). Hence, we can easily build on this system and enhance its
decision mechanism.

6. Conclusions – Future Work

WSC suggests that emphasis on commonsense knowledge might benefit different NLP
tasks. Designing and implementing such cognitive systems would arguably be a concrete
step forward in endowing machines with the ability to understand text. In this work, we
have demonstrated the usability of a technique, that can be applied on the WSC, through
the acquisition of commonsense knowledge from the English Wikipedia. The results are
very encouraging. Our study provides an insight on how learning and reasoning through
knowledge acquisition can fruitfully interact for pronoun resolution. There is still room
for improvement, but our approach works well with respect to the WSC.

Researchers can build on this work, to use it in various problems, or to enhance
its capabilities. Future possible tasks for performance improvement may include the
followings: (1.) Manager improvements through a better keyword generator. This can
lead to the acquisition of richer knowledge and benefits the system’s commonsense abil-
ity. Recall that our score rises to 70% if we remove the twin sentences that have the
same Wikisense’s inferences. We consider this property advantageous because it pro-
vides the ability to use another keyword setting or generator which will easily help to the
Wikisense’s improvement. (2.) Maybe Wikipedia’s substitution with another knowledge
resource can help to the acquisition of richer knowledge. There are critics that tried to
downplay Wikipedia’s role as a source of valid information and have often pointed to
the Encyclopedia Britannica as an example of an accurate reference. (3.) Rahmans and
Ng’s supporting data questions were created automatically by us using a simple heuristic
approach which might not be appropriate. Hence, with better supporting data or with a
better heuristic approach we might achieve better results. (4.) Currently, we are pursu-
ing a new objective: testing the Wikipedia’s data richness by detecting more sentences.
The Wikisense uses different sets of Wikipedia’s sentences [10,100...10000] and for each
set calls the other components 100 times. Each time it uses randomly selected sentences
and one Wikipedia sentence can be used multiple times. Initial results show further im-
provement, that can enhance the Wikisense’ capabilities through the acquisition of more
Wikipedia’s sentences.

Years ago, previous works demonstrated rather convincingly, that in order to do
pronoun resolution one had to be able to do everything else and also that once everything
else is done pronoun resolution comes free and automatically [20]. We hope that our
work will positively contribute to this task, and through other future extensions and the
cooperation with other researchers, maybe one day pronoun resolution will come free
and automatically.

N. Isaak and L. Michael / Tackling the Winograd Schema Challenge 85

References

[1] Leslie G. Valiant. Knowledge Infusion. In Proceedings of the 21st National Conference on Artificial
Intelligence - Volume 2, AAAI’06, pages 1546–1551. AAAI Press, 2006.

[2] Loizos Michael and Leslie G Valiant. A First Experimental Demonstration of Massive Knowledge In-
fusion. In Principles of Knowledge Representation and Reasoning: Proceedings of the Eleventh Inter-
national Conference, KR 2008, Sydney, Australia, September 16-19, 2008, pages 378–389. AAAI Press,
2008.

[3] Loizos Michael. Partial observability and learnability. Artif. Intell., 174(11):639–669, 2010.
[4] Hector J. Levesque. The Winograd Schema Challenge. In AAAI Spring Symposium: Logical Formaliza-

tions of Commonsense Reasoning, number SS-11-06. American Association for Artificial Intelligence,
2011.

[5] Arpit Sharma. Solving Winograd Schema Challenge: Using Semantic Parsing, Automatic Knowledge
Acquisition and Logical Reasoning. Master’s thesis, Arizona State University, 2014.

[6] Ackerman Evan. Can Winograd Schemas Replace Turing Test for Defining Human-level AI? IEEE
Spectrum, 2014.

[7] Altaf Rahman and Vincent Ng. Resolving Complex Cases of Definite Pronouns: The Winograd Schema
Challenge. In Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language
Processing and Computational Natural Language Learning, EMNLP-CoNLL ’12, pages 777–789,
Stroudsburg, PA, USA, 2012. Association for Computational Linguistics.

[8] Loizos Michael. Reading Between the Lines. In Proceedings of the 21st International Jont Confer-
ence on Artifical Intelligence, IJCAI’09, pages 1525–1530, San Francisco, CA, USA, 2009. Morgan
Kaufmann Publishers Inc.

[9] Loizos Michael. Machines with Websense. In Proc. of 11th International Symposium on Logical For-
malizations of Commonsense Reasoning (Commonsense 13), 2013.

[10] Nicos Isaak. A First Attempt of the Creation Of a Commonsense Conclusion Web Engine (In Greek).
Master’s thesis, Open University of Cyprus, 2011.

[11] Haoruo Peng, Daniel Khashabi, and Dan Roth. Solving hard coreference problems. Urbana, 51:61801.
[12] Tejas Ulhas Budukh. An intelligent co-reference resolver for winograd schema sentences containing

resolved semantic entities, 2013.
[13] Arpit Sharma, Nguyen H Vo, Somak Aditya, and Chitta Baral. Towards addressing the winograd schema

challenge-building and using a semantic parser and a knowledge hunting module. In Proceedings of the
Twenty-Fourth International Joint Conference on Artificial Intelligence, IJCAI, pages 25–31, 2015.

[14] Marie-Catherine De Marneffe, Bill MacCartney, Christopher D Manning, et al. Generating typed de-
pendency parses from phrase structure parses. In Proceedings of LREC, volume 6, pages 449–454,
2006.

[15] Marie-Catherine De Marneffe and Christopher D Manning. The Stanford typed dependencies repre-
sentation. In Proceedings of COLING 08 Workshop on Cross- Framework and Cross-Domain Parser
Evaluation, pages 1–8. Association for Computational Linguistics, 2008.

[16] Nathanael Chambers and Daniel Jurafsky. Unsupervised learning of narrative event chains. In ACL,
volume 94305, pages 789–797. Citeseer, 2008.

[17] Johan Bos and Katja Markert. Recognising Textual Entailment with Logical Inference. In HLT/EMNLP
2005, Human Language Technology Conference and Conference on Empirical Methods in Natural Lan-
guage Processing, Proceedings of the Conference, 6-8 October 2005, Vancouver, British Columbia,
Canada, pages 628–635. Association for Computational Linguistics, 2005.

[18] Christopher D. Manning, Mihai Surdeanu, John Bauer, Jenny Finkel, Steven J. Bethard, and David
McClosky. The Stanford CoreNLP natural language processing toolkit. In Proceedings of 52nd Annual
Meeting of the Association for Computational Linguistics: System Demonstrations, pages 55–60, 2014.

[19] David Bender. Establishing a human baseline for the winograd schema challenge. In MAICS, pages
39–45, 2015.

[20] Jerry R Hobbs. Resolving pronoun references. Lingua, 44(4):311–338, 1978.

N. Isaak and L. Michael / Tackling the Winograd Schema Challenge86

