
MapReduce in the Cloud: A Use Case Study
for Efficient Co-Occurrence Processing of

MEDLINE Annotations with MeSH

Markus KREUZTHALER1, Jose Antonio MIÑARRO-GIMÉNEZ
and Stefan SCHULZ

Institute for Medical Informatics, Statistics and Documentation,
Medical University of Graz, Austria

Abstract. Big data resources are difficult to process without a scaled hardware
environment that is specifically adapted to the problem. The emergence of flexible
cloud-based virtualization techniques promises solutions to this problem. This
paper demonstrates how a billion of lines can be processed in a reasonable amount
of time in a cloud-based environment. Our use case addresses the accumulation of
concept co-occurrence data in MEDLINE annotation as a series of MapReduce
jobs, which can be scaled and executed in the cloud. Besides showing an efficient
way solving this problem, we generated an additional resource for the scientific
community to be used for advanced text mining approaches.

Keywords. Big data, Cloud based processing, MEDLINE, Concept co-occurrence

1. Introduction

In the field of biomedical sciences, millions of papers are published every year, and
part of this is stored in the literature database MEDLINE. Retrieval interfaces like
PubMed support search scenarios that target the textual content of abstracts as well as
the index terms added by specialists at the U.S. National Library of Medicine. These
semantic annotations, using descriptors (concepts) of the multi-hierarchical annotation
vocabulary MeSH form a rich knowledge base. To leverage this knowledge it is
particularly interesting to analyze co-occurrence of descriptors across large amounts of
MEDLINE content. MeSH descriptor co-occurrences at the level of MEDLINE records
are periodically published in the co-occurrence file MRCOC [1] as part of the Unified
Medical Language System (UMLS) Metathesaurus [2]. In the following, we will
demonstrate a workflow that uses big data technology to process MRCOC in an
efficient way. The goal is to compute significance values for MeSH descriptor co-
occurrences from more than 1 billion records.

1 Corresponding Author: Markus KREUZTHALER, Institute for Medical Informatics, Statistics and

Documentation, Medical University of Graz, Auenbruggerplatz 2, 8036 Graz, Austria, E-Mail:
markus.kreuzthaler@medunigraz.at

Exploring Complexity in Health: An Interdisciplinary Systems Approach
A. Hoerbst et al. (Eds.)

© 2016 European Federation for Medical Informatics (EFMI) and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/978-1-61499-678-1-582

582

2. Methods

This task is well suited to be addressed by the MapReduce [3] programming paradigm
for generating significance parameters of co-occurring MeSH descriptor pairs. The
more the co-occurrence value of a given pair of MeSH descriptors deviates from
random co-occurrence, the more relevant we can assume a meaningful association
between these two concepts. For instance, a significant co-occurrence of a substance
concept and a disease concept could be interpreted that this substance treats, prevents,
or causes the disease.
MapReduce uses input key/value pairs, reports output key/value pairs, and can
therefore be divided into two consecutive main tasks, viz. a Map and a Reduce step. By
exploiting the Map functionality, the user accesses the input key/value pairs and
generates intermediate key/value pairs. This intermediate pairs are handled by the
MapReduce framework in use, which populates the key and the set of corresponding
values to this key. In the Reduce phase, the user handles the logic of generating the
output key/value pairs according to the populated key, accessing its values. In order to
achieve the needed output format, we define six MapReduce steps, which are
subsequently processed as six particular JobFlowSteps in a JobFlow, executed on
Amazon Elastic MapReduce [4], with a managed Hadoop framework. Apache Hadoop
[5, 6] is a Java-based MapReduce implementation for distributed environments and big
data processing. The advantage is that the MapReduce task can be scaled up easily and
parallelized running up to 20 parallel instances if needed, after having the problem
modelled in adjacent MapReduce jobs. In the following, we describe how to solve this
problem as a series of JobFlowSteps.

2.1. Log-likelihood ratio

The log-likelihood ratio [7] can be used for applying a chi-square test and is calculated
via a co-occurrence table described in Fig. 1.

Figure 1. Log-likelihood calculation.

In our experiment, we are using the implementation from the Apache Mahout package
[8] for log-likelihood calculation.

M. Kreuzthaler et al. / MapReduce in the Cloud: A Use Case Study 583

2.2. Step descriptions

Initial filtering and accumulation

Step 1: The first step accesses the detailed_CoOccurs_YYYY.txt, which describes the
co-occurring MeSH descriptors at MEDLINE record level [1]. The file is compressed
and uploaded in an Amazon S3 bucket, a storage drive in the cloud. This step populates
the intermediate key/value pairs having the UMLS unique identifier (CUI) from MeSH
descriptor one (CUI1) together with the UMLS CUI from MeSH descriptor two (CUI2)
as key and the qualifier abbreviation from MeSH descriptor 2, which keeps the MeSH
subheading information [9] as value. MeSH subheadings like DT = “drug therapy”, TU
= “therapeutic use” are important to disambiguate significantly co-occurring MeSH
descriptor pairs, such as between a substance treating or causing a disease. A second
co-occurrence is extracted in the opposite direction, so that for each record two
intermediate key/value pairs are fed into Hadoop. In the Reduce phase, we are
generating the final output line per key: CUI1 CUI2 [accumulated subheading
information] #CUI1CUI2. CUI2 CUI1 [accumulated subheading information]
#CUI2CUI1.

Intermediate occurrence calculations

Step 2: Takes the output from Step 1 and calculates the overall number of all MeSH
descriptor occurrences. Step 3: Takes the output from Step 1 and calculates the
absolute occurrences for CUI1 denoted as #CUI1. Step 4: Takes the output from Step 1
and calculates the absolute number of occurrences for CUI2 denoted as #CUI2. Step 5:
The output from Step 1 is further extended by #CUI1notCUI2 using the information
from the steps before, applying a reduce-side join, yielding: CUI1 CUI2 [accumulated
subheading information] #CUI1CUI2 #CUI1notCUI2.

Final log-likelihood calculation

Step 6: The final step generates the intended output using the output from Step 5, again
applying a reduce-side join with an additional log-likelihood calculation exploiting the
currently available counts, which are needed for this step (#CUI1CUI2 #CUI1notCUI2
#notCUI1CUI2 #notCUI1notCUI2). This has the big advantage that per co-occurrence
their relevance can be asserted using a chi-square test (with one degree of freedom) for
different significance levels. The final output has the following format: CUI1 CUI2
[accumulated subheading information] #CUI1CUI2 #CUI1notCUI2 #notCUI1CUI2
#notCUI1notCUI2 log-likelihood.

3. Results

Experimental setup: Amazon instance information: Name: M1 General Purpose
Medium; API Name: m1.medium; Memory: 3.75 GB; Compute Units (ECU): 2 units;
Cores: 1 core; Storage: 410 GB; Arch: 32/64 bit.
Computing environment: Amazon Elastic MapReduce Managed Hadoop Framework in
combination with Amazon S3 cloud storage.
Filter constraints: Co-occurrences within 5 years (e.g. time frame MEDLINE 2009-
2013). Both MeSH descriptors are major topics (FLAG ZY). Benchmarks: see Table 1.

M. Kreuzthaler et al. / MapReduce in the Cloud: A Use Case Study584

Table 1. Processing time (minutes) depending on the number of instances and calculation step. IFAA =
Initial filtering and accumulation; IMOC = Intermediate occurrence calculations; FLLC = Final log-
likelihood calculation.

Slave Instances Calculation Part SUM
 IFAA IMOC FLLC

2 50 27 36 113
4 29 13 17 59
10 16 9 7 32

4. Discussion

The results in Table 1 demonstrate the feasibility of processing the MRCOC file for the
use case presented in this paper in about 30 to 120 minutes depending on the number of
slave instances in use. The described task was not effectively calculable using a single
desktop machine (Win 7 Pro; Processor Intel(R) Core(TM) i5-3470 CPU @ 3.20GHz,
4 Cores; 8GB RAM) without parallel processing attached. By modelling the problem as
a series of map/reduce jobs the task can be scaled and executed in parallel on a Hadoop
cluster in a reasonable amount of time. The Amazon Elastic Map Reduce service was
used for this purpose for negligible costs (a few dollars). This shows that batch job
oriented reservation of virtual images in the cloud is easily available for users without
their own clusters for big data processing. With the additional added log-likelihood
information, statistical significance statements can be made regarding co-occurring
MeSH descriptors. This allows for example disease-disease, disease-findings, or
disease-substance stratifications. The vector of subheading information is relevant for
guessing the correct predication between MeSH descriptors of certain semantic types,
as exemplified by Table 2.

Table 2. Examples of semantic relations between concepts ordered by semantic types.

 Disease Finding Substance Organism

Finding sign of
symptom of

accompanied by treated by affects
caused by

Substance

causes
treats
prevents
metabolite

causes
treats
prevents

interacts with
affects
is produced by

Organism causes
affected by

causes
observed in organism sensitive to interacts with

Body part possible
location of

possible
location of

targeted by targeted by

We had used this additional data on initial clustering experiments with promising
results [10, 11].

5. Conclusion and Outlook

This study examined effective processing of big co-occurrence data in a cloud-based
environment. As use case, log-likelihood calculation in combination with accumulated
sub-heading information from co-occurring MeSH descriptors was used. Processing of

M. Kreuzthaler et al. / MapReduce in the Cloud: A Use Case Study 585

more than 1 billion records was feasible in less than one hour with a moderate setting
of a Hadoop-based cluster in an inexpensive Amazon Cloud environment.
In the near future, we want to make this resource available to the public and see this as
an additional format of the UMLS MRCOC file. We also want to switch from our
Hadoop based implementation towards Apache Spark [12], as it seems that this
environment has advantages in the sense of code readability and processing speed. An
extension of this method is planned to propagate the co-occurrence data vertically
across the MeSH hierarchy, which might result in 2 – 3 orders of magnitude larger
input files.

Acknowledgement

This paper was performed as a part of the BMFacts project (BMFacts: Knowledge
acquisition for a biomedical fact repository), funded by the Austrian Science Fund
(FWF): [M 1729-N15].

References

[1] UMLS MRCOC file: https://mbr.nlm.nih.gov/MRCOC.shtml, last access: 13 Mar 2016
[2] O. Bodenreider (2004). The Unified Medical Language System (UMLS): integrating biomedical

terminology. Nucleic acids research, 32(Suppl 1), D267-D270.
[3] J. Dean & S. Ghemawat (2008). MapReduce: simplified data processing on large clusters.

Communications of the ACM, 51(1), 107-113.
[4] https://aws.amazon.com/elasticmapreduce/?nc1=h_ls , last access: 13 Mar 2016
[5] M. Bhandarkar (2010). MapReduce programming with Apache Hadoop. 2010 IEEE International

Symposium on Parallel & Distributed Processing (IPDPS), (pp. 1-1). IEEE.
[6] R. C. Taylor (2010). An overview of the Hadoop/MapReduce/HBase framework and its current

applications in bioinformatics. BMC Bioinformatics, 11 (Suppl 12), S1.
[7] T. Dunning, (1993). Accurate methods for the statistics of surprise and coincidence. Computational

Linguistics, 19(1), 61-74.
[8] R. Anil, T. Dunning, & E. Friedman. (2011). Mahout in Action (pp. 145-183). Shelter Island: Manning.
[9] Medical Subject Headings https://www.nlm.nih.gov/MeSH/subhierarchy.html, last access: 13 Mar 2016
[10] J. A.Miñarro-Giménez, M. Kreuzthaler, & S. Schulz (2015). Knowledge Extraction from MEDLINE by

Combining Clustering with Natural Language Processing. AMIA Annual Symposium Proceedings (Vol.
2015, p. 915).

[11] J. A. Miñarro-Giménez, M. Kreuzthaler, J. Bernhardt-Melischnig, C. Martínez-Costa, & S. Schulz.
(2014). Acquiring Plausible Predications from MEDLINE by Clustering MeSH Annotations. Studies in
Health Technology and Informatics, 216, 716-720.

[12] A. G. & T. R. Soomro (2015). Big Data Analysis: Apache Spark Perspective. Global Journal of
Computer Science and Technology, 15(1).

M. Kreuzthaler et al. / MapReduce in the Cloud: A Use Case Study586

