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Abstract. Single-peakedness is one of the most important and well-known domain

restrictions on preferences. The computational study of single-peaked electorates

has largely been restricted to elections with tie-free votes, and recent work that stud-

ies the computational complexity of manipulative attacks for single-peaked elec-

tions for votes with ties has been restricted to nonstandard models of single-peaked

preferences for top orders. We study the computational complexity of manipula-

tion for votes with ties for the standard model of single-peaked preferences and

for single-plateaued preferences. We show that these models avoid the anomalous

complexity behavior exhibited by the other models. We also state a surprising result

on the relation between the societal axis and the complexity of manipulation for

single-peaked preferences.

Keywords. computational social choice, single-peaked preferences, votes with ties,

elections

1. Introduction

Elections are a general and widely used framework for preference aggregation in human

and artificial intelligence applications. An important negative result from social choice

theory, the Gibbard-Satterthwaite Theorem [26,35], states that every reasonable election

system is manipulable. However, even though every election system is manipulable, it

may be computationally infeasible to determine how to manipulate the outcome.

Bartholdi, Tovey, and Trick [2] introduced the computational study of the manipula-

tion problem and this began an exciting line of research that explores the computational

complexity of different manipulative attacks on elections (see, e.g., [17]).

The notion of single-peaked preferences introduced by Black [5] is the most impor-

tant restriction on preferences from political science and economics and is naturally an

important case to consider computationally. Single-peakedness models the preferences of

a collection of voters with respect to a given axis (a total ordering of the candidates). Each

voter in a single-peaked election has a single most-preferred candidate (peak) on the axis

and the farther candidates are to the left/right from her peak the less preferred they are.

Single-plateauedness extends this to model when each voter has multiple most-preferred

candidates that appear sequentially on the axis, but are otherwise single-peaked [6].
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This standard model of single-peaked preferences has many desirable social-choice

properties. When the voters in an election are single-peaked, the majority relation is

transitive [5] and there exist voting rules that are strategy-proof [33]. Single-peakedness

for total orders can also lower the complexity of many different election problems when

compared to the general case [19,7].

Most of the abovementioned research on the computational complexity of manipu-

lation of elections, both for the general case and for single-peaked electorates, has been

limited to the assumption that voters have tie-free votes. In many real-world scenarios

voters have votes with ties, and this is seen in the online repository PREFLIB [30] that

contains several different preference datasets that contain ties. There are also election

systems defined for votes with ties, e.g., the Kemeny rule and the Schulze rule [28,36].

Recent work considers the complexity of manipulation for top-order votes (votes

where all of the ties are between candidates ranked last) [34,31]. Fitzsimmons and

Hemaspaandra [24] considered the complexity of manipulation, control, and bribery

for more general votes with ties, and also the case of manipulation for a nonstandard

model of single-peakedness for top-order votes. Menon and Larson [32] later examined

the complexity of manipulation and bribery for an equivalent (for top orders) model of

single-peakedness.

Fitzsimmons and Hemaspaandra [24] use the model of possibly single-peaked pref-

erences from Lackner [29] where a preference profile of votes with ties is said to be

single-peaked with respect to an axis if the votes can be extended to tie-free votes that

are single-peaked with respect to the same axis. Menon and Larson [32] use a similar

model for top orders that they state is essentially the model of single-peaked preferences

with outside options [9]. Both Fitzsimmons and Hemaspaandra [24] and Menon and Lar-

son [32] find that these notions of single-peakedness exhibit anomalous computational

behavior where the complexity of manipulation can increase when compared with the

case of single-peaked total orders.

We are the first to study the computational complexity of manipulation for the stan-

dard model of single-peaked preferences for votes with ties, and for single-plateaued

preferences for votes with ties. In contrast to the recent related work using other models

of single-peakedness with ties, we find that the complexity of weighted manipulation for

m-candidate scoring rules and for m-candidate Copelandα elections for all 0 ≤ α < 1

does not increase when compared to the cases of single-peaked total orders, and that the

complexity of weighted manipulation does not increase with respect to the general case

of elimination veto elections. We also compare the social choice properties of these dif-

ferent models, and state a surprising result on the relation between the societal axis and

the complexity of manipulation for single-peaked preferences.

Due to space constraints, most of our proofs have been omitted and can be found in

the corresponding technical report of this work [25].

2. Preliminaries

An election consists of a finite set of candidates C and a finite collection of voters V .

We will sometimes refer to this collection of voters as a preference profile. An election

system E is a mapping from an election to a set of winners, which can be any subset of

the candidate set (the nonunique winner model, our standard model), or at most a single

candidate (the unique winner model).
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Each voter in an election has a corresponding vote (or preference order) over the

set of candidates. This is often assumed to be a total order, i.e., a strict ordering of the

candidates from most to least preferred. Formally, a total order is a complete, reflexive,

transitive, and antisymmetric binary relation. We use “>” to denote strict preference

between two candidates.

Similarly, a weak order is a total order without antisymmetry, so each voter can rank

candidates as tied (which we will sometimes refer to as indifference) as long as their ties

are transitive. We use “∼” to denote a tie between two candidates. A bottom order is a

weak order where all ties are between top-ranked candidates and a top order is a weak

order where all ties are between bottom-ranked candidates. Notice that a total order is

a weak order, a top order, and a bottom order, that a top order is a weak order, and that

a bottom order is a weak order. Throughout this paper we will sometimes refer to weak

orders as votes with ties.

For some of our results we consider weighted elections, where each voter has an

associated positive integral weight and a voter with weight w counts as w unweighted

voters all voting the same.

2.1. Election System Definitions

Our election systems include scoring rules, elimination veto, and Copelandα . We define

each below and the extensions we use to properly consider votes with ties.

Given an election with m candidates, a scoring rule assigns scores to the candidates

using its corresponding m-candidate scoring vector of the form α = 〈α1,α2, . . . ,αm〉
where α1 ≥α2 ≥ ·· · ≥αm and each αi ∈N. So, when the preferences of a voter are a total

order, the candidate ranked in position i receives a score of αi from that voter. Below we

present examples of scoring rules and their corresponding m-candidate scoring vector.

Plurality: with scoring vector 〈1,0, . . . ,0〉.
Veto: with scoring vector 〈1,1, . . . ,1,0〉.
Borda: with scoring vector 〈m−1,m− 2, . . . ,1,0〉.
Triviality: with scoring vector 〈0,0, . . . ,0〉.

To use a scoring rule to determine the outcome of an election containing votes with

ties we must extend the above definition of scoring rules. We use the definitions of

scoring-rule extensions for weak orders from our previous work [24], which generalize

the extensions introduced for top orders from Baumeister et al. [4] and from Narodytska

and Walsh [34] which in turn generalizes the extensions used by Emerson [13] for Borda.

Given a weak-order vote, we can write it as G1 > G2 > · · ·> Gr, where each Gi is a

set of tied candidates, (so in the case of a total order vote each Gi is a singleton). For each

Gi, let ki = ∑
i−1
j=1 ‖G j‖ be the number of candidates strictly preferred to the candidates

in Gi. We now state the definitions of each of the four extensions. In Example 1 we

present an example of how a given weak-order vote is scored using Borda and each of

the scoring-rule extensions.

Min: each candidate in Gi receives a score of αki+‖Gi‖.

Max: each candidate in Gi receives a score of αki+1.

Round down: each candidate in Gi receives a score of αm−r+i.

Average: each candidate in Gi receives a score of (∑
ki+‖Gi‖
j=ki+1 α j)/‖Gi‖.

For top orders the scoring-rule extensions min, round down, and average are the

same as round up, round down, and average used in the work by Menon and Larson [32].
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Example 1 Given the candidate set {a,b,c,d,e} and the weak order vote (a ∼ b > c ∼
d > e) we show the scores assigned to each candidate using Borda and each of our

extensions. We can write the vote as {a,b}> {c,d}> {e}, so G1 = {a,b}, G2 = {c,d},

and G3 = {e}, and k1 = 0, k2 = 2, and k3 = 4.

Recall that for total orders, the scoring vector for 5-candidate Borda is 〈4,3,2,1,0〉.
Borda using min: score(a) = score(b) = 3, score(c) = score(d) = 1, and score(e) = 0.

Borda using max: score(a) = score(b) = 4, score(c) = score(d) = 2, and score(e) = 0.

Borda using round down: score(a) = score(b) = 2, score(c) = score(d) = 1, and

score(e) = 0.

Borda using average: score(a) = score(b) = 3.5, score(c) = score(d) = 1.5, and

score(e) = 0.

For elimination veto for total orders, the veto scoring rule is used, the candidate with

the lowest score is eliminated, and the rule is repeated on the remaining votes restricted

to the remaining candidates until there is one candidate left [10]. We break ties lexico-

graphically, and for comparison with related work our results for elimination veto use

the unique winner model, and for votes with ties we use the min extension.

Pairwise election systems are one of the most natural cases for considering votes

with ties. Copelandα is an important and well-known election system that is defined

using pairwise comparisons between candidates. In a Copelandα election each candidate

receives one point for each pairwise majority election with each other candidate she wins

and α points for each tie (where α ∈ Q and 0 ≤ α ≤ 1). For votes with ties we follow

the obvious extension also used by Baumeister et al. [4] and Narodytska and Walsh [34].

For Copelandα elections it will sometimes be easier to refer to the induced majority

graph of an election. Given an election (C,V ) its induced majority graph is constructed

as follows. Each vertex in the induced majority graph corresponds to a candidate in C,

and for all candidates a,b ∈C if a > b by majority then there is an edge from a to b in the

induced majority graph. We also will refer to the weighted majority graph of an election,

where each edge from a to b in the induced majority graph is labeled with the difference

between the number of voters that state a > b and the number of voters that state b > a.

2.2. Election Problems

The computational study of the manipulation of elections was introduced by Bartholdi,

Tovey, and Trick [2], and Conitzer, Sandholm, and Lang [11] extended this to the case

for weighted voters and a coalition of manipulators. We define the constructive weighted

coalitional manipulation (CWCM) problem below.

Name: E -CWCM

Given: a set of candidates C, a collection of nonmanipulative voters S, a collection of

manipulative voters T , and a preferred candidate p ∈C.

Question: Does there exist a way to set the votes of T such that p is a winner of (C,S∪T )
under election system E ?

For the case of CWCM for each of our models of single-peaked preferences we

follow the model introduced by Walsh [37] where the societal axis is given as part of the

input to the problem and the manipulators must state votes that are single-peaked with

respect to this axis (for the corresponding model of single-peakedness). (See Section 3

for all of the definitions of single-peaked preferences that we use.)
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3. Models of Single-Peaked Preferences

We consider four important models of single-peaked preferences for votes with ties. For

the following definitions, for a given axis L (a total ordering of the candidates) and a

given preference order v, we say that v is strictly increasing (decreasing) along a segment

of L if each candidate is preferred to the candidate on its left (right) with respect to L. In

Figure 1 we present an example of each of the four models of single-peaked preferences,

and in Figure 2 we show how the four models relate to each other. We now give the

definition of the standard model of single-peakedness from Black [5].

Definition 1 Given a preference profile V of weak orders over a set of candidates C, V

is single-peaked with respect to a total ordering of the candidates L (an axis) if for each

voter v ∈V, L can be split into three segments X, Y , and Z (X and Z can each be empty)

such that Y contains only the most preferred candidate of v, v is strictly increasing along

X and v is strictly decreasing along Z.

Observe that for a preference profile of votes with ties to be single-peaked with

respect to an axis, each voter can have a tie between at most two candidates at each

position in her preference order since the candidates must each appear on separate sides

of her peak. Otherwise the preference order would not be strictly increasing/decreasing

along the given axis.

The model of single-plateaued preferences extends single-peakedness by allowing

voters to have multiple most preferred candidates (an indifference plateau) [6]. This is

defined by extending Definition 1 so that Y can contain multiple candidates.

Lackner [29] recently introduced another extension to single-peaked preferences,

which we refer to as “possibly single-peaked preferences” throughout this paper. A pref-

erence profile is possibly single-peaked with respect to a given axis if there exists an

extension of each preference order to a total order such that the new preference profile of

total orders is single-peaked. This can be stated without referring to extensions, for votes

with ties, in the following way.

Definition 2 Given a preference profile V of weak orders over a set of candidates C, V

is possibly single-peaked with respect to a total ordering of the candidates L (an axis) if

for each voter v ∈ V , L can be split into three segments X, Y , and Z (X and Z can each

be empty) such that Y contains the most preferred candidates of v, v is weakly increasing

along X and v is weakly decreasing along Z.

Notice that the above definition extends single-plateauedness to allow for multiple

indifference plateaus on either side of the peak. So for votes with ties, possibly single-

peaked preferences model when voters have weakly increasing and then weakly decreas-

ing or only weakly increasing/decreasing preferences along an axis.

Another generalization of single-peaked preferences for votes with ties was intro-

duced by Cantala [9]: the model of single-peaked preferences with outside options. When

preferences satisfy this restriction with respect to a given axis, each voter has a segment

of the axis where they have single-peaked preferences and candidates appearing outside

of this segment on the axis are strictly less preferred and the voter is tied between them.

Similar to how single-plateaued preferences extend the standard single-peaked model

to allow voters to state multiple most preferred candidates, single-peaked preferences
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with outside options extends the standard model to allow voters to state multiple least

preferred candidates.

Definition 3 Given a preference profile V of weak orders over a set of candidates C, V

is single-peaked with outside options with respect to a total ordering of the candidates

L (an axis) if for each voter v ∈ V, L can be split into five segments O1, X, Y , Z, and

O2 (O1, X, Z, and O2 can each be empty) such that Y contains only the most preferred

candidate of v, v is strictly increasing along X and v is strictly decreasing along Z, for

all candidates a ∈ X ∪Y ∪ Z and b ∈ O1 ∪O2, v states a > b, and for all candidates

x,y ∈ O1 ∪O2, v states x ∼ y.

Menon and Larson [32] state that the model of single-peakedness for top orders that

they use is similar to single-peaked preferences with outside options. It is clear from their

paper that for top orders these models are the same. So for the remainder of the paper

we will refer to the model used by Menon and Larson [32] as “single-peaked preferences

with outside options for top orders.”

a b d e f gc

Figure 1. Given the axis L = a < b < c < d < e < f < g, the solid line is the single-peaked order

(e > d > c ∼ f > b > a > g), the dashed line is the single-plateaued order (b ∼ c > d > e > f > g > a), the

dashed-dotted line is the single-peaked with outside options order (d > c ∼ e > a ∼ b ∼ f ∼ g), and the dotted

line is the possibly single-peaked order ( f ∼ g> e > d ∼ c > b > a). See Figure 2 for the relationships between

the four models.

3.1. Social Choice Properties

We now state some general observations on single-peaked preferences with ties, includ-

ing how the models relate to each other, as well as their social-choice properties.

It is easy to see that for total-order preferences each of the four models of single-

peakedness with ties that we consider are equivalent. In Figure 2 we show how each

model relates for weak orders, top orders, and bottom orders.

Given a preference profile of votes it is natural to ask how to determine if an axis

exists such that the profile satisfies one of the above restrictions. This is referred to as the

consistency problem for a restriction. Bartholdi and Trick [3] showed that single-peaked

consistency for total orders can be determined in polynomial time (i.e., is in P), and

Fitzsimmons [23] extended this result to show that single-peaked, single-plateaued, and

possibly single-peaked consistency for weak orders is in P. This leaves the consistency

problem for single-peaked preferences with outside options, which we will now show to

be in P.

It is easy to see that given a preference profile of top orders, it is single-peaked

with outside options if and only if it is possibly single-peaked. So it is immediate from
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OO−Single−Peaked Single−Plateaued

Single−Peaked

Poss−Single−Peaked

(a) Relationship for weak orders

OO−Single−Peaked

Single−PlateauedSingle−Peaked

Poss−Single−Peaked

(b) Relationship for top orders

Single−Plateaued

OO−Single−PeakedSingle−Peaked

Poss−Single−Peaked

(c) Relationship for bottom orders

Figure 2. Relationships between the four models of single-peaked preferences for different types of votes

with ties, where A → B indicates that a preference profile satisfying model A also satisfies model B. OO-Sin-

gle-Peaked and Poss-Single-Peaked refer to Single-Peaked with Outside Options and Possibly Single-Peaked

respectively.

the result by Lackner [29] that shows that possibly single-peaked consistency for top

orders is in P, that the consistency problem for single-peaked preferences with outside

options for top orders is in P. For weak orders the construction used to show that single-

peaked consistency for weak orders is in P by Fitzsimmons [23] can be adapted to hold

for the case of single-peaked preferences with outside options for weak orders, so this

consistency problem is also in P.

Theorem 1 Given a preference profile V of weak orders it can be determined in polyno-

mial time if there exists an axis L such that V is single-peaked with outside options with

respect to L.

One of the most well-known and desirable properties of an election with single-

peaked preferences is that there exists a transitive majority relation [5]. A majority rela-

tion is transitive if for all distinct candidates a,b,c ∈ C if a > b and b > c by majority

then a > c by majority. When the majority relation is transitive then candidates that beat-

or-tie every other candidate by majority exist and they are denoted the weak Condorcet

winners. This also holds when the voters have single-plateaued preferences [6].

It is not the case that the majority relation is transitive when preferences in an

election are single-peaked with outside options or are possibly single-peaked. Fitzsim-

mons [23] points out that for possibly single-peakedness this was implicitly shown in an

entry of Table 9.1 in Fishburn [22], where a preference profile of top orders that violates

single-peaked preferences was described that does not have a transitive majority rela-

tion, and this profile is possibly single-peaked (and single-peaked with outside options).

Cantala also provides an example of a profile that is single-peaked with outside options

that does not have a weak Condorcet winner, and so does not have a transitive majority

relation [9].

4. Computational Results

For total-order preferences, weighted manipulation for any fixed number of candidates

is known to be NP-complete for every scoring rule that is not isomorphic to plurality or

triviality [27]. For single-peaked total orders, Faliszewski et al. [19] completely charac-

terized the complexity of weighted manipulation for 3-candidate scoring rules and this

result was generalized by Brandt et al. [7] for any fixed number of candidates. These

results both showed that the complexity of weighted manipulation for scoring rules often

decreases when voters have single-peaked total orders.

For top-order preferences, dichotomy theorems for 3-candidate weighted manipula-

tion for scoring rules using round down, min, and average were shown by Menon and
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Larson for the general case [31] and for the case of single-peaked preferences with out-

side options for top orders [32]. Menon and Larson [32] found that, counterintuitively,

the complexity of weighted manipulation for single-peaked preferences with outside op-

tions often increases when moving from total orders to top orders. We also mention that

for the scoring-rule extension max, we earlier found that the complexity of 3-candidate

weighted manipulation for Borda increases for possibly single-peaked preferences when

moving from total orders to top orders [24].

We show that for the standard model of single-peakedness and for single-

plateauedness that the complexity of weighted manipulation for m-candidate scoring

rules using max, min, round down, and average does not increase when moving from

total orders to top orders, bottom orders, or weak orders.

The following results are close analogs to the case for single-peaked total orders due

to Brandt et al. [7].

Lemma 2 If p can be made a winner by a manipulation of top-order, bottom-order, or

weak-order votes that are single-peaked, single-plateaued, possibly single-peaked, or

single-peaked with outside options for a scoring rule using max, min, round down, or

average, then p can be made a winner by a manipulation (of the same type) in which all

manipulators rank p uniquely first.

Theorem 3 Let α = 〈α1,α2, . . . ,αm〉 be a scoring vector. If α-CWCM is in P for single-

peaked total orders, then α-CWCM is in P for single-peaked and single-plateaued top

orders, bottom orders, and weak orders for all our scoring rule extensions.

The most surprising result in the work by Menon and Larson [32] was that the com-

plexity of 3-candidate CWCM for elimination veto for single-peaked preferences with

outside options for top orders using min is NP-complete, whereas for single-peaked total

orders [32] and even for total orders in the general case [10] it is in P.

Theorem 4 [10] m-candidate elimination veto CWCM for total orders is in P in the

unique-winner model.

Theorem 5 [32] m-candidate elimination veto CWCM for single-peaked total orders is

in P in the unique-winner model.

Theorem 6 [32] 3-candidate elimination veto CWCM for top orders that are single-

peaked with outside options is NP-complete in the unique-winner model.

Menon and Larson [32] state this case as a counterexample to the conjecture by

Faliszewski et al. [19], which states that the complexity for a natural election system

will not increase when moving from the general case to the single-peaked case. (Though

Menon and Larson do qualify that the conjecture from Faliszewski et al. concerned total

orders.) However, for the standard model of single-peaked preferences and for single-

plateaued preferences, elimination veto CWCM for top orders, bottom orders, and weak

orders using min is in P for any fixed number of candidates, thus the counterexample

crucially relies on using a nonstandard definition.

Theorem 7 m-candidate elimination veto CWCM for single-peaked and for single-

plateaued top orders, bottom orders, and weak orders using min is in P in the unique-

winner model.
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The proof of the above theorem follows from a similar argument as the proof for the

case of single-peaked total orders from Menon and Larson [32].

It is known that 3-candidate Copelandα CWCM for all rational α ∈ [0,1) is NP-

complete for total orders in the nonunique-winner model [20], and when α = 1 (also

known as Llull) CWCM is in P for m ≤ 4 [20,21] and the cases for m ≥ 5 remain

open. Fitzsimmons and Hemaspaandra [24] showed that the NP-completeness of the 3-

candidate case holds for top orders, bottom orders, and weak orders, and Menon and Lar-

son [31] independently showed the top-order case. Fitzsimmons and Hemaspaandra [24]

also showed that 3-candidate Llull CWCM is in P for top orders, bottom orders, and

weak orders.

Recall that weak Condorcet winners always exist when preferences are single-

peaked with ties, and when they are single-plateaued. So the results that Llull CWCM

for single-peaked total orders is in P from Brandt et al. [7] also holds for the case of

single-peaked and single-plateaued top orders, bottom orders, and weak orders.

Copelandα for α ∈ [0,1) was shown to be in P by Yang [38] for single-peaked total

orders.

Theorem 8 [38] Copelandα CWCM for α ∈ [0,1) is in P for single-peaked total orders.

In contrast, for top orders that are single-peaked with outside options, it is NP-

complete even for three candidates [32].

Theorem 9 [32] 3-candidate Copelandα CWCM for α ∈ [0,1) is NP-complete for top

orders that are single-peaked with outside options.

For single-peaked and single-plateaued weak orders, bottom orders, and top orders

we again inherit the behavior of single-peaked total orders.

Theorem 10 Copelandα CWCM for α ∈ [0,1) is in P for single-peaked and single-

plateaued top orders, bottom orders, and weak orders.

Proof. Let L be our axis. Consider a set of nonmanipulators with single-plateaued

weak orders. Replace each nonmanipulator v of weight w with two nonmanipulators v1

and v2 of weight w. The first nonmanipulator breaks the ties in the vote in increasing order

of L and the second nonmanipulator breaks the ties in the vote in decreasing order of L,

i.e., if a ∼v b and aLb, then a >v1
b and b >v2

a. Note that v1 and v2 are single-peaked

total orders and that the weighted majority graph induced by the nonmanipulators after

replacement can be obtained from the weighted majority graph induced by the original

nonmanipulators by multiplying each weight in the graph by 2. When we also multiply

the manipulator weights by 2, we have an equivalent Copelandα CWCM problem, where

all nonmanipulators are single-peaked total orders and all manipulators have even weight.

Suppose p can be made a winner by having the manipulators cast single-plateaued

votes with ties. Now replace each manipulator of weight 2w by two weight-w manipu-

lators. The first manipulator breaks the ties in the vote in increasing order of L and the

second manipulator breaks the ties in the vote in decreasing order of L. Now the replaced

manipulator votes are single-peaked total orders and p is still a winner. We need the fol-

lowing fact from the proof of Theorem 8: if p can be made a winner in the single-peaked

total order case, then p can be made a winner by having all manipulators cast the same

Z. Fitzsimmons and E. Hemaspaandra / Modeling Single-Peakedness for Votes with Ties 71



P-time computable vote. It follows that p can be made a winner by having all replaced

manipulators cast the same single-peaked total order vote. But then p can be made a

winner by having all original manipulators cast the same single-peaked total order vote.

Since this vote is P-time computable, it follows that Copelandα CWCM for α ∈ [0,1) is

in P for single-plateaued weak orders, and this also holds for single-peaked weak orders

since every single-peaked profile of weak orders is also single-plateaued.

It is clear to see that similar arguments hold for single-peaked top orders, and for

single-plateaued top orders and bottom orders. The case for single-peaked bottom orders

follows from the case for single-peaked total orders. �

4.1. Societal-Axis Results

Recall from Lemma 2 that for all our single-peaked models and all our scoring rule ex-

tensions, we can assume that all manipulators rank p uniquely first. When given an axis

where the preferred candidate is in the leftmost or rightmost location, there is exactly

one single-peaked total order vote that puts p first, namely, p followed by the remain-

ing candidates on the axis in order. This is also the case for single-peaked and single-

plateaued orders with ties, since p is ranked uniquely first and no two candidates can be

tied on the same side of the peak. It follows that the weighted manipulation problems

for scoring rules for single-peaked total orders and single-peaked and single-plateaued

orders with ties are in P for axes where p is in the leftmost/rightmost position. However,

this is not the case when preferences with ties are single-peaked with outside options or

possibly single-peaked. In Case 1 of the proof of Theorem 1 in the work by Menon and

Larson [32], an axis of pLaLb is used to show NP-hardness for their model.

It is attractive to conjecture that for single-peaked and single-plateaued preferences,

the less symmetrical (with respect to p) the axis is, the easier the complexity of manipu-

lation, but surprisingly this turns out to not be the case, even for total orders.

For the theorem stated below let m1 and m2 denote the number of candidates to the

left and to the right on the axis with respect to the preferred candidate of the manipulators.

Theorem 11 For single-peaked total orders, single-peaked weak orders, and single-

plateaued weak orders, 〈4,3,2,0,0〉 CWCM is in P for m1 = m2 = 2 and NP-complete

for m1 = 1 and m2 = 3 for all our scoring rule extensions.

5. Related Work

The work by Menon and Larson [32] on the complexity of manipulation and bribery

for single-peaked preferences with outside options for top orders is the most closely

related to this paper. For manipulation, they show that for single-peaked preferences with

outside options the complexity often increases when moving from total orders to top

orders. They additionally considered a notion of nearly single-peakedness. We instead

study the complexity of weighted manipulation for the standard model of single-peaked

preferences with ties and for single-plateaued preferences with ties.

The focus of our paper is on the computational aspects of models of single-peaked

preferences with ties. These models can also be compared based on which social-choice
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properties that they have, such as the guarantee of a weak Condorcet winner. Barberá [1]

compares such properties of the models of single-peaked, single-plateaued, and single-

peaked with outside options for votes with ties.

Since single-peakedness is a strong restriction on preferences, in real-world scenar-

ios it is likely that voters may only have nearly single-peaked preferences, where differ-

ent distance measures to a single-peaked profile are considered. Both the computational

complexity of different manipulative attacks [18,15] and detecting when a given profile

is nearly single-peaked [14,8] have been considered.

An important computational problem for single-peakedness is determining the axis

given a preference profile, this is known as its consistency problem. Single-peaked con-

sistency for total orders was first shown to be in P by Bartholdi and Trick [3]. Doignon

and Falmagne [12] and Escoffier, Lang, and Öztürk [16] independently found faster di-

rect algorithms. Lackner [29] proved that possibly single-peaked consistency for top or-

ders is in P (and for local weak orders and partial orders is NP-complete), and Fitzsim-

mons [23] later showed that single-peaked, single-plateaued, and possibly single-peaked

consistency for weak orders is in P.

6. Conclusions

The standard model of single-peakedness is naturally defined for votes with ties, but dif-

ferent extensions have been considered. In contrast to recent work that studies the mod-

els of possibly single-peaked and single-peaked preferences with outside options and

finds an anomalous increase in complexity compared to the tie-free case, we find that for

scoring rules and other important natural systems, the complexity of weighted manip-

ulation does not increase when moving from total orders to votes with ties in the stan-

dard single-peaked and in the single-plateaued cases. Single-peaked and single-plateaued

preferences for votes with ties also retain the important social-choice property of the ex-

istence of weak Condorcet winners. This is not to say that possibly single-peaked and

single-peaked preferences with outside options are without merit, since they both model

easily understood structure in preferences.
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