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LIPN, UMR CNRS 7030 - Institut Galilée, Université Paris 13

firstname.lastname@lipn.univ-paris13.fr

Abstract. This paper addresses vectorial form of Markov Decision Processes
(MDPs) to solve MDPs with unknown rewards. Our method to find optimal strate-
gies is based on reducing the computation to the determination of two separate
polytopes. The first one is the set of admissible vector-valued functions and the
second is the set of admissible weight vectors. Unknown weight vectors are dis-
covered according to an agent with a set of preferences. Contrary to most existing
algorithms for reward-uncertain MDPs, our approach does not require interactions
with user during optimal policies generation. Instead, we use a variant of approxi-
mate value iteration on vectorial value MDPs based on classifying advantages, that
allows us to approximate the set of non-dominated policies regardless of user pref-
erences. Since any agent’s optimal policy comes from this set, we propose an algo-
rithm for discovering in this set an approximated optimal policy according to user
priorities while narrowing interactively the weight polytope.

Keywords. Reward-Uncertain MDPs, Policy Iteration, non Dominated Vector-
Valued Functions, Advantages, Reward Elicitation

1. Introduction

Markov decision process (MDP) is a model for solving sequential decision problems. In
this model an agent interacts with an unknown environment and aims at choosing the best
policy, i.e. the one maximizing collected rewards (so called its value). Once the prob-
lem modelized as a MDP with precise numerical parameters, classical Reinforcement
Learning (RL) can prospect the optimal policy. But feature engineering and parameter
definitions meets many difficulties.

Two main recent works deal with Incertain Reward MDPs (IRMDPs): the iterative
methods [11, 1] and the minimax regret approach [6, 12]. Iterative methods provide a
vectorial representation of rewards, theVector-Valued MDPs (VVMDP), such that deter-
mining unknown rewards reduces to determining the weight of each dimension. Standard
Value iteration [9] is adapted to search the best value, and interaction is used when value
vectors are not comparable using existing constraints on weights. Alizadeh et al. [1] use
clustering on Advantages in this framework to take advantage of direction in the poli-
cies space. Maximum Regret is a measure of the quality of a given policy in presence of
uncertainty, so Minimax Regret defines the best policy according to this criterion. When
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the quality obtained is not good enough, proposed methods cut the space of admissible
rewards with the help of an interactively obtained new bound for some reward, and then
recompute Minimax Regret again.

Since Xu and Mannor [12] have shown the Minimax regret methods are computa-
tionally NP-hard, Regan and Boutilier explore the set of nondominated policies V̄ [8, 7].
They have developed two algorithms: one approximates V̄ offline and utilizes this ap-
proximation to compute MaxRegret [7]. In the other approach [8], they adjust the quality
of approximated optimal policy using online generation of non-dominated policies.

This paper relies on value iteration method with clustering advantages to generate
policies, but adopts the use of non dominated policies of [7] to speed up the computation
of the one fitting the user preferences. As the VVMDP is independent of the user pref-
erences, different users may use the same VVMDP and it makes sense to compute non
dominated policies once only for different users. So two main algorithms are presented:
the Propagation Algorithm (Algorithm 2) and the Search Algorithm (Algorithm 3). The
former first receives a VVMDP, a set of constraints for unknown rewards and the preci-
sion ε for generating non dominated vectors. It explores the set of non-dominated vectors
according to the given precision, taking advantage of Advantages clustering. The output
Vε of Algorithm Propagation and the same set of constraints on reward weights are sent
as inputs to the Search Algorithm. This algorithm finds the best optimal policy inside Vε,
interactively querying the user preferences to augment constraints on reward weights.
The order of comparisons is dynamically chosen to reduce the number of queries.

Thus this paper has three main contributions: (a) For a given VVMDP, how to ap-
proximate the set of non-dominated vector-valued functions using clustering advantages
[1]. (b) Search the optimal vector-valued functions satisfying user priorities using pair-
wise comparisons [3] and reward elicitation methods. (c) And finally we report some
experimental results on MDPs with unknown rewards which indicate how our approach
calculates the optimal policy with a good precision after asking few questions.

2. Vector-Valued MDPs

A finite horizon MDP is formally defined as a tuple (S,A, p, r, γ, β) where S and A
are respectively sets of finite states and finite actions, p(s′|s, a) encodes the probability
of moving to state s′ when being in state s and choosing action a, r : S × A −→ R

is a reward function, γ ∈ [0, 1[ is a discount factor and β is a distribution on initial
states. A stationary policy π : S −→ A prescribes to take the action π(s) when in
state s. For each policy π, the expected discounted sum of rewards for policy π in s is
a function V π : S −→ R which is solution of the equation: ∀s, V π(s) = r(s, π(s)) +
γ
∑

s′∈S p(s′|s, π(s))V π(s′). Taking into account the initial distribution β, each policy
has an expected value function equal vπ = Es∼β [V

π(s)] =
∑

s∈S β(s)V π(s) The op-
timal policy π∗ is the policy with the greatest expectation : π∗ = argmaxπ β · vπ . To
compute the optimal policy and its expected value, the auxiliary Q function is defined as:
Qπ(s, a) = r(s, a) + γ

∑
s′∈S p(s′|s, a)V π(s′). It allows to iterate the approximation:

π(s) = argmaxa Qπ(s, a)
V π(s) = Qπ(s, π(s))

(1)
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This schema leaves open in which states the policy is improved before computing next
V π(s) and Qπ(s, a), and what is the stop test. Different choices yield different algo-
rithms, among which Value Iteration method (VI), which tests if the improvement of V π

is under a given threshold [4]. According to Equation 1, every Qπ(s, a) has an improve-
ment over V π(s) which is: d(s, a) = Qπ(s, a)−V π(s). This difference weighted by the
initial distribution on the states is known as Advantage [2]

A(s, a) = β(s)d(s, a) = β(s){Qπ(s, a)− V π(s)}

so Equation 1 can be modified as: π(s) = argmaxa A(s, a)
When designing real cases as MDPs, specifying the reward function is generally

a hard problem. Preferences describe which (state, action) pairs are good or bad and
should be interpreted into numerical costs. Note that even acquiring all these preferences
is time consuming. Therefore, we use a MDP with imprecise reward values (IRMDP)
and transform it into the vectorial formulation ([10, 11]). This paper handles the same
structure on IRMDP with a slight difference: unknown rewards are not ordered contrary
to the rewards in [11].

An IRMDP is a MDP(S,A, p,r, γ, β) with unknown or partially known rewards r ,
where unknown rewards need to be elicited. For that, let E = {λ1, .., λd−1} be a set of
variables such that ∀ i, 0 ≤ λi ≤ 1. E is the set of possible unknown reward values for
the given MDP and we have r(s, a) ∈ E ∪ R.

To match our IRMDP to a vectorial form, namely Vector-Valued MDP (VVMDP)
[10], we define a vectorial reward function r̄ : S ×A −→ R

d as1 :

r̄(s, a) =
(1)j if r(s, a) has the unknown value λj (j < d)
x.(1)d if r(s, a) is known to be exactly x.

Let also λ̄ be the vector (λ1, .., λd−1, 1). For all s and a, we have r(s, a) =∑d
i=1 λi.r̄(s, a)[i], so any reward r(s, a) is a dot product between two d-dimensional

vectors:

r(s, a) = λ̄ · r̄(s, a). (2)

Example 2.1 Suppose the MDP in figure 3, with two states {hometown, beach} and six
actions {swimming, reading book, going to exhibition, biking, wait,move}. Instead of
having numerical rewards, it is known that every selected action in each state has only
one of two qualities: “sportive” indicated by λ1 and “artistic” indicated by λ2. Unknown
rewards are transformed to vectorial rewards such that their first element is the sportive
value, while their second one shows the artistic value. For instance, the second element
of r̄(hometown, biking) is zero, because biking is not an artistic activity. If λ̄ = (λ1, λ2)
vector is known numerically, we will have r(hometown, biking) = 1λ1 + 0λ2.

By leaving aside the λ̄ vector, we have a MDP(S,A, p, r̄, γ, β) with vector-valued
reward function representing the imprecise rewards. Basic techniques of MDP’s can be
applied componentwise. The discounted value function of policy π is a function V̄ π :

1 (1)j notes the d-dimensional vector (0, .., 0, 1, 0, .., 0) having a single 1 in the j-th element
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S −→ R
d which provides in each state the discounted sum of reward vectors, and can

be computed as

V̄ π(s) = r̄(s, π(s)) + γ
∑
s′∈S

p(s′|s, π(s))V̄ π(s′) (3)

In order to find the maximum vector in equations 1, the iteration step need to com-
pare value vectors with each other. To do this comparison, we use three possible methods
which will be explained in the Section 3.

Now, suppose that V̄ π is the discounted value function computed from equation 3.
Taking into account the initial distribution, the vectorial expected value function is:

v̄π = Es∼β [V̄
π(s)] =

∑
s∈S

β(s)V̄ π(s)

Hypothesizing a numerical weight value for the λ̄ vector, and based on equations 2
and 3, a vectorial expected value function could be used to compute its corresponding
scalar expected value function:

vπ =
d∑

i=1

λi.Es∼β [V̄
π(s)][i] = λ̄ · v̄π

thus providing a comparison between any two policies. So, finding an optimal policy for a
MDP with unknown rewards boils down to explore the interaction between two separate
d-dimensional admissible polytopes. The first one is a set of admissible vector-valued
functions for the transformed VVMDP and the second one is a set of all possible reward
weight vectors for the same VVMDP. In the following, the set of all possible weight
vectors λ̄ for the VVMDP is noted as Λ, the set of all possible policies as Π, and the set
of their vectorial value functions as V̄ (V̄ = {V̄ π : π ∈ Π}). Without loss of generality,
we assume that the Λ polytope is a d-dimensional unit cube: ∀i = 1, · · · , d 0 ≤ λi ≤ 1

3. Vector-Valued Functions Reduction

Our aim is now discovering the optimal scalar-valued function of the form: λ̄∗.v̄∗ with
v̄∗ ∈ V̄ the optimal vectorial value function, and λ̄∗ ∈ Λ the weight vector satisfying
user preferences. In a context where different users have different preferences, it would
make sense to compute V̄ set once and then searching interactively for each user, her
preferred weight vector λ̄∗ and the value function related to her optimal policy v̄∗.

Since calculating whole V̄ polytope is not practically possible, we use an approxi-
mation V̄ε with ε precision. It is built with the help of classification methods on advan-
tages adapted to VVMDPs from classical Value Iteration [9]. The set V̄ε is independent
of user preferences, i.e. each v̄ ∈ V̄ε approaches some optimal vector-valued functions
regarding any particular λ̄ ∈ Λ.

The set of all non-dominated v̄ vectors being approximately known, the next point
is finding the optimal v̄∗ according to user preferences. To compare between v̄ vectors,
our approach allows interaction with the user. Comparing the vectors v̄πi , and v̄πj means
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Figure 1. An example of small vector-valued MDP

(π0, v̄0)

Ās1,a1 Āsn,am

level = 1

level = 0

· · · · · ·

(πt
1, v̄

t
1)

(πt
n, v̄

t
n)

Figure 2. Structure tree of V̄ exploration.

deciding “which of λ̄∗.v̄πi or λ̄∗.v̄πj is the highest?”. If the hyperplan λ̄∗.(v̄πi−v̄πj ) = 0
of the weight vectors space does not meet the Λ polytope, interaction is not needed. Else
it defines a cut, and the user answer decides which part is kept. Through this process, the
optimal λ̄∗ value is approximated according to user preferences.

Example 3.1 Referring to example 2.1, the Λ polytope is a unit square with axes rep-
resenting sportive and artistic weights. λ1 = λ2 cuts the Λ polytope in two parts, and
elicitation of user preferences between equal numbers of artistic and sportive privileges
(the query “λ1 = λ2?”) prunes one half of the polytope.

In detail, we cascade three vector comparison methods. The first two provide an
answer when the vectors can be compared relying on knowledge of Λ. If they fail, the
third one introduces a new cut on Λ polytope and refines our knowledge about user
preferences [11].

1. Pareto dominance is the cartesian product of orders and has the lowest computa-
tional cost: (v̄πi �D v̄πj )⇔ ∀i v̄πi[i] ≥ v̄πj[i]

2. KDominance: v̄πi �K v̄πj holds when all the λ̄ of Λ satisfy λ̄ · v̄πi ≥ λ̄ · v̄πj ,
which is true if the following linear program has a non-negative solution [11]:
minλ̄∈Λ λ̄ · (v̄πi − v̄πj )

3. Ask the query to the user: “Is λ̄ · v̄πi 	 λ̄ · v̄πj ?”

The final solution is the most expensive and the less desired option, because it de-
volves answering to the agent. Our aim is finding the optimal solution with as few as
possible interactions with the user .

Non-dominated vector definition and related explanations are given in [7]. A
VVMDP with feasible set of weights Λ being given, v̄ ∈ V̄ is non-dominated (in V̄
w.r.t Λ) if and only if: ∃ λ̄ ∈ Λ s.t. ∀ ū ∈ V̄ λ̄ · v̄ ≥ λ̄ · ū. It is obvious that v̄∗

is a non-dominated vector-valued function, i.e. v̄∗ ∈ ND(V̄). It means, we should find
approximation of non-dominated vector-valued functions in order to select the optimal
policy for any specific user.

Let πŝ↑â notes the policy which differs from π, only in state ŝ, it chooses the action

â instead of π(ŝ): πŝ↑â(s) =
{
π(s) if s �= ŝ
â if s = ŝ

P. Alizadeh et al. / Solving MDPs with Unknown Rewards 19



λ̄
v̄better

ū

Figure 3. V̄t+1 vectors selection after tree ex-
pansion of V̄t

Figure 4. Generated non-dominated vectors from al-
gorithm 2 for an MDP with 128 states, 5 actions and
d = 3 (with ε = 0.01)

Since the only difference between π and πŝ↑â is state ŝ, we have:

Āŝ,â = Es∼β [V̄
πŝ↑â

]− Es∼β [V̄
π] = β(ŝ){Q̄π(ŝ, â)− V̄ π(ŝ)}

We can explore new policies differing from π in more than one state. Let
π′′ = πŝ↑â1,··· ,ŝ↑âk be the policy which differs from π in the state-action pairs
{(ŝ1, â1), · · · , (ŝk, âk)}. As each âi is chosen such that Q̄π(ŝi, âi) ≥ V̄ π(ŝi), we have:

Es∼β [V̄
π′′

]− Es∼β [V̄
π] = Es∼β [Q̄

π(s, π′′(s))]− Es∼β [V̄
π] =

k∑
i=1

Āŝi,π′′(ŝi)

In order to use less comparisons and collect more non-dominated policies, we try to
explore a set of well distributed policies in V̄ . Therefore, for an arbitrarily selected policy
π, we are interested in comparing it with alternative policies with large values of λ̄ ·∑

s∈S,a∈A Ās,a. Based on this objective, we concentrate on the advantages set A =

{Ās,a|s ∈ S, a ∈ A} and their characterizations [1].
In order to reduce exponential growth in v̄s generation while keeping non-dominated

vectors, our new algorithm suggests clustering advantages set {v̄π + As1,a1 , v̄
π +

As1,a2
, · · · , v̄π +As|S|,a|A|} in each iteration for the given vector v̄π using cosine simi-

larity metric 2 (Details are given in [1]).
After classifying advantages, suppose C is the set of resulting clusters. If a cluster

c includes k advantages Āsi1 ,ai1
, .., Āsik ,aik

, the new policy π′ is different from π in

(si1 , ai1), .., (sik , aik) pairs and v̄π
′
= v̄π +

∑k
j=1 Āsij ,aij

3

Classifying advantages in |C| number of clusters, enables us to generate less v̄ vec-
tors and more useful (policy, vectored-value) pairs. Regarding Figure 2, the tree will
have less and more effective nodes. The advantage of classification is that we have less
improved policies with greater vector values.

2For each vector A,B cosine metric is dcosine(A,B) = 1− A.B
||A||||B||

3If there are several advantages with the same state ŝ, we choose one of them randomly
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4. Approximate V̄ set with ε precision

Since extracting all members of V̄ is expensive, this section introduces an algorithm to
generate an approximation of this set, namely V̄ε. This approximation at ε precision is a
subset of V̄ such that ∀v̄ ∈ V̄ ∃v̄′ ∈ V̄ε s.t ||v̄′ − v̄|| ≤ ε.

Every vectorial value v̄ is the value of at least one policy π. Any v̄ of V̄ can be
generated from a given user preference vector, using any initial pair (π0, v̄0), advantage
clustering and value iteration method on VVMDPs . With slight abuse of notations we
indicate each pair (π, v̄) as a node n and utilize a graph to visualize our approach (cf.
Figure 2). The approximation algorithm stores nodes and is initialized with a random
policy π0 ∈ Π and a d-dimensional v̄0 vector equal to 0.

Essential to the algorithm is the function expand, described in Algorithm 1. It takes
a node n = (π, v̄) and returns back a set of new pairs (policy, vector-valued function).
It computes first the full set A of advantages. This set has |S||A| nodes of the form
(πs,a, v̄s,a): πs,a only differs from π in πs,a(s) = a and v̄s,a = v̄ + Ās,a. Then the
algorithm calls the Cluster-Advantages function which classifies A, producing a set of
clusters C = {c1, .., ck}. It returns the set of new nodes which expand the tree under
node n and is defined from clusters:

N =

{
(πj , v̄j)

∣∣∣∣∣∣
v̄j = v̄ +

∑
Ās,a∈cj

Ās,a

πj(s) =

{
a if Ās,a ∈ cj
π(s) otherwise

⎫⎬
⎭

Algorithm 1 expand : Expand Children for given node n

Inputs: node n = (π, V̄ ) and VVMDP(S,A, p, r̄, γ, β)
Outputs: N is set of n’s children

1: A ←− {}
2: for each s, a do

3: A ←− Add As,a to A
4: N ←− Cluster-Advantages(A, n)
5: return N

Now with standing classification, adding all the nodes generated by expand remains
exponential with respect to time and space, and all new nodes are not important either.
Therefore, we look for an approach that avoids expanding the whole tree search and rolls
up more non-dominated v̄s of V̄ . Suppose in t-th step of node expansion, we have n
generated nodes in Nt = (πt

1, v̄
t
1), · · · , (πt

n, v̄
t
n) and name V̄t the second projection of

Nt: V̄t = {v̄t1, .., v̄tn}. The expand function on Nt will produce a new set of nodes. In
fact, due to the convexity of V̄ , vertices belonging to the convex hull of V̄t are enough to
approximate V̄ . This means that to build Nt+1 we can compute the union of Nt and its
expanded children, get their projections on their value coordinate, get the convex hull of
this projection and prune nodes with v̄ inside the convex hull.

For instance in Figure 3, square points result from t-th iteration and form the dashed
convex hull. Red points are the expanded nodes. The polygon with straight lines repre-
sents the convex hull at t+ 1-th iteration and V̄t+1 involves the vertices of this polygon.
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Algorithm 2 Propagation: Approximates V̄ε set of non-dominated vectors for a given
VVMDP

Inputs: VVMDP(S,A, p, r̄, γ, β), K, ε
Outputs: V̄ε set

1: N ←− {(π0
0 , v̄

0
0), .., (π

0
d, v̄

0
d)}

2: V̄new ←− ConvexHull(getVectors(N))
3: do

4: V̄old ←− V̄new

5: N ←− {}
6: C ←− {}
7: for n ∈ V̄old do

8: add expand(n) to C
9: for n ∈ C do

10: if CheckImprove(n, V̄old,K, ε) then

11: add n to N
12: V̄new ←− ConvexHull(V̄old ∪ getVectors(N))
13: while V̄new �= V̄old

14: return V̄new

Two remarks help seeing that this strategy does not prune optimal points. First the
extrema of λ̄ · v̄ for v̄ in a polytope P are on the vertices of P ’s convex hull. Second, the
interior set of the V̄t polytope is increasing with t, so an interior point of V̄t cannot be a
vertex of V̄t+1

Using previous ideas and observations, we propose Algorithm 2 to generate an ap-
proximation of V̄ . This algorithm uses four main functions: ConvexHull, CheckIm-

prove, expand and getVectors. ConvexHull gets a set of d-dimensional vectors, com-
pletes it with the 0 vector and generates its convex hull. This function returns vertices
of the convex hull except the 0 vector. Function expand has just been described (Algo-
rithm 1). getVectors simply gets a set of nodes and returns back the set of their second
elements (their value vectors).

Finally CheckImprove checks if a candidate node should be added to the current
convex hull or not. It receives as arguments a candidate vector v̄, an old set of selected
vectors V̄old and the precision ε. Its return value is defined below:

CheckImprove(v̄, V̄old,K, ε) = false if

⎧⎨
⎩

v̄ ∈ ConvexHull(V̄old)
or ∃ ū ∈ V̄old s.t ||v̄ − ū|| ≤ ε
or KDominates(ū, v̄,K) ≤ ε

, true o.w.

If the candidate vector-valued function is inside the old convex hull or there is a vector in
the old set that is ε-close to the candidate (in terms of euclidean or kdominate distance),
this last will not be added.

Algorithm 2 receives a VVMDP, a stopping threshold ε and set of linear constraints
of polytope Λ. The initial set of nodes N is generated by choosing the d unit vectors of
R

d4. This yields d scalar MDP’s where classical value iteration method [9] can discover
the optimal policy and related vectored-value function v̄0k.

4It means v̄k0 = (0, · · · , 0, 1, 0, · · · , 0) where 1 is the k-th element of the vector
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Algorithm 3 Search Algorithm: Find Optimal v̄∗ in V̄ε
Inputs: V̄ε an approximation of non-
dominated v̄ vectors and K a constraints set
defining Λ polytope
Outputs: v̄∗

1: T = P
2: D = U = ∅
3: K = {0 ≤ xi ≤ 1 s.t. i ∈ [0, d]}
4: for (vi, vj) in T do

5: if vi �D vj then

6: markDefined(vi, vj)
7: else if vi �D vj then

8: markDefined(vj , vi)
9: while T �= ∅ do

10: for (vi, vj) in T do

11: ci,j = cj,i = 0
12: repeat

13: choose random λ̄ ∈ Λ(K)
14: for (vi, vj) in T do

15: if λ̄ · v̄i > λ̄ · v̄j then

16: ci,j+ = 1
17: else if λ̄ · v̄j > λ̄ · v̄i then

18: cj,i+ = 1
19: until 1000 times
20: for (vi, vj) in T do

21: if cj,i = 0 then

22: if vi �K vj then

23: markDefined(vi, vj)
24: else if ci,j = 0 then

25: if vi �K vj then

26: markDefined(vj , vi)27:
28: (vi, vj) = Argmin(vi,vj)∈T (|ci,j −

500|)
29: (K, ans) = Query((v̄i, v̄j),K)
30: if ans = i then

31: markDefined(vi, vj)
32: else

33: markDefined(vj , vi)
34: return FindBest(D)

In each iteration, the algorithm generates all the children of any given V̄old member
and makes a V̄new using expand and CheckImprove functions. The final solution will be
an approximation of non dominated v̄ vectors, and they assign to optimal policies for one
or several λ̄ vectors inside the Λ polytope. Figure 4 is an example of MDP with d = 3
and 128 states. It demonstrates how algorithm 2 generates many vectors for the MDP
with average precision ε = 0.01. This shows that this algorithm is useful for IRMDPs
with average weight dimension d.

5. Searching Optimal V ∗ by Interaction with User

After discovering an approximated set of all possible optimal v̄ vectors regardless of user
preferences in Algorithm 2, we intend to find the optimal policy in the V̄ε set with respect
to the user preferences (The main goal of Algorithm 3). In this section we propose an
approach to find the optimal v̄∗ ∈ V̄ε and an approximation of vector λ̄∗ ∈ Λ embedding
user priorities. In fact by asking queries to the user (when the algorithm cannot decide),
we approximate the maximum of λ̄∗ · v̄∗ for v̄∗ ∈ V̄ε and the given user.

Note that the Λ polytope is initially a unit cube of dimension d and K is its set of
constraints. As detailed in section 3, there are three types of comparisons to search the
optimal v̄∗ inside V̄ε. KDominance and Pareto comparisons are partial preferences, and
when two vectors are not comparable by any of them, the final solution is delegating the
comparison to the tutor. In Algorithm 3, �D is the comparison regarding paretodomi-
nance or Kdominance comparisons, and �K indicates just the Kdominance comparison.

The main characteristic of algorithm 3 is that it selects the best pair to test to obtain
a maximal informative cut on Λ (line 13), in order to minimize the number of queries. In
this algorithm, the label of a pair (v̄i, v̄j) notes if vectors are comparable:
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label =
{
1 if v̄i � v̄j
−1 if v̄i ≺ v̄j

Following Jamieson and Nowak work [3] to rank objects using pairwise compar-
isons, the algorithm first generates the set P of vectors on V̄ set i.e P = {(vi, vj) ∈
V̄2|i < j}. T is the set of ambiguous pairs, which are comparable neither by Pareto nor
by Kdominate comparisons. D is the set of compared pairs and U are the useless ones.

Functions Query, markDefined and FindBest are used within the algorithm and
are explained in the rest of this section. The Query function receives a pair of vectors and
set of constraints on the Λ polytope. This function proposes the query “ v̄i or v̄j” to the
user and appends the new cut to K in accordance with user preferences while assigning
a label to this pair. The markDefined function is as following:

markDefined(vi, vj) =

{
move((vi, vj), D)
remove(vj , T )

where the function remove(a, l) removes all pairs containing a from the list l (T or
D) and puts them into the set of useless pairs U .

The second part of the algorithm (Lines 9 to 28) chooses the best ambiguous pair
from T set and proposes it as a query to the user. In fact, It looks for the cut that gets rid
of more redundant points in Λ polytope. It uses a Monte-Carlo method, selecting 1000
points randomly inside Λ polytope, and choosing the cut that divides the random points
into two almost equal sets.

The algorithm stops when the set of To be Determined pairs (T set) is empty, so all
pairs are either determined (in D set) or useless (in U set). Knowing D, the FindBest

algorithm computes all maximal points in linear time. It first initializes all ci labels to 0,
and then inside a loop it assigns cj = 1 for all pairs (vi, vj) ∈ D. At the end, maximal
points vi’s are those where ci is equal 0. Finally, this algorithm gives the best vector-
valued function with the highest rank at the end.

6. Empirical Evaluation

We have tested our Propagation-Search Value Iteration (PSVI) algorithm on small MDPs
and compared it to IVI algorithm, an existing interactive value iteration method for ex-
ploring the optimal policy regarding agent preferences [11]. We have done the experi-
ments for both methods on small, randomly generated IRMDPs. For each MDP with n
states, m actions and weight vectors of dimension d, the transition functions restrict to
reach [log2(n)] states from each state. Initial state distribution β is uniform, the discount
factor γ = 0.95 and each r(s, a) is normalized between 0 and 1 (For more details see
Random MDP [5]). Results in this section have been averaged on 5 random MDPs and
50 various users with different priorities.

Tables 1 and 2 compare two algorithms based on several measures on MDPs with
128 states, 5 actions and various d dimensions including 2, 3 and 4. The ε precisions are
defined equal 0.2 and 0.1 for two presented tables of this section. |V̄| is the number of
generated non dominated vector-valued functions for each dimension using our Propa-
gation algorithm (Algorithm 2) while the propagation time indicated in the tables is the
time of accomplishing this process in seconds.

To evaluate the Search Algorithm (Algorithm 3) on obtained result of the Propaga-
tion algorithm, we try to explore the optimal policies related to 50 different users. Each
user is displayed as a random λ̄ inside Λ polytope and results have been averaged on

P. Alizadeh et al. / Solving MDPs with Unknown Rewards24



Table 1. Average Results on 5 iterations of mdp with |S| = 128, |A| = 5 and d = 2, 3, 4. The Propagation
algorithm accuracy is ε = 0.2 . The results for Search algorithm are averaged on 50 random λ̄ ∈ Λ (times are
seconds).

Methods parameters d = 2 d = 3 d = 4

psvi

|V̄ε| 8.4 43.3 4.0
Queries 3.27 12.05 5.08

error 0.00613 0.338 0.54823
propagation time 33.6377 170.1871 3.036455
search time 1.20773 36.4435 6.022591

ivi
Queries 17.38 41.16 69.18
error 0.0058 0.319 0.5234

ivi time 9.8225060 5.57657 5.30287

psvi total time 94.0242 10501.7171 304.166

ivi total time 491.1253 278.8285 265.1435

Table 2. Average Results on 5 iterations of mdp with |S| = 128, |A| = 5 and d = 2, 3, 4. The Propagation
algorithm accuracy is ε = 0.1 . The results for Search algorithm of optimal policy are averaged on 50 random
λ̄ ∈ Λ (times are seconds).

Methods parameters d = 2 d = 3 d = 4

psvi

|V̄ε| 7.79 154.4 32.2
Queries 2.52 15.99 15.7

error 0.0035 0.14914 0.519
propagation time 57.530 3110.348 893.4045
search time 0.8555 229.134 95.90481

ivi
Queries 17.8 42.15 67.79
error 0.0033 0.142 0.493

ivi time 10.0345 6.99638 5.309833

psvi total time 100.305 14567.048 4795.2405

ivi total time 501.725 349.819 265.49165

random selection of agents (here results have been averaged on 50). In Tables 1 and 2,
the search time indicates the average time of policy search for 50 various users, and the
error parameter for psvi method is defined as the difference between value of exact op-
timal policy v̄π

∗
exact and the optimal result of our approach v̄π

∗
for a specific user λ̄ as:

||λ̄T .v̄π
∗
exact − λ̄T .v̄π

∗ ||∞.
These preliminary results indicate that though our algorithms take more time to pro-

duce all optimal policies list, it proposes considerably less questions to the user in com-
parison with IVI algorithm in order to find the optimal policy with the same accuracy. For
instance regarding table 2, two algorithms find the optimal policy with an error around
0.1 after asking 16 and 42 queries respectively for psvi and ivi algorithms. The most
striking advantage of our method is that it reduces around half number of queries by
generating all possible optimal policies before starting any interaction with user.

In these results total time has a formulation for each approach regarding 50 tested
users. Total time for IVI is simply 50×ivi time, and for the other method we have:
50×exploration time + propagation time. That means, after finding an approximated set
of optimal policies for all type of users, our methods do not need recalculating non domi-
nated policies anymore. On the other hand, the ivi algorithm should restart the algorithm
from the beginning every time and it can discover only one optimal policy for one special
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user. Psvi algorithm has a higher calculation time than ivi algorithm, because it takes a
considerable amount of time on producing optimal policies (In Propagation Algorithm).

7. Conclusions and Future Works

We have introduced an approach for exploring the optimal policy for a MDP with un-
certain rewards. We have presented a method for computing an approximate set of non-
dominated policies and related vector-valued function in this case. We also showed that
offline approximation of the set of non-dominated policies allows the optimal policy to be
discovered while asking a considerably smaller number of questions to the agent. In fu-
ture studies, we will study on possible solutions to reduce complexity of non-dominated
vectors generation by removing more useless non-dominated vectors in any iteration.
Another idea is implementing the other potential application of our method on Inverse
Reinforcement Learning problems, and comparing it to standard algorithms in this do-
main
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