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Abstract. Big data resources are difficult to process without a scaled hardware 
environment that is specifically adapted to the problem. The emergence of flexible 
cloud-based virtualization techniques promises solutions to this problem. This 
paper demonstrates how a billion of lines can be processed in a reasonable amount 
of time in a cloud-based environment. Our use case addresses the accumulation of 
concept co-occurrence data in MEDLINE annotation as a series of MapReduce 
jobs, which can be scaled and executed in the cloud. Besides showing an efficient 
way solving this problem, we generated an additional resource for the scientific 
community to be used for advanced text mining approaches. 
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1. Introduction 

In the field of biomedical sciences, millions of papers are published every year, and 
part of this is stored in the literature database MEDLINE. Retrieval interfaces like 
PubMed support search scenarios that target the textual content of abstracts as well as 
the index terms added by specialists at the U.S. National Library of Medicine. These 
semantic annotations, using descriptors (concepts) of the multi-hierarchical annotation 
vocabulary MeSH form a rich knowledge base. To leverage this knowledge it is 
particularly interesting to analyze co-occurrence of descriptors across large amounts of 
MEDLINE content. MeSH descriptor co-occurrences at the level of MEDLINE records 
are periodically published in the co-occurrence file MRCOC [1] as part of the Unified 
Medical Language System (UMLS) Metathesaurus [2]. In the following, we will 
demonstrate a workflow that uses big data technology to process MRCOC in an 
efficient way. The goal is to compute significance values for MeSH descriptor co-
occurrences from more than 1 billion records. 
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2. Methods 

This task is well suited to be addressed by the MapReduce [3] programming paradigm 
for generating significance parameters of co-occurring MeSH descriptor pairs. The 
more the co-occurrence value of a given pair of MeSH descriptors deviates from 
random co-occurrence, the more relevant we can assume a meaningful association 
between these two concepts. For instance, a significant co-occurrence of a substance 
concept and a disease concept could be interpreted that this substance treats, prevents, 
or causes the disease.  
MapReduce uses input key/value pairs, reports output key/value pairs, and can 
therefore be divided into two consecutive main tasks, viz. a Map and a Reduce step. By 
exploiting the Map functionality, the user accesses the input key/value pairs and 
generates intermediate key/value pairs. This intermediate pairs are handled by the 
MapReduce framework in use, which populates the key and the set of corresponding 
values to this key. In the Reduce phase, the user handles the logic of generating the 
output key/value pairs according to the populated key, accessing its values. In order to 
achieve the needed output format, we define six MapReduce steps, which are 
subsequently processed as six particular JobFlowSteps in a JobFlow, executed on 
Amazon Elastic MapReduce [4], with a managed Hadoop framework. Apache Hadoop 
[5, 6] is a Java-based MapReduce implementation for distributed environments and big 
data processing. The advantage is that the MapReduce task can be scaled up easily and 
parallelized running up to 20 parallel instances if needed, after having the problem 
modelled in adjacent MapReduce jobs. In the following, we describe how to solve this 
problem as a series of JobFlowSteps. 

2.1. Log-likelihood ratio 

The log-likelihood ratio [7] can be used for applying a chi-square test and is calculated 
via a co-occurrence table described in Fig. 1. 

Figure 1. Log-likelihood calculation. 

In our experiment, we are using the implementation from the Apache Mahout package 
[8] for log-likelihood calculation. 

M. Kreuzthaler et al. / MapReduce in the Cloud: A Use Case Study 583



2.2. Step descriptions 

Initial filtering and accumulation  

Step 1: The first step accesses the detailed_CoOccurs_YYYY.txt, which describes the 
co-occurring MeSH descriptors at MEDLINE record level [1]. The file is compressed 
and uploaded in an Amazon S3 bucket, a storage drive in the cloud. This step populates 
the intermediate key/value pairs having the UMLS unique identifier (CUI) from MeSH 
descriptor one (CUI1) together with the UMLS CUI from MeSH descriptor two (CUI2) 
as key and the qualifier abbreviation from MeSH descriptor 2, which keeps the MeSH 
subheading information [9] as value. MeSH subheadings like DT = “drug therapy”, TU 
= “therapeutic use” are important to disambiguate significantly co-occurring MeSH 
descriptor pairs, such as between a substance treating or causing a disease. A second 
co-occurrence is extracted in the opposite direction, so that for each record two 
intermediate key/value pairs are fed into Hadoop. In the Reduce phase, we are 
generating the final output line per key: CUI1 CUI2 [accumulated subheading 
information] #CUI1CUI2. CUI2 CUI1 [accumulated subheading information] 
#CUI2CUI1. 

Intermediate occurrence calculations  

Step 2: Takes the output from Step 1 and calculates the overall number of all MeSH 
descriptor occurrences. Step 3: Takes the output from Step 1 and calculates the 
absolute occurrences for CUI1 denoted as #CUI1. Step 4: Takes the output from Step 1 
and calculates the absolute number of occurrences for CUI2 denoted as #CUI2. Step 5: 
The output from Step 1 is further extended by #CUI1notCUI2 using the information 
from the steps before, applying a reduce-side join, yielding: CUI1 CUI2 [accumulated 
subheading information] #CUI1CUI2 #CUI1notCUI2. 

Final log-likelihood calculation  

Step 6: The final step generates the intended output using the output from Step 5, again 
applying a reduce-side join with an additional log-likelihood calculation exploiting the 
currently available counts, which are needed for this step (#CUI1CUI2 #CUI1notCUI2 
#notCUI1CUI2 #notCUI1notCUI2). This has the big advantage that per co-occurrence 
their relevance can be asserted using a chi-square test (with one degree of freedom) for 
different significance levels. The final output has the following format: CUI1 CUI2 
[accumulated subheading information] #CUI1CUI2 #CUI1notCUI2 #notCUI1CUI2 
#notCUI1notCUI2 log-likelihood. 

3. Results 

Experimental setup: Amazon instance information: Name: M1 General Purpose 
Medium; API Name: m1.medium; Memory: 3.75 GB; Compute Units (ECU): 2 units; 
Cores: 1 core; Storage: 410 GB; Arch: 32/64 bit. 
Computing environment: Amazon Elastic MapReduce Managed Hadoop Framework in 
combination with Amazon S3 cloud storage. 
Filter constraints: Co-occurrences within 5 years (e.g. time frame MEDLINE 2009-
2013). Both MeSH descriptors are major topics (FLAG ZY). Benchmarks: see Table 1. 
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Table 1. Processing time (minutes) depending on the number of instances and calculation step. IFAA = 
Initial filtering and accumulation; IMOC = Intermediate occurrence calculations; FLLC = Final log-
likelihood calculation. 

Slave Instances Calculation Part SUM 
 IFAA IMOC FLLC  

2 50 27 36 113 
4 29 13 17 59 
10 16 9 7 32 

4. Discussion 

The results in Table 1 demonstrate the feasibility of processing the MRCOC file for the 
use case presented in this paper in about 30 to 120 minutes depending on the number of 
slave instances in use. The described task was not effectively calculable using a single 
desktop machine (Win 7 Pro; Processor Intel(R) Core(TM) i5-3470 CPU @ 3.20GHz, 
4 Cores; 8GB RAM) without parallel processing attached. By modelling the problem as 
a series of map/reduce jobs the task can be scaled and executed in parallel on a Hadoop 
cluster in a reasonable amount of time. The Amazon Elastic Map Reduce service was 
used for this purpose for negligible costs (a few dollars). This shows that batch job 
oriented reservation of virtual images in the cloud is easily available for users without 
their own clusters for big data processing. With the additional added log-likelihood 
information, statistical significance statements can be made regarding co-occurring 
MeSH descriptors. This allows for example disease-disease, disease-findings, or 
disease-substance stratifications. The vector of subheading information is relevant for 
guessing the correct predication between MeSH descriptors of certain semantic types, 
as exemplified by Table 2. 

Table 2. Examples of semantic relations between concepts ordered by semantic types. 

 Disease Finding Substance Organism 

Finding sign of 
symptom of 

accompanied by treated by  affects 
caused by 

Substance 

causes 
treats 
prevents 
metabolite 

causes 
treats 
prevents 

interacts with 
affects 
is produced by 

Organism causes 
affected by  

causes 
observed in organism sensitive to interacts with 

Body part possible  
location of 

possible  
location of 

targeted by targeted by 

We had used this additional data on initial clustering experiments with promising 
results [10, 11]. 

5. Conclusion and Outlook 

This study examined effective processing of big co-occurrence data in a cloud-based 
environment. As use case, log-likelihood calculation in combination with accumulated 
sub-heading information from co-occurring MeSH descriptors was used. Processing of 
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more than 1 billion records was feasible in less than one hour with a moderate setting 
of a Hadoop-based cluster in an inexpensive Amazon Cloud environment. 
In the near future, we want to make this resource available to the public and see this as 
an additional format of the UMLS MRCOC file. We also want to switch from our 
Hadoop based implementation towards Apache Spark [12], as it seems that this 
environment has advantages in the sense of code readability and processing speed. An 
extension of this method is planned to propagate the co-occurrence data vertically 
across the MeSH hierarchy, which might result in 2 – 3 orders of magnitude larger 
input files.  

Acknowledgement 

This paper was performed as a part of the BMFacts project (BMFacts: Knowledge 
acquisition for a biomedical fact repository), funded by the Austrian Science Fund 
(FWF): [M 1729-N15]. 

References 

[1] UMLS MRCOC file: https://mbr.nlm.nih.gov/MRCOC.shtml, last access: 13 Mar 2016 
[2] O. Bodenreider (2004). The Unified Medical Language System (UMLS): integrating biomedical 

terminology. Nucleic acids research, 32(Suppl 1), D267-D270. 
[3] J. Dean & S. Ghemawat (2008). MapReduce: simplified data processing on large clusters. 

Communications of the ACM, 51(1), 107-113. 
[4] https://aws.amazon.com/elasticmapreduce/?nc1=h_ls , last access: 13 Mar 2016 
[5] M. Bhandarkar (2010). MapReduce programming with Apache Hadoop. 2010 IEEE International 

Symposium on Parallel & Distributed Processing (IPDPS), (pp. 1-1). IEEE. 
[6] R. C. Taylor (2010). An overview of the Hadoop/MapReduce/HBase framework and its current 

applications in bioinformatics. BMC Bioinformatics, 11 (Suppl 12), S1. 
[7] T. Dunning, (1993). Accurate methods for the statistics of surprise and coincidence. Computational 

Linguistics, 19(1), 61-74. 
[8] R. Anil, T. Dunning, & E. Friedman. (2011). Mahout in Action (pp. 145-183). Shelter Island: Manning. 
[9] Medical Subject Headings https://www.nlm.nih.gov/MeSH/subhierarchy.html, last access: 13 Mar 2016 
[10] J. A.Miñarro-Giménez, M. Kreuzthaler, & S. Schulz (2015). Knowledge Extraction from MEDLINE by 

Combining Clustering with Natural Language Processing. AMIA Annual Symposium Proceedings (Vol. 
2015, p. 915). 

[11] J. A. Miñarro-Giménez, M. Kreuzthaler, J. Bernhardt-Melischnig, C. Martínez-Costa, & S. Schulz. 
(2014). Acquiring Plausible Predications from MEDLINE by Clustering MeSH Annotations. Studies in 
Health Technology and Informatics, 216, 716-720. 

[12] A. G. & T. R. Soomro (2015). Big Data Analysis: Apache Spark Perspective. Global Journal of 
Computer Science and Technology, 15(1). 

M. Kreuzthaler et al. / MapReduce in the Cloud: A Use Case Study586


