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Abstract. This paper presents the idea of an ROC curve, which quantifies the 
discriminatory potential of a continuous biomarker for treatment selection when 
the outcome is continuous. The analysis assumes data from a randomized parallel 
group design. We use non-parametric density estimators to construct an ROC 
curve based on the probabilities that a (non-)responder, defined by better (worse) 
response to treatment as opposed to control, in the treatment group has a 
biomarker value above a value c. Our non-parametric approach comes close to the 
true AUC in a simulation study based on a normal distribution. Application to a 
real data set shows that despite a significant interaction term in a proportional 
hazards model, a biomarker may not be helpful for treatment decisions. Our proof-
of-principle study opens the door to further developments and generalizations. 
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1. Introduction 

Treatment biomarker interaction is an important concept to operationalize personalized 
medicine. From a statistical point of view, regression models for treatment outcome 
with an interaction term between treatment and continuous biomarker are widely used 
to detect treatment biomarker interaction. Royston et al. [1] provide an interesting 
example modelling the treatment-biomarker interaction term by a fractional polynomial. 

But, a significant treatment-biomarker interaction term may be misleading with 
regard to its interpretation in terms of an individual treatment decision [2]. In this paper 
an alternative approach is provided which uses the ROC curve as an instrument to 
quantify how the distribution of a biomarker differs between responders and non-
responders in a specific therapeutic setting. Our approach relies on data from a 
randomized parallel group design.  

For this scenario, the paper presents the basic idea for the inference of the ROC 
curve using non-parametric conditional density estimates [3] and demonstrates its 
potential value based on a simulation study and an example, the reanalysis of the data 
presented in [1]. 

The strategy is developed for a continuous outcome. It can also be generalized to 
survival data when censoring is replaced by imputation. Huang et al. provide an 
alternative ROC estimate for a binary outcome in a counterfactual setting [2]. The 
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paper modifies the counterfactual ROC approach in [2] to data from a parallel-group 
randomized trial. 

2. Methods 

The continuous outcome in both treatment groups is noted by Y1 and Y2, with higher 
values indicating better outcome. The continuous biomarker value is represented by X. 
The treatment effect between both treatments given a biomarker value x is noted by 
�x= Y1|x-Y2|x. Conditioned on the value of the biomarker x response on treatment 1 is 
defined by by �x>0.  

The ROC curve is defined by (F(c), G(c)), c � ��� F(c) = P(X>c|�<0) is the 
probability that a non-responder under therapy 1 has biomarker values above c and F(c) 
= P(X>c|�>0) is the probability that a responder under therapy 1 has biomarker values 
above c.   

2.1. Bivariate normal (X, Yi) data model 

An ideal randomized trial is simulated by assuming two independent bivariate normal 
distributed (X, Y1) and (X, Y2) measurements. The randomization is relevant to assure 
that the marginal distribution of X is equal in both treatment groups. The correlation 
between biomarker X and outcome Yi is different in both groups (�1=0.5, �2=-0.5). 

The following specifications are made to fix the data generating mechanism in our 
ideal trial: �� � �� , ��
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��� � Cov����  �. The data for group 1 (2) is presented in the upper left panel of Figure 
1 by red (black) points.  With the paired samples for Y1,i and Y2,i conditional to the 
biomarker value X=x, we create a bivariate sample of (X,�) which is presented in 
Figure 1, upper right panel. The blue (green) points show the sample which is 
conditioned to �<0 (�>0). 

2.2. Non-parametric density estimation and sampling approach 

Given a data set for a randomized two group RCT, non-parametric kernel conditional 
density estimation [3] helps to estimate densities for Yj|X, regardless of the distribution 
of biomarkers or outcomes. Together with univariate kernel density estimates for X, we 
can simulate bivariate nonparametric samples from (X,Yj), and subsequently compute 
samples from (X, �). The rejection sampling approach is used to obtain realizations of 
Yj for each given X [4]. 

The ROC curve is constructed by defining the samples conditioned on (�>0) and 
(�<0). The corresponding densities are shown in the low left panel of Figure 1. Now it 
is straightforward to get estimates of F(c) and G(c), to determine the ROC curve 
(shown in the lower right panel of Figure 1), and to calculate its AUC. We used the R 
software [5] and its package ROCR [6] to compute the ROC curves and their 
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corresponding AUCs. The calculation of a 95% confidence interval for the AUC can be 
derived from a wild bootstrap on the data set under analysis. Similarly we can draw a 
95% confidence region for a specific (FP,TP) point on the ROC curve. 

Figure 1. The simulation procedure for 10000 normal distributed samples of section 2.1. 

2.3. Performing a simulation study to compare the non-parametric AUC estimate with 
the true AUC value derived from the data model 

The binormal data model presented in section (2.1) can be used to calculate the true 
AUC value, this value can be compared to AUC estimates derived from trial data of 
different sizes.  

3. Results 

3.1. Simulation Study 

The true AUC derived from the data mechanism described in section 2.1 is 0.7956. For 
each sample size in Table 1 a total of 1000 bootstrap simulations have been performed 
based on the scenario of section 2.1. The mean bias (true AUC minus bootstrap-AUC) 
seems to decrease with increasing sample size, while the empirical 95% region gets 
narrower. For small sample size, the bias appears to be substantial. 
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Table 1. Results of the simulation study 

Sample size per group 100 200 500 1000 
Mean bias 0.0709 0.0550 0.0500 0.0390 

95% region for bias [0.0004, 0.1482] [0.0013, 0.1127] [0.0156, 0.0991] [-0.0010, 0.0813] 

Figure 2. Simulation procedure and results for the data from Royston et al. [1]. Upper right panel: Treatment 
effect by white cell count with 95% pointwise confidence interval; solid line, overall treatment effect; dash 
line: no treatment effect level (HR=1). 

3.2.  Example - non-parametric ROC estimation 

Data of 322 patients published by Royston et al. [1] is analyzed following section 2.2: 
estimation of the ROC curve as well as its AUC. The data is from a randomized breast 
cancer trial. The estimate of the AUC may be conservative regarding the results of 
section 3.1. The biomarker treatment interaction for white cell counts (wcc) is analysed. 
We log-transformed the survival times and wcc. (See Figure 2, left upper panel). 
Bootstrap sampling was applied to estimate a 95% CI for the AUC. 

The (X,�) distribution was simulated by generating 10000 samples as described in 
section 2.2. The densities of the respective samples are shown in the lower left panel of 
Figure 2. The estimated ROC curve for the discrimination of treatment response by 
log-white cell count is presented in the right lower panel of Figure 2. The estimate of 
the AUC is 0.47 (95% bootstrap CI [0.4561, 0.4787]). 
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3.3. Example – regression based interaction estimate 

Royston et al. [1] use fractional polynomials within a proportional hazards model to 
estimate the interaction between the white cell counts and the treatment. They found a 
significant interaction (p=0.0001) formalized by the fractional polynomial presented in 
the upper right panel of Figure 2. This result creates the expression that the biomarker 
has the potential to be helpful for treatment decisions. In section 3.2, the results seem 
not to be so promising and point out that the biomarker does not discriminate between 
responders and non-responders.  

4. Discussion 

We employed nonparametric conditional kernel density estimation to obtain samples 
from the distribution of treatment effect conditioned on a biomarker value and 
constructed the bivariate distributions of biomarker values and therapeutic response. 
From this we derive a ROC curve to quantify the discrimination of biomarker values 
between responder groups and the corresponding AUC.

We present a proof of principle which does not answer relevant technical questions 
related to the inference procedure. They will be discussed elsewhere.  The simulation 
study shows that the inference technique needs improvement to be applied in small 
samples.   

Our ROC differs from the classical ROC approach by having a random variable 
(�) which determines the groups to be compared. There is not a classical gold standard. 

Generalization of the response definition introducing a third category (non-
responder: �<-r; indifference: -r���r; responder: �>r) ) may also be of interest. 

A similar approach for predictive values (i.e. P(�>0|X>c)) will be developed.  
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