ECAI 2016
G.A. Kaminka et al. (Eds.)
© 2016 The Authors and IOS Press.

999

This article is published online with Open Access by 10S Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).

doi:10.3233/978-1-61499-672-9-999

Gaining Insight by
Structural Knowledge Extraction

Pietro Cottone, Salvatore Gaglio, Giuseppe Lo Re, Marco Ortolani!

Abstract. The availability of increasingly larger and more
complex datasets has boosted the demand for systems able
to analyze them automatically. The design and implemen-
tation of effective systems requires coding knowledge about
the application domain inside the system itself; however, the
designer is expected to intuitively grasp the most relevant
features of the raw data as a preliminary step.

In this paper we propose a framework to get useful insight
about a set of complex data, and we claim that a shift in per-
spective may be of help to tackle with the unaddressed goal
of representing knowledge by means of the structure inferred
from the collected samples. We will present a formulation of
knowledge extraction in terms of Grammatical Inference (GI),
an inductive process able to select the best grammar consis-
tent with the samples, and a proof-of-concept application in
a scenario of mobility data.

1 Introduction

Knowledge extraction has represented one of the most in-
teresting challenges in Artificial Intelligence for the past
decades [1]. Massive collections of data regarding the most
disparate aspects of users’ lives have become readily avail-
able for machine processing, deeply changing the nature of
the problem. Nowadays the main concern is not just the ne-
cessity of accurate predictive models, but above all the de-
mand for early provision of reliable insights to experts. The
main issue regards the choice of the most appropriate tools
and features to extract information from high-dimensional,
incomplete and noisy datasets. Researchers have become in-
creasingly more aware that “measuring” does not seamlessly
translate into “understanding”, and their primary goal is to
make sense of data by letting models emerge from the col-
lected samples, rather then deducing them from pre-set as-
sumptions. In this context, an essential requirement is the
ability to build models that may be interrogated in order to
improve representation and comprehension about the nature
of data. A vast literature has investigated the interpretabil-
ity of models and results produced by learning algorithms:
approaches of increasing complexity have provided more and
more accurate results, at the cost of less transparent repre-
sentations [2]. Often, predictions supplied by these methods
help the user in choosing the best option among several avail-
able ones; without interpretable models, this process can not
provide any remarkable insight to support and explain the
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decision. We claim that an approach to knowledge extraction
that highlights the structural information can alleviate this
problem. Specifically, we propose to represent the meaningful
information by means of the structure inferred from the col-
lected samples. Our definition of structural knowledge refers
to the taxonomy proposed in [3], where three different types
of knowledge are singled out:

— declarative knowledge expresses the awareness about some
items, events or concepts. It is the knowledge about “know-
ing that”, which allows us to identify and describe an item
or a concept, but does not enable us to use them;

— procedural knowledge describes how learners use or apply
the former type of knowledge; it is about “knowing how”
to do something.

— structural knowledge mediates the translation of declara-
tive into procedural knowledge and facilitates the applica-
tion of the latter; it refers to how concepts within a domain
are interrelated; it is the knowledge about “knowing why”.

We note that structural knowledge is significantly different
from structured knowledge, in that the latter typically refers
to a description through entities and relationships; in other
words, the focus is on how knowledge itself is organized. On
the other hand, structural knowledge deals with the type of
knowledge to be acquired, rather than the way it is orga-
nized. The emphasis is on the organization and structure of
the objects of the analysis, and this will be the topic of our
discussion.

In the present paper, the process of automatic extraction of
this type of knowledge from raw data will rely on concepts and
methods from Algorithmic Learning Theory (ALT), whose
main subject is the study of formal languages and automata.
Unlike its statistical counterpart, ALT does not require any
specific constraints on the statistic properties of the available
data, so it is well suited for cases when no a-priori hypotheses
can be formulated. Its most interesting peculiarity is that the
obtained knowledge is syntactically driven, hence intrinsically
structural. Thus, representations obtained through algorith-
mic approaches can point out interesting relationships among
the key elements of a dataset, implicitly suggesting what the
most relevant features are. In particular, we will make use
of Grammatical Inference (GI) [4], an inductive process able
to select the best grammar (according to a metric) that is
consistent with the samples. Instead of being represented in
a vectorial space, we will thus regard our input as strings
generated by an unknown grammar [5]; our claim is that GI
can be successfully applied in order to get relevant insights
about the hidden structure embedded in large collections of
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Figure 1. From data to grammars: an overview of the proposed approach.

data, enabling the user to pose new kinds of questions, taking
advantage of the generative models obtained by the induc-
tive process. Thanks to their recursive nature, grammars are
also able to make recurrent relations among data explicit at
different granularities.

In order to highlight the potential of the suggested ap-
proach, GI, and more specifically inference of regular lan-
guages [6], has been applied to the problem of inferring mobil-
ity models. In this context, multi-scale analysis allows us to
grasp a more significant insight into data, and to get a bet-
ter representation of user mobility habits, according to the
traversed routes.

The remainder of the paper is structured as follows. Sec-
tion 2 contains a very brief survey of methods for coping with
high-dimensional and complex datasets. In Section 3 our ap-
proach based on GI will be described, followed by a case-
study application to mobility data in Section 4. Finally, we
will present our conclusions in Section 5.

2 Preliminaries: coping with dimensionality

Learning from experience is a key point in the design of in-
telligent agents. Over the years, this issue has been addressed
in different ways, depending on the available devices, algo-
rithms, and data, beginning with expert systems, probabilis-
tic graphical models, and other statistical approaches. It soon
became apparent, however, that one of the most relevant chal-
lenges was the selection of features from unlabeled data, so
a lot of effort has been devoted during the last decade to
the creation of systems able to perform this task automat-
ically. Notable examples of this class of methods fall under
the name of Deep Learning, and it has been shown that their
finest performance is comparable to the best hand-engineered
systems [7], [8]. A strong theoretical limitation, however, is
represented by the well-known No Free Lunch theorem; one of
its formulations informally states that “any two optimization
algorithms are equivalent when their performance is averaged
across all possible problems” [9]; in other words, there is no
possible general criterion for choosing the optimal parameters
of a method when absolutely no prior knowledge about the
problem is available, except raw data [10]. If models are to
be regarded as “black-boxes”, there is no reasonably efficient
way to choose among several of them, when all choices fit the
data comparably well.

The most recent technological advances have once more
complicated the nature of the problem; it is now possible to

perform measurements regarding the most disparate aspects
of users’ lives at previously inconceivable rates; moreover such
data are highly heterogeneous, so the obtained datasets are
typically high-dimensional and possibly incomplete. One of
the most common examples is the massive volume of data
with diverse features collected in smart environments [11],
where pervasive networks of sensing devices are deployed, in
order to support users in controlling the monitored environ-
ments [12], [13]. The peculiar challenges related to the anal-
ysis of this kind of data has given rise to a specific branch
of Al named Ambient Intelligence (Aml), specifically aimed
at exploiting the information about the environment state in
order to personalize it, adapting the environment to users’
preferences [14].

In this context, most traditional approaches to data mining
are not viable to handle the complexity of the new collections
especially because they fail to provide useful insight into the
real nature of data [15]. Very high dimensionality is hardly
manageable by a human mind so, lacking support from the
machine, designers are effectively prevented from grasping the
most important features to consider.

It has thus been claimed [16] that the availability of quali-
tative information might ease the problem: at the cost of de-
creasing accuracy, the user can obtain a better understanding
of the data, being free to focus on the overall organization at
a larger scale; once a first insight is obtained, the process can
be repeated at a smaller scale, considering only a subset of the
original dataset, or a projection with lower dimensionality.

In this paper, we claim that qualitative information can
provide very useful and compact guidelines to designers, in
the preliminary set-up of systems for automatic data analy-
sis. Also, recent findings [17] show that neural processes acti-
vated by human comprehension hint toward a grammar-based
inner construction of knowledge representation; hence, mod-
eling data in the form of grammars might help users to figure
out the main structure behind relevant information. Gram-
mar representations have been devised for syntactic pattern
recognition [18]; in this work, we use some ideas pertaining to
this research area, adapting and updating them with recent
advances in data analysis.

3 Inferring the structure behind data
through formal grammars

Assuming as a working hypothesis that the environment ob-
served by the agent is computable, our goal is to exploit the
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available data in order to infer a model that closely matches
the unknown model for the environment. In other words, we
assume that a (yet unknown) language describing our data
exists; admittedly, this language may be extremely complex
and data may be corrupted by noise, so that reconstructing
the original language from raw data is likely to be a very chal-
lenging task. However, relying on formal languages to repre-
sent, organize and process knowledge is advantageous as they
naturally provide a description of the relations between their
elements, which may be regarded as their hidden structure.

A formal language is a (finite or infinite) set of sentences,
each finite in length and made up of a finite set of symbols [19].
In real-life problems, however, data is often represented by a
projection in a geometric space, whose dimensions are the
chosen features, so a preliminary step requires translating the
original representation of the data into a symbolic one. This
is the first step shown in Figure 1, which depicts a high-level
representation of our approach.

By encoding data as symbolic strings, we in fact move from
a representation in a classical Euclidean space to a hierarchi-
cal organization; we rely on an ultra-metric space organized as
a tree, where each node is associated to a string representing
its path from the root, as will be detailed in the next sections.

The core of our approach is to use the symbolic data to
infer the underlying target language through one of its possi-
ble representations. Generally speaking, two different descrip-
tions can be associated to a language, namely a generative de-
scription, and a recognition-based one. In this paper, we focus
on regular languages, so the corresponding representations are
regular grammars and Deterministic Finite Automata (DFAs),
respectively.

The generative description corresponds to a grammar, that
is a formal system able to produce exactly the set of strings
of the given language by applying predefined rewriting rules,
expressed in the form of productions [20], [21]. A taxonomy
of grammars has been proposed based on the complexity of
such transformation rules, with regular grammars at its low-
est level [22]. Generative descriptions are appealing to humans
because they are intuitive, but their straightforward imple-
mentation is inefficient.

In the recognition-based description, a language is consid-
ered as the set of strings accepted by an automaton, that is a
formal system that accepts all the set of strings belonging to
the given language rejects the others. Automata are appeal-
ing to machines, because they are formal, compact, low-level
machines and can be implemented easily and efficiently; on
the other hand, they are hardly understandable by a user.

Inferring a language through a grammar is by all means a
learning process which may be characterized by its capabil-
ity of generalizing. Unlike other learning approaches, where
generalization is obtained by optimization, GI belongs to the
category of algorithms that generalize through a search in a
hypothesis space, so it may be regarded as an instance of the
general framework known as Version Space strategy [23]. The
key insight of this strategy is the assumption that hypothe-
ses in the search space are organized through a “general-to-
specific” ordering; a learning algorithm can explore the in-
finite hypothesis space by exploiting its structure, without
explicitly visiting every element of it. In GI, the general-to-
specific ordering is defined in terms of relations between au-
tomata, and the order is thus induced on languages.

3.1 Grammatical inference

As stated in [4], identifying a language is the main concern
of Grammatical Inference (GI), which may be defined as the
process of searching for a hidden grammar by exploiting the
scarce available information, often consisting of just a set of
strings; as such, GI belongs to the broader framework of Al-
gorithmic Learning Theory (ALT), whose central concept is
that of a language learnability model. Its main components
are a definition of learnability, a method of information pre-
sentation, and a naming relation.

In this context, learnability is expressed by the principle of
identification in the limit formulated by Gold [24]: the learning
algorithm should identify the correct hypothesis on every pos-
sible data sequence consistent with the problem space. This
idea is a non-probabilistic equivalent of statistical consistency,
where the learner can fail on data sequences whose probability
measure is 0; in this case, a learner (an algorithm) will iden-
tify a language in the limit if, after a number of presented
strings, its hypothesis no longer changes.

The way in which input data are provided to the learner is
called a presentation; let L indicate a language defined over
an alphabet X, this is a function ¢ : N — X, defined over the
set of natural numbers, with codomain some set of samples
X C L. As regards the methods of information presentation,
two main procedures are available:

— presentation from text: a sequence of strings (z;, x5, ...)
belonging to L is provided; every string in L must appear
at least once in the sequence. This presentation, denoted
by T'(L), is also known as positive presentation:

T(L) :{(;5: N — X*: ¢(N) :L};

— presentation from informant: the learner is supplied with
strings marked as positve (i.e. belonging to the language L)
or negative (not in L). This kind of presentation, denoted
by I(L), is known as complete:

I(L)={¢:N—3%"x{0, 1}: 6(N) = L x {1} UL x {0}},

where L indicates the complement of L with respect to X*.

Finally, the naming function is some surjective function
L: G — £, with the set G of grammars as the domain, and
the set of languages £ as the codomain.

The language learnability paradigm has some theoretical
limitations. As Gold showed in [24], a class of super-finite lan-
guages® cannot be identified in the limit from a text presenta-
tion. This class includes regular languages, hence they cannot
be inferred from positive examples only; in other words, a
set of strings belonging to the target regular language is not
sufficient to learn it.

Even if we turn to a presentation from informant, we incur
some limitations, as also pointed out in [24]. In particular, the
following holds:

Theorem 1 The whole class of recursive languages can not
be identified in the limit from a complete presentation.

However in the same work Gold showed that, when we re-
strict the class of languages, it may be proven that:

2 A super-finite language class is a class that contains all finite
languages and at least one infinite language.
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Figure 2. PTA(I,) for I, = {a, aaa, abab, bba}.

Theorem 2 The class of primitive recursive languages® can
be identified in the limit by a complete presentation.

Regular languages are primitive recursive languages, so a
complete presentation of examples guarantees their theoret-
ical learnability. We can thus turn our attention to how the
inference process can be practically carried out. Motivated by
the generalization principle, we are interested in identifying
the most general DFA consistent with the given samples, i.e.
the minimum canonical automaton.

Even though, given a complete presentation of positive and
negative examples I = I, UI_, an automaton consistent with
I exists and is unique [20], Gold also showed that finding
the minimum consistent automaton with a set of samples is
an NP-hard problem; therefore, some heuristic is needed to
carry out this search in an efficient way.

3.2 Generalization as search

We will characterize the search space for our problem through

the following basic elements:

— 4nitial node: an “acceptable” DFA;

— successor function: a set of successors of an automaton gen-
erated by pairwise state merging;

— target: minimum automaton that is consistent with the

samples I.

This search space may thus be described as a Boolean lat-
tice [26], whose initial node is a tree automaton — the so-called
Prefiz Tree Acceptor (PTA) — accepting precisely the positive
examples I, such as the one shown in Figure 2.

The complexity of the search can be eased by exploiting
some general-to-specific ordering of the nodes; intuitively, in
grammatical induction, this ordering is based on constraints
characterizing the hypotheses, with fewer constraints entail-
ing more general hypotheses, and vice versa. By construction,
the PTA(Z, ) is the most specific DFA for the positive exam-
ples, and we want to explore the space moving toward the
minimum consistent automaton, with the negative examples
as our bounds.

The set of successors of an automaton is generated by pair-
wise merging operations: two states of the original automa-
ton are chosen for merging, resulting into a new automaton
with one fewer state with respect to the original, as shown in
Figure 3 which depicts an excerpt of a lattice. Even though
merging two states might result into a non-deterministic au-
tomaton, it is possible to carry out the generalization process

3 A language is primitive recursive if its characteristic function
is primitive recursive. The formal definition may be found for
instance in [25].
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Figure 3. Excerpt of a lattice: automata in the middle row are
obtained from the initial one by merging different pairs of its
states.

avoiding non-determinism, by making use of the so-called fold-

ing operation, as described in [4].

Pairwise merging may be formally defined as a partition
of the set of states of the original automaton A, and is a
derivation operation, which defines a partial order relation
over the set II(A) of all the possible partitions of the set of
states in A. Notably, it preserves the property of language
inclusion, as shown in [26], which means that the application
of the merging operator:

— either causes the number of states to decrease, but the rec-
ognized language is preserved;

— or it also implies a change in the language recognized by
the resulting automaton, but such language is more general,
and properly includes the original one.

The Boolean lattice Lat(PTA(I,)) is thus completely de-
fined by its initial node, i.e. PT'A(I,), and the nodes ob-
tained by repeatedly applying merging operations included in
II(PTA(I,)); the deepest node in Lat(PTA(I,)) is the Uni-
versal Automaton (UA), that accepts all the strings defined
over an alphabet ¥. The inference of regular languages, pro-
vided a presentation from an informant, can be turned into
the search for an automaton A" € Lat(PTA(I,)), given the
additional hypothesis of structural completeness of I +4.

It may be proven [26] that if I, is a structurally complete
sample with respect to the minimal automaton A accepting
a regular language L, then A belongs to Lat(PTA(I,)), so
the inference of a regular language by presentation from an
informant can be turned into the search for an automaton in
the space defined by that Boolean lattice.

The definition of minimal DFA consistent with the sample
set I can also be visualized in terms of the elements of the lat-
tice, through the so-called Border Set, which establishes the
limit of generalization in the search process under the control
of negative samples I _, as graphically shown by the dotted
line in Figure 4. The border set parts the lattice into two
main subsets: admissible automata, between the root and the
border, and inadmissible ones, falling beyond the border. The
minimum DFA consistent with I is the deepest (i.e. smallest)
automaton falling right on the border set, hence still admis-
sible.

A I, sample set is said to be structurally complete with respect
to an automaton A, if every transition of A is used by at least
a string in I, and every final state in A corresponds to at least
one string in I, .
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Since the number of automata in the lattice generated by
an initial PT' A with n states is given by the Bell number:

n—1

w(n) = Z (n B 1>w(n —1),

p=0 p

with w(0) = 1, then the space defined by such lattice is clearly
too large to be searched exhaustively; therefore, some ap-
proaches have been proposed to carry out the search more
efficiently.

Evidence-Driven State Merging (EDSM) represents a state-
of-the-art iterative algorithm to perform such search, whose
detailed description can be found in [6]. It was introduced
to reduce the number of comparisons necessary during merg-
ing, and makes use of a heuristic that computes a score for
all possible merges by counting the number of strings that
would end in the same state; the function returns —oo if the
merge makes the automaton inadmissible (i.e. an element of
I_ would be accepted or an element of I, rejected); the pair
with the highest score is chosen for merging.

The results of applying this algorithm in order to perform
structural knowledge extraction in a practical scenario will be
discussed in the next section.

4 A proof of concept: mobility data

In order to provide a proof of concept for our approach to
structural knowledge extraction, we consider a case study
aimed to infer and represent user mobility models via reg-
ular languages.

A mobility model is a concise and meaningful representa-
tion of past and future mobility behaviors of users. Nowadays,
location data are easy to collect, thanks to the availability
of a wide set of common devices, such as smartphones or
tablets, that easily provide large amounts of measurements
[27]. Extracting meaningful information from this wealth of
data, however, is still an open issue. The main questions, for
instance, regard the selection of the most significant features,
the proper granularity necessary to perform effective analy-
sis, and the metric to use to compare the mobility habits of
various users.

Figure 5. An example of the first two bits of a geohash string.

4.1 Positions as symbols

Following the approach presented in the previous sections,
the first step of the process requires translating paths into a
symbolic representation; to this aim, we selected an encoding
system for geographical coordinates known as geohash encod-
ing.

Geohash assigns a hash string to each (latitude, longitude)
pair; originally, it was developed to provide a smart and easy
representation of URLs, but it has been since widely used to
store spatial coordinates in databases [28]. The encoding is
based on a hierarchical spatial data structure that recursively
subdivides the whole globe into “buckets” according to a grid;
unlike traditional coordinate systems, it does not actually rep-
resent a point, but rather a bounding area to which the point
is restricted. The space is partitioned according to a 4 x 8
grid; each cell can be recursively divided into 32 smaller cells,
and so on, thus providing a hierarchical structure that resem-
bles that of a recursive quadtree; at each iteration, each cell
is identified by an alphanumerical character from an alphabet
of 32 symbols.

In the geohash string, even bits encode information about
longitude, while odd ones encode latitude; an example of en-
coding at the first 2 levels is reported in Figure 5, which
shows two rectangles partitioning the entire globe longitu-
dinally (left), and the four rectangles that may be obtained
with a successive latitudinal partition (right). This process
can be iterated until the desired spatial accuracy is obtained:
the longer the geohash string, the smaller the area. The length
of the binary string must always be a multiple of 5 to allow its
conversion to a sequence of symbols from geohash alphabet.

The following table shows the size of the area identified by
a geohash code with respect to its length.

Table 1. Area covered by a cell with respect to the length of its

geohash encoding string.

~ Covered Area km?

16,000,000
500,000
15,000
500
15
0.5
0.02

Geohash length

O UL W

Geohash encoding possesses two notable properties,

namely:

— anclusion: it is always possible to add a character to a geo-
hash string, obtaining a new string that identifies a cell
contained in the original one. For example, the coordinates
(38.120281, 13.357278) identify a point included inside the

sqc2zg cell, but also inside sqc2zgw or sqc2zgwk;
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Figure 6. From trajectories to DFA hierarchy: given the DFA
for a larger cell (dashed-line box), a more detailed model can be
built by inferring the DFA for transition u (solid-line box).

— locality: strings with common prefix mark contiguous cells.
Thus, it is very simple to check if two cells are neighbors.
The converse is not always true: two cells could be next to
each other even if they do not share a common prefix.

In the following, we exploit both properties to achieve an
effective implementation of our GI process.

4.2 Mobility models as automata

The source data we will consider consists of movement
tracks [29]:

Definition 1 (Movement track) This is a temporally or-
dered sequence of spatial-temporal position records captured
by a device during the whole lifespan of the user observation.
Each record contains a position and the instant of the capture,
with no two records having the same instant value.

Movement tracks have to be turned into trajectories [30]
in order to be able to filter out noise, and to estimate other
movement features, such as speed and direction. The true aim
of the analysis may however be identified in the paths:

Definition 2 (Path) A path is the portion of a trajectory
between two relevant points in time or space dimensions.

Paths reveal user behavior and highlight relevant places
where users spend most of their time. Being aware of these
places is crucial in many applications, and they are funda-
mental in comparing habits of several users or in recognizing
anomalies or changes in their routines.

In our approach, trajectories are transformed into symbolic
sequences by turning each pair of coordinates into the corre-
sponding geohash string; through this encoding, they can eas-
ily be analyzed at different spatial scales: once the required
precision is set, it is sufficient to truncate every geohash string
of each trajectory at the corresponding length. The user mo-
bility model is finally decomposed by following the trajectories
with respect to every cell of geohash encoding: a regular lan-
guage is thus learned for each cell of the geographical area
crossed by user movements, starting at the highest level of
granularity, as shown in Figure 6. At any level, a more com-
plex and detailed automaton may be obtained by substituting

i
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Figure 7. Subsequences with the same prefix originate mini
trajectories: the third element of each string (in bold face) may be
concatenated to obtain a mini trajectory.

to each symbol the recognizer for the corresponding cell (see
Figure 6); this is equivalent to concatenating a new symbol to
the geohash string, and inspecting the movements at a finer
detail. The process stops at the cell granularity representing
the required accuracy.

At smaller scales, mini trajectories can be obtained for each
cell by considering all the contiguous subsequences of strings
within each trajectory that share the prefix corresponding to
the cell. For each element of the subsequence, only the symbol
of the sub-cell is considered, thus the subsequence is turned
into a string (see Figure 7); after recovering all the strings
related to the cell, the needed information to infer a regular
language is obtained.

As discussed earlier, a presentation from an informant is
required to infer a regular language; so, in order to obtain the
mobility models for a user, a set of examples of their paths
is not enough. Selecting a proper negative sample set in case
only positive samples are available is an open issue in GI. As
a practical solution, we consider the symmetric difference be-
tween the trajectories of other users and those of the current
one, as they intuitively provide valid trajectories that were
not actually traversed by the specific user. These samples can
be considered as the negative sample set for the language rep-
resenting the mobility habits of the current user. We thus use
the EDSM algorithm to infer the corresponding regular lan-
guage, given the mini-trajectory sets of negative and positive
route samples.

4.3 The language of paths

In order to assess our approach, we examined data provided
by the Geolife dataset [31], which is a collection of time-
stamped triples of the form (latititude, longitude, altitude),
representing the spatial behavior of 182 users monitored for
5 years, collected by Microsoft Research Asia. Most trajec-
tories took place in China, near Beijing, but routes crossing
USA and Europe are also present. More than 17,000 trajecto-
ries are contained in the dataset, for a total of approximately
50,000 hours of tracked movements. GPS loggers and smart-
phones acted as acquisition devices, providing a high sampling
rate (1 ~ 5 seconds in time, and 5 ~ 10 meters in space) for
more than 90% of the data.
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Figure 8. Accuracy with respect to varying granularity for 7
users (80% training, 20% test).

The goal of our analysis is to address the main issues in
the analysis of mobility data, as mentioned at the beginning
of this section, and in particular: to assess the correlation be-
tween the complexity of spatial behaviors and the respective
complexity of the model; to figure out the most representa-
tive granularity level that should be considered; and finally to
provide a guideline for the definition of a mobility similarity
measure between users.

The first issue was addressed by estimating the accuracy
of our structural models at varying granularity degrees; in
this context, we refer to the classical definition of accuracy as
the ratio between the number of corrected classified samples
(paths that were actually travelled by the current user, or
are correctly disregarded) and the number of the examined
samples (all the paths to be classified). We chose to ignore
measurements about altitude, as they did not provide any
significant information, and to consider only longitude and
latitude; no further prior knowledge was assumed. Our anal-
ysis was based on the selection of the subset of the most rep-
resentative users, i.e. the ones that have at least 300 paths at
every granularity. For each user, the available data were par-
titioned into training (80%) and testing (the remaining 20%).
The maximum string length for geohash encoding was set to
7, corresponding to a precision of 153 meters (an area of about
0.02 km?). Results for seven representative users are reported
in Figure 8, which shows that high accuracy is obtained at
all spatial scales; moreover, it is evident that performances
are satisfactory even with higher resolution trajectories. We
are thus supported in our claim that the complexity of the
users’ spatial behavior may be captured by models as sim-
ple as regular languages. This is confirmed by several other
works in literature [32], [33], [34] that, based on statistical ap-
proaches, revealed that human spatial trajectories are highly
predictable by simple models: meaningful patterns can be de-
scribed by a sequence of locations, and are characterized by
particular shapes. Thus, we can reasonably conclude that a
preliminary insight on data is able to hint the complexity of
the model needed for a deeper analysis.

As a second step, we moved on to assess how choosing differ-
ent granularities affects the complexity of the resulting mod-
els, measured in terms of number of states; as is clear from
Figure 9, which reports values averaged over all automata for
each granularity, medium granularities (encoding lengths 3
and 4) require more complex recognizers with respect to both
higher and lower granularities. Arguably, user mobility shows

User 10 B User 25 @3 User 128 ] User 153
User 1 User 41 ] User 144

Number of states

3 4
Granularity level

Figure 9. Number of states with respect to the granularity of

considered paths.

the highest variability at intermediate spatial resolutions (e.g.
city-wide), where more features are needed to separate differ-
ent behaviors, whereas most users typically remain within the
same nation, thus exhibiting a simpler behavior that can be
explained through a less complex model.

Finally, we tackled the challenge of providing insight about
how to identify similarities among users; here, we refer to the
definition of similarity used in [35], i.e, a measure for captur-
ing the affinity between two users according to their trajectory
patterns, encoded in the respective mobility profiles. Due to
the intrinsic recursive nature of users’ paths, it is very com-
mon that pronounced similarities emerge naturally both at a
sufficiently low, and at a very high resolution. In fact, most
users share the same behavior at nation-wide scale, since they
spend most of their time without leaving their own country;
at the other end of the scale, short paths are typically very
basic, due to the physical constraints of the urban landscape,
so most users will likely show similarities when they traverse
small areas, e.g. within a few blocks.

Those considerations appear in all evidence from our exper-
iments, and two representative cases are reported in Figure 10.
The first row shows the automata produced for users 128 and
153 at the highest possible granularity, i.e. considering only
the first symbol of the geohash encoding. By referring to Ta-
ble 1 we see that such granularity corresponds to an area
of 16 million km?, such as an entire country or larger; the
automaton for user 128 tells us that its strings contain just
one symbol (w, which is the geohash code roughly covering
China), whereas for user 153 two symbols are allowed (w and
9, which roughly encode China and the USA /Mexico region,
respectively).

It is informative to look at the alternative representation
of the two automata in the form of the corresponding regular
grammars:

S—>WS|W

S—->WS|W | YS|Y
Guos {W—wv Giss W —w
Y—9

where the dissimilarities between the two users are evident:
despite the fact that there exist trajectories for both users
that are confined within China, as coded by the W produc-
tions, only user 153 moves to a different area altogether, as
represented by the Y productions in the rightmost grammar.
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User 153

Figure 10. Comparison of DFAs representing the movements of two users, at different levels of granularity.

We can now exploit one of the key peculiarities of our struc-
tural analysis, namely the possibility of a simple navigation
across different spatial scales of granularity or, equivalently,
a “hierarchical” navigation through the pool of automata
obtained by specifying a symbol in a transition through a
more specific automaton representing a finer detail (see Fig-
ure 10). The automata depicted in the bottom row “expand”
the w-transitions of the corresponding upper-level automata;
in other words, they specify the behavior for each of the two
users when they move within the region encoded as w®. Visu-
ally inspecting such automata is sufficient to recognize their
similarities; this qualitatively shows that paths have a multi-
scale nature: significant information can be extracted by ob-
serving data at different granularity degrees, and a similar-
ity metric should take this characteristic into account. Our
structural models are able to highlight the most appropriate
representation level for the problem, hence to provide useful
insight to the system designer.

5 Conclusion

This paper described a proposal for a structural approach to
coping with the complexity represented by big collections of
data. Our claim is that often knowledge can be represented by
means of the structure inferred from the wealth of collected
samples, limiting the amount of a-priori information needed.

By using a syntactically driven inference algorithm, we
showed that it is possible to build generative models able
to suggest the relevant relations between different subsets of
the samples, and to perform multi-scale analysis suitable to
identify the most important features emerging at different
granularities.

The presented results, regarding the issue of understand-
ing mobility data, show how, in this context, the availability
of generative and multi-scale models allows to get a useful
insight of the whole dataset.

5 For instance, a valid string for the automaton at the lower left is
akc; this means that the user is moving across cells whose geohash
codes are a, k, and c, all of which are subcells of macro-region
w.
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