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Abstract. While a diversity of modeling technique have been used to create 
predictive models of malaria, no work has made use of Bayesian networks.  Bayes 
nets are attractive due to their ability to represent uncertainty, model time lagged 
and nonlinear relations, and provide explanations of inferences. This paper explores 
the use of Bayesian networks to model malaria, demonstrating the approach by 
creating a village level model with weekly temporal resolution for Tha Song Yang 
district in northern Thailand.  The network is learned using data on cases and 
environmental covariates.  The network models incidence over time as well as 
evolution of the environmental variables, and captures time lagged and nonlinear 
effects. Out of sample evaluation shows the model to have high accuracy for one 
and two week predictions.   
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1. Introduction 

Malaria remains a global public health problem with an estimated 214 million cases of 
malaria globally in 2015 and 438,000 malaria deaths [1].  Since malaria is prevalent in 
less developed and more remote areas in which public health resources are often scarce, 
prediction and targeted intervention are essential elements in effective malaria control.  
Predictive models commonly make use of environmental factors such as rainfall, 
temperature, and vegetation as determinants of mosquito vector density and infectivity, 
as well as malaria incidence in the preceding time period (typically week or month) as 
an estimator of the human reservoir of the parasite and the population susceptibility [2].  
Since seasons affect the environmental factors, models also often incorporate some 
representation of seasonality.     

Modeling of malaria is challenging because disease transmission can exhibit spatial 
and temporal heterogeneity, spatial autocorrelation, and seasonal variation.  In addition, 
some covariates such as temperature affect incidence rates in a nonlinear fashion.  
Numerous techniques have been used to create predictive models [3] including 
regression [2], ARIMA [4], SIR based models [5], and Neural Networks [6].  No work 
has yet explored the potential of Bayesian networks as a malaria modeling framework.  
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A Bayesian network is a graphical representation of probability distribution in which 
nodes represent random variables and links represent direct probabilistic influence 
among the variables.  The relation between a node and its parents is quantified by a 
conditional probability table (CPT), specifying the probability of the node conditioned 
on all combinations of the values of the parents.  The structure of the network encodes 
information about probabilistic independence.  The CPTs along with the independence 
relations provide a full specification of the joint probability distribution over the random 
variables represented by the nodes.  By decomposing a joint probability distribution into 
a collection of smaller local distributions (the CPTs), a Bayesian network provides a 
highly compact representation of the complete joint distribution, making it possible to 
represent and compute with probability distributions over hundreds and thousands of 
variables.  Bayesian networks provide a number of advantages for modeling of malaria, 
including the ability to represent uncertainty and handle missing data, the ability to 
represent nonlinear relations, and the availability of efficient algorithms for diagnostic 
and predictive reasoning as well as sensitivity analysis.  In addition, the model structure, 
which typically reflects the problem structure, can be used to provide explanations of the 
predictions.   

In this paper we explore the use of Bayes nets to model malaria, demonstrating the 
approach with a village-level weekly prediction model for Tha Song Yang district in 
northern Thailand.  The network is learned from case data as well as environmental 
covariates.  The network models incidence over time and evolution of the environmental 
variables, and captures time lagged and nonlinear effects.  Out of sample evaluation 
shows the model to have high accuracy for one and two week predictions. 

2. Related Work 

While no previous work has used Bayes nets to build predictive models for malaria or 
other infectious diseases, relevant work includes application of Bayes nets to 
environmental modeling, modeling of non-infectious disease, and making explicit 
uncertainty in geospatial information.  Most Bayes net environmental models to date 
have either focused on spatial aspects [7, 8] or temporal aspects [9], with only the recent 
work of Wilkinson et al [10] addressing the combined dimensions of spatial 
heterogeneity, spatial influence, and temporal evolution.  Relevant work on using Bayes 
nets for disease modeling includes that of Cooper et al. [11] on modeling spatiotemporal 
patterns for non-contagious diseases that can cause outbreaks in a population such as 
may occur in bioterrorist attacks.  Laskey et al [12] show how to use Bayes nets to reason 
about cross-country mobility.  They create a separate Bayes net for each map pixel, 
tailored to the features in the pixel, but with no temporal aspect.  They link the networks 
to a GIS and provide a bivalent visualization of the predictions and the degrees of 
confidence in them. 

3. Geographic Region and Data  

We demonstrate our approach with the problem of weekly village-level malaria 
prediction in Tha Song Yan district of Tak province of Thailand.  Tha Song Yang is a 
hilly area with 66 villages in which malaria is endemic.  It is located along the border 
with Myanmar and this proximity to the border results in imported cases.  Policy makers 
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were interested in having a predictive model that can assist in timely targeted intervention, 
as well as in understanding the factors that most influence the malaria incidence.   

The case data for our model consists of weekly clinically confirmed malaria cases 
obtained from Thailand’s national E-Malaria Information System (EMIS) [13].  The data 
covered each of the 66 villages for the years 2012 and 2013, providing a total of 6,579 
records with 12,800 total cases (PF, PV).  The numbers of cases per village per week 
ranged from 0 to 82 with a mean of 2.1.   

In addition to the case data, our model makes use of a number of environmental 
factors associated with malaria.  The factors and the source for each are: Normalized 
Difference Vegetation Index (NDVI) - monthly satellite data from MOD11A3; Land 
Surface Temperature (LST) - monthly satellite data at 5 km resolution from MOD11C3; 
Rainfall - daily satellite data at 10 km resolution from JAXA Global Rainfall Watch; 
Slope - average in 1 km buffer around each village, computed from elevation data; 
Distance to nearest stream - distance from village center to closest point on the stream; 
Stream density - total stream length in 4 km buffer; Distance to border - distance from 
village center to the closest point on the border with Myanmar; and Month - month of 
the year.  NDVI, LST, Rainfall, and Month are temporal variables whose values are 
indexed by week, while Slope, Stream density, Distance to nearest stream, and Distance 
to border are non-temporal variables whose values are constant over time.  The variables 
NDVI, Distance to nearest stream, and Stream density are known to positively impact 
malaria incidence. LST has a nonlinear effect on malaria with malaria incidence low for 
low temperatures, increasing over some region, and then dropping off for high 
temperatures.  Rainfall is known to have a positive effect on malaria incidence except 
for very heavy rainfall which can wash away the larvae.  Slope is included because it 
interacts with rainfall, with rain draining off more quickly the higher the slope.  Distance 
to border is a proxy for the number of imported cases and is thought to have a positive 
effect on incidence.  Some values for the variables obtained from satellite data were 
missing due to cloud cover during some time periods.  Missing values were filled in using 
temporal and spatial interpolation as appropriate. 

4. Bayesian Network Prediction Model 

Malaria may be modeled using one Dynamic Bayes net (DBN) per village.  Figure 1 
shows the structure of the DBN prediction model for two time slices: week 0 and week 
1.  A DBN is a probabilistic representation of the state of a system over time.  Time is 
modeled discretely with a fixed interval between time slices.  Temporal nodes represent 
the state of a random variable at a point in time, such as NDVI at week zero (NDIV_w0), 
and non-temporal nodes represent random variables whose state does not change, such 
as Border Distance.  Temporal nodes are organized into time slices, representing the state 
of the system at a point in time.  A DBN contains two types of links.  Links within a time 
slice represent probabilistic relations among variables at a given instant and links 
between time slices represent temporal correlation and lagged effects.  The link from 
NDVI_w0 to NDVI_w1 indicates that NDVI values tend to persist over time.  Time lags 
in the model include a one week lag in the effect of Rainfall on NDIV and a three week 
lag in the effect of Rainfall on Mosquito Population Density. 

Our malaria model includes three latent variables: Rainfall_Effect_w1, which 
represents the interaction of rainfall and slope; Stream_Effect, which summarizes the 
effect of stream distance and stream density; and Mosquito_pop_density_w1, which 
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represents the effect of various environmental factors on the vector density.  Inclusion of 
these variables increases the explanatory power of the network and, importantly, reduces 
the size of some of the conditional probability tables.  For example, inclusion of 
Mosquito_pop_density_w1 reduces the size of the CPT for the node Incidence_w1 which 
would otherwise be too large to learn from the available data. 

The model is used for prediction by entering known values for variables at week 
zero (w0), rainfall at week minus 2 (Rainfall_wm2), and Month for weeks one and two 
and computing the posterior probability of incidence at week 1 (Incidence_w1).    To 
predict incidence for week two, an additional time slice is included with similar repeated 
structure. The predicted incidence is then the expected value of the incidence random 
variable.  As shown in Figure 2, predictions are displayed in color on a map using a 
modification of the Bayesian network Classification tool [14], which is implemented as 
an extension to ArcGIS. 

5. Evaluation 

We evaluated the out of sample prediction accuracy using k-fold cross validation with k 
= 11.  The folds were stratified by time so that all villages were represented in the training 
and testing data.  The average of the Mean Absolute Error (MAE) for the Bayes net 
model over all 66 villages is 1.44 (SD = 1.73) for one week prediction and 1.61 (SD = 
1.88) for two week prediction.  Sensitivity analysis of the model shows the previous 
week incidence to be the most influential factor, followed by Distance to Border.  The 
influence of Mosquito population density increases for moderate values of previous week 
incidence and then falls off for high values. 

6. Conclusions & Future Research 

We have shown how Bayesian networks may be used for accurate malaria prediction at 
high temporal and spatial resolution.  The networks are able to integrate environmental 
and case information and make use of temporal and non-temporal covariates. The current 
model does not incorporate spatial autocorrelation among villages, which we know to 
exist in the modeled region.  Including this information increases model complexity, 

Figure 2. Village-level malaria predictions Figure 1. Bayesian network prediction model – two time slices
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particularly for predictions beyond one week, making it impossible to build such models 
by hand.  We are currently working on using automated Bayes net construction 
techniques [15] to build such models from libraries of model fragments. 
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