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Abstract. Measuring inconsistency is recognized as an important
research issue for quantifying and handling inconsistencies in knowl-
edge bases. Several logic-based inconsistency measures have been
proposed. Minimal unsatisfiable and maximal satisfiable subsets are
at the heart of the syntactic measures, while semantic inconsistency
measures are often based on some paraconsistent semantics. In order
to design interesting measures faithful to human rationality, many
properties have been introduced to reach this goal. In this paper, we
propose a new property called sub-additivity allowing to push further
the ability to reorder knowledge bases according to their inconsis-
tency degree. After pointing out the limitations of several measures to
satisfy the sub-additivity property, we present a new measure based
on a fine exploitation of the internal structure of the knowledge base,
namely the structure of its associated minimal unsatisfiable subsets.
Then, we show how its computation can be formulated as a nonlin-
ear optimization problem. Finally, we prove that the new measure
satisfies all the required properties while highlighting its interesting
features.

1 Introduction

Reasoning about inconsistent knowledge bases (KBs) is one of the
fundamental topics attracting growing interest from the AI commu-
nity. It aims to quantify the amount of inconsistency, useful for guid-
ing inconsistency resolving [14, 7, 5]. Its interest has been high-
lighted in several domains including software specifications [3], be-
lief merging [33], news reports [18], integrity constraints [11], and
multi-agents systems [20, 21].

These last years, several inconsistency measures have been pro-
posed. Some of them [18, 12, 19, 26], focus on minimal unsatisfiable
subsets (MUSes), pointed out as the elementary unit circumscribing
inconsistency. Dually, maximal satisfiable subsets are also exploited
in this context. Indeed, the maximal satisfiable subsets can be derived
from the set of minimal unsatisfiable subsets using minimal hitting
sets of the set of MUSes. They represent the different possible ways
of restoring consistency of an inconsistent knowledge base. Among
these measures, IMI(K) stated in [19] is defined as the number of
MUSes of a knowledge base K, while considering the knowledge
base with a high number of MUSes as the most inconsistent one. Un-
fortunately, such approach considers the contribution of each MUS to
the whole inconsistency as independent from its possible interaction
with the remaining MUSes. Recent work focuses on MUSes inter-
action through their intersections and consider that the inconsistency
should take into consideration such overlaps. This observation leads
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to a new active research issue with several new inconsistency mea-
sures [21, 23]. These measures have been motivated from the coop-
erative multi-agents perspective [23]. A classical problem of incon-
sistency assessment related to MUSes strucutre, can be represented
in the following knowledge bases:

K1 = {p,∧¬p, q,¬q};
K2 = {p,∧¬p ∧ q,¬q}

K1 contains two disjoint MUSes while K2 holds interconnected
MUSes. The recurrent questions are: if K2 has the same inconsis-
tency as K1? Otherwise, How the inconsistency degree of K2 is far
from the one of K1?

Works related to MUSes dependencies have been reported in many
studies of inconsistency handling. In [36], hitting set based inconsis-
tency measure is introduced. In [4], the authors highlighted depen-
dence relation between MUSes by showing that inconsistency re-
solving is MUSes structure dependent. To facilitate the description
of justificatory structure, in [2] the authors introduce a graph-based
framework for capturing and analyzing relationships between justifi-
cations in OWL ontologies.

In parallel, and in order to consolidate or to justify the proposed
measures, several properties have been proposed to judge the ratio-
nality of the proposed measures. Such properties were analyzed and
discussed by many authors (see for example [6]). Among the prop-
erties that attracted much more attention, we can cite the dominance
property [19] requiring a non decreasing inconsistency value when
a consistent formula of a knowledge base is replaced with one of its
logical consequences. A weaker form has been characterized using
prime implicates, a canonical logic based representation of knowl-
edge bases [22].

Following this research trend, in this paper, we propose a new ap-
proach to measure inconsistency. First, a new property called sub-
additivity is proposed. Based on a finer analysis of the connections
between MUSes, it allows us to push further the possibility to re-
order knowledge bases with respect to their inconsistency degree.
Secondly, we exploit the relationships between MUSes to design a
new inconsistency metric satisfying the new property and some of
the well-known rationality properties.

The contributions of this paper can be summarized as follows:

1. We introduce a new property called sub-additivity, and we discuss
its relevance to the problem of measuring inconsistency.

2. We point out the limitations of the previous inconsistency mea-
sures and we propose a new one exploiting the inner-structure of
the knowledge base, namely the structure of the graph-based rep-
resentation of the set of MUSes.

3. We provide different ways for computing or approximating the
inconsistency value, while providing results on some knowledge
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bases.

The rest of this paper is organized as follows. After some prelim-
inary definitions and notations, we briefly recall different proposals
for measuring inconsistency relevant to the present work. In Section
3, after motivating the limitation of ind-additivity, we introduce our
new property called sub-additivity. In Section 4, we introduce a new
measure exploiting dependencies between MUSes. Section 5, pro-
vides a discussion of the properties of the introduced measure. In
Section 6, we formulate the computation of our new inconsistency
measure as an optimization problem and provide approximation. Fi-
nally, we give related work in Section 7, before concluding and giv-
ing some directions for future work in Section 8.

2 Preliminaries
A propositional language L is built over a finite set of propositional
symbols P using classical logical connectives. We use letters (possi-
bly indexed) p, q, r, . . . to represent atoms in P , and Greek letters α,
β . . . to denote formulae. The special letter ⊥ denotes falsity (con-
tradiction), while � denotes validity.

A literal is an atom p or its negation ¬p. A clause C is a disjunction
of literals (p1 ∨ . . . ∨ pn). A formula α in conjunctive normal form
(CNF) is a conjunction of clauses. Let V ar(α) denotes the set of
variables occurring in α. A knowledge base (in short KB) K is a
finite set of propositional formulae. For a set S, we denote by |S| its
cardinality. We say that K is inconsistent if K � ⊥, where � is the
classical consequence relation.

Minimal unsatisfiable subsets are often used to analyze inconsis-
tency. Formally, this concept is defined as follows:

Definition 1 (MUS). Let K be a knowledge base and M ⊆ K. M
is a Minimal Unsatisfiable (or Inconsistent) Subset (MUS ) of K iff
M � ⊥ and ∀M ′ � M , M ′ � ⊥. The set of all minimal inconsistent
subsets of K is denoted MUSes(K).

A formula α ∈ K is called a free formula iff there is no M ∈
MUSes(K) such that α ∈ M . The class of free formulae of K is
written free(K) = K\⋃MUSes(K), and its complement is named
unfree formulae set: unfree(K) = K \ free(K).

At the same time, we can define the Maximal Satisfiable (Consis-
tent) Subset (MSS), and Hitting set as follows:

Definition 2 (MSS). Let K be a knowledge base and M a subset
of K. M is a maximal satisfiable (consistent) subset (MSS) of K iff
M � ⊥ and ∀α ∈ K \M , M ∪ {α} � ⊥.

Definition 3. H is a hitting set of a set of sets Ω if ∀S ∈ Ω, H∩S �=
∅. A hitting set H is irreducible (or minimal) if there is no other
hitting set H ′ s.t H ′ ⊂ H . A minimum hitting set is an irreducible
hitting set with the smallest cardinality.

Many researchers have focused their effort to elaborate rational
properties [19, 21, 6] that an ideal inconsistency measure I must sat-
isfy. Among such properties we can cite the following ones:

• Consistency: I(K) = 0 iff K is consistent.

• MinInc: I(M) = 1 if M ∈ MUSes(K).

• Independence: I(K ∪ {α}) = I(K) if α ∈ free(K ∪ {α}).

• Monotonicity: if K ⊆ K′, then I(K) ≤ I(K′).

• Additivity: I(K1 ∪ . . . ∪ Kn) = Σn
i=1I(Ki) if

MUSes(K1 ∪ . . . ∪Kn) = MUSes(K1) � . . .� MUSes(Kn),
where � is a disjoint union over a family of sets.

• Ind-Additivity: I(K1∪ . . .∪Kn) = Σn
i=1I(Ki) if MUSes(K1∪

. . . ∪ Kn) = MUSes(K1) � . . . � MUSes(Kn), and
unfree(Ki) ∩ unfree(Kj) = ∅ for 1 ≤ i < j ≤ n.

The additivity property has attracted much more attention recently,
allowing the introduction of additional conditions under which the
inconsistency of the whole base can be obtained by summing up the
inconsistency of its sub-bases i.e. by decomposing the whole base
into sub-bases satisfying some requirements. In [19], the condition
simply states that the MUSes of the knowledge base form a partition
of the considered base (additivity). Such condition has been revisited
in [21] by requiring a second condition over the independence of
the formulae of the considered knowledge bases leading to the so
called Ind-additivity. This last property allows to define the lower
bound for standard inconsistency measures. Such lower bound has
been characterized using the notion of closed set packing of MUSes
(see Definition 4).

Definition 4 (Closed Set Packing of MUSes). Let S =
{M1, . . . ,Mn} a subset of MUSes of K. S is a closed set packing
of MUSes of K iff:

• ∀Mi,Mj ∈ S, Mi ∩Mj = ∅

• MUSes(M1 ∪ . . . ∪Mn) = S

Closed Set Packing of MUSes of K [23] is defined as a set packing
of MUSes (pairwise disjoint set of MUSes) that is closed by union.
The closure means that the only MUSes that can be built using the
formulae involved in the union of the elements of S is S itself.

Maximum cardinality of closed set packings of MUSes of K
namely μ(K) is proved to be a lower bound of measures satisfy-
ing MinInc, Monotony, and Ind-additivity i.e., μ(K) ≤ I(K) for all
K. Such lower bound has been used in [21] as a new measure called
ICC : ICC(K) = μ(K).

3 MUS Structure: Motivation and Properties
Rational properties like ind-additivity aims to simplify the computa-
tion of the inconsistency value when some conditions on the structure
of MUSes are gathered. However, it lacks properties to better dis-
criminate between inconsistent knowledge bases that do not satisfy
the requirements.

To motivate our study, let us consider all the possible interactions
of three MUSes as depicted in Figure 1. The inconsistency values of
each knowledge base Ki (1 ≤ i ≤ 6) according to IMI and ICC

are: IMI(Ki) = 3 for all i ∈ {1, . . . , 6}, ICC(Ki) = 1 for all
i ∈ {1, 5, 6}, ICC(Ki) = 2 for all i ∈ {2, 3}, and ICC(K4) = 3.

Clearly, IMI and ICC fail to discriminate between these differ-
ent knowledge bases. Indeed, IMI considers all the knowledge bases
{K1, . . . ,K6} as equally inconsistent, while for ICC measure, the
two knowledge bases K1 and K5 admit the same inconsistency de-
gree. This clearly highlights the inability of these measures to take
into account dependencies between MUSes. Intuitively, formulas
with disjoint MUSes are more inconsistent than those with connected
MUSes. Indeed, if the set of MUSes are disjoint, then the minimum
number of formulas that we need to remove to recover consistency
coincides with IMI . Consequently, a fine-grained measure should try
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to capture the degree of connectivity between MUSes. From the dif-
ferent configuration depicted in Figure 1, K1 should be less inconsis-
tent than K3 for example. An observation on the interactions between
MUSes in K1 and K5, suggests that K1 is less inconsistent than K5,
as it contains two disjoint MUSes, contrary to K5.

¬p ∧ qp p ∧ ¬q q ¬p p ∨ q ¬q qp

K1 K2

¬p ¬q

¬r

p ∧ q

r

r ¬r

¬p

p q

¬q

K3 K4

q¬p ∧ ¬q

p ∧ q

p
p ∧ ¬q

¬p ∧ ¬q

p ∧ q

K5 K6

Figure 1. Interactions Between Three MUSes

Based on this observation, we propose a new property called sub-
additivity in order to gain insights about the importance of the under-
lying structure of the MUSes.

Definition 5 (Sub-Additivity). An inconsistency measure I is called
sub-additive if for any set of knowledge bases {K1, . . . ,Kn} s.t.
MUSes(K1 ∪ . . .∪Kn) = MUSes(K1) � . . .�MUSes(Kn) and
unfree(K1∪ . . .∪Kn) �= unfree(K1)� . . .�unfree(Kn), then
I(K1 ∪ . . . ∪Kn) < Σn

i=1I(Ki).

Let us note that the condition unfree(K1 ∪ · · · ∪ Kn) �=
unfree(K1) � · · · � unfree(Kn) in Definition 5, is equivalent to
the following condition: there exists i and j (1 ≤ i < j ≤ n) such
that unfree(Ki) ∩ unfree(Kj) �= ∅.

The rationale behind Definition 5 is that the knowledge base with
intersecting MUSes is less inconsistent than those with disjoints
MUSes.

Proposition 1. Neither IMI nor ICC satisfies the sub-additivity.

Proof. 1) IMI : let us consider the simple knowledge base K =
{p,¬p∧q,¬q}. By considering K1 = {p,¬p∧q} and K2 = {¬p∧
q,¬q}. We have MUSes(K) = MUSes(K1) � MUSes(K2)
and unfree(K1) ∩ unfree(K2) �= ∅. However IMI(K) = 2 �<
IMI(K1) + IMI(K2) = 2
2) ICC : Let K = {p,¬p, p ∨ q,¬q, q} be a knowledge base. By
considering K1 = {p,¬p, p ∨ q,¬q} and K2 = {¬q, q}. We have
MUSes(K) = MUSes(K1)�MUSes(K2) and unfree(K1)∩
unfree(K2) = {¬q} but ICC(K) = 2 �< ICC(K1)+ICC(K2) =
2.

The inconsistency measures IMI and ICC are not the only ones
violating the sub-additivity property. In fact, let us remark that hit-
ting sets based inconsistency measure Ihs [36] does not satisfy sub-
additivity. Indeed, let us consider K = {p,¬p, p ∨ q,¬q, q} where

K1 = {p,¬p, p ∨ q,¬q} and K2 = {¬q, q}. We have Ihs(K) �<
Ihs(K1)+Ihs(K2) where Ihs(K) is roughly equivalent to the cardi-
nality of the minimum hitting set of the MUSes hypergraph. Further-
more, let us consider the MSS based inconsistency measure IM (K)
defined as the maximum cardinality of the MSSs of K (see Definition
6). IM does not satisfy sub-additivity.

Definition 6 ([14]). Let K be a knowledge base. IM is defined as:

IM (K) = |MSSs(K)|+ |SelfC(K)| − 1

SelfC(K) is the set of self contradictory formulas i.e., α ∈ K such
that {α} � ⊥.

Indeed, by considering the knowledge base K = {p, q,¬p ∧
¬q, r1, . . . , rn,¬r1 ∨ . . . ,∨¬rn, s1, . . . , sn,¬s1 ∨ . . . ,∨¬sn}
where K1 = {p,¬p ∧ ¬q, r1, . . . , rn,¬r1 ∨ . . . ∨ ¬rn} and K2 =
{q,¬p ∧ ¬q, s1, . . . , sn,¬s1 ∨ . . . ,∨¬sn}, we have IM (K) =
2 × n × n − 1, while IM (K1) = IM (K2) = 4 × n − 1. Con-
sequently, IM (K) �< IM (K1) + IM (K2).

Intuitively, an inconsistency measure satisfying the sub-additivity
property can be defined as the one counting the number of unfree
formulas.

Proposition 2. Iunfree(K) = |unfree(K)| satisfies the sub-
additivity property.

Proof. Let {K1,K2, . . . ,Kn} be a set of knowledge bases such that
MUSes(K1 ∪ . . .∪Kn) = MUSes(K1) � . . .�MUSes(Kn) and
there exists 1 ≤ i �= j ≤ n such that unfree(Ki)∩unfree(Kj) �= ∅.
Consequently, Iunfree(K1 ∪ · · · ∪ Kn) <

∑n
i=1 Iunfree(Ki).

Indeed, as unfree(Ki) ∩ unfree(Kj) �= ∅, then by summing
Iunfree(Ki) and Iunfree(Kj), the unfree formulae shared by Ki

and Kj are counted twice.

In addition, Iunfree satisfies the ind-additivity, consistency, and
free formula independence. However, the MinInc property is vio-
lated. This is clearly a problem, since the violation of MinInc makes
Iunfree not enough informative about internal conflicts. Indeed, a
knowledge base with several MUSes can be considered less incon-
sistent than a knowledge base with a single MUS.

Let us show how a measure satisfying a sub-additivity property
behaves on some MUSes whose associated hypergraph is of par-
ticular structure. Let us note Kn a knowledge base with n MUSes
{M1 . . . ,Mn}.We exhibit two categories of MUSes structures. The
first category corresponds to MUSes hypergraph forming a star i.e.
there exists a subset S ⊂ Kn such that ∀i(1 ≤ i < j ≤ n),
Mi ∩ Mj = S. If the MUSes hypergraph associated to Kn is a
star (Figure 3.a), then the sub-additivity can be simplified using in-
equality (1). Indeed, if we decompose Kn to K′ and K′′ such that
MUSes(Kn) = MUSes(K′) � MUSes(K′′), then the two hy-
pergraphs of MUSes of K′ and K′′ are also stars. Consequently,
there exists m such that K′ = Km and K′′ = Kn−m. As the
MUSes hypergraphs of K′ and K′′ are disjoint stars, then the incon-
sistency degree of Kn must be less than the cumulated inconsistency
degree of K′ and K′′.

Consequently, for knowledge bases whose MUSes hypergraph
forms a star, and for any measure I considering only the number
of MUSes or their interactions, satisfying sub-additivity, we derive
the following inequality:

I(Kn) < I(Km) + I(Kn−m) (1)
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The measure I satisfying the sub-additivity property obtained
using inequality (1), defines a well known (strictly) sub-additive
sequence of nonnegative terms (I(Kn)). It is known that such
kind of sequences are bounded below and converges to I(Kn)

n
=

inf{ I(Kn)
n

, n ∈ N} [9].
Let us remark that IMI has an additive behavior on a knowledge

base Kn whose MUSes hypergraph forms a star. From the above dis-
cussion, measures of the form I(Kn) = an + b where a and b are
strictly positives integers, satisfy the sub-additivity and Monotony
properties when the MUSes of Kn form a star. To satisfy MinInc
property, the positive integers a and b must satisfy the following con-
straints: a+ b = 1, a > 0 and b > 0.

In the second category, we consider knowledge bases Kn whose
MUSes {M1, . . . ,Mn} form a chain (Figure 3.c) i.e. ∀i(1 ≤ i <
n),Mi∩Mi+1 �= ∅. Here again, an inconsistency measure satisfying
sub-additivity property verifies inequality (1).

Similarly, measures of the form I(Kn) = an+b where a+b = 1,
a > 0 and b > 0 satisfies sub-additivity, monotony and MinInc
properties. Note that, if ind-additivity is required, the value of a must
be greater than 1

2
. Indeed, there are �n+1

2
� MUSes forming a closed

set packing of MUS. Consequently, we must have I(Kn) ≥ �n+1
2

�.

Then, a ≥ �n+1
2

�−1

n−1
, ∀n > 2.

We have characterized sub-additive measures for knowledge bases
with MUSes hypergraph of particular structure. In the next section
we provide a measure that satisfy several required properties.

4 On Sub-Additive Inconsistency Measure

In this section, we present a new measure that satisfies several stan-
dard properties, namely MinInc, Monotony, Ind-additivity, and Sub-
additivity. Up to now, we argued that MUSes, MSSes, or Hitting sets
based measures fail to satisfy sub-additivity property.

Let us recall that the principle behind sub-additivity is that a
knowledge base with n disjoint MUSes is more inconsistent than a
knowledge base with n non disjoint MUSes. Consequently, to satisfy
sub-additivity property, an inconsistency measure must consider the
interactions between MUSes. The main idea behind our proposed
sub-additive based inconsistency measure, is to first quantify each
MUS of a knowledge base with the same inconsistency value. At
first, the contribution of each MUS to the whole inconsistency is
equal to one. Each time two MUSes share a formula, one of them
must decrease its inconsistency accordingly. In other words, there
contributions to inconsistency must be different.

Before presenting our measure, we define the graph representation
associated to the MUSes of a knowledge base K.

Definition 7 (MUSes Graph). Let K be a knowledge base. We define
the graph representation GK

mus(V,E) of MUSes(K) as the graph
where

• V = MUSes(K) and
• (M,M ′) ∈ E iff M ∩M ′ �= ∅

Let K be a knowledge base and S ⊆ MUSes(K), we say that S
is a MUS Cover (MC) of K iff S is a vertex cover of GK

mus(V,E)
i.e., ∀(v, w) ∈ E, we have v ∈ S or w ∈ S.

Example 1. Let us consider a MUSes hypergraph of K and its as-
sociated MUS graph depicted in Figure 2. MC1 = {M1,M2,M4}
and MC2 = {M2,M3,M5} are two MUS cover of K.

¬p

¬q
¬r

¬u

p ∨ q ∨ s

u

¬t

t ∨ u

p ∨ q ∨ r

¬s r ∨ q ∨ s ∨ t

M1

M2

M3

M4

M5

M2

M5

M3

M4

e1

e3

e5

e4

M1

e2

MUSes Hypergraph of K MUSes Graph of K

Figure 2. From MUSes Hypergraph to Graph of MUSes

It is widely known that a set of vertices is a vertex cover if and
only if its complement is an independent set. So, if S is a MUS cover
of K, then MUSes(K) \ S is a pairwise disjoint set of MUSes i.e.
an independent set of the graph of MUSes.

When two MUSes share formulas, their inconsistency must be set
to different values in order to satisfy the sub-additivity property. To
this end, let us first define an edge partition of the MUSes graph of
K.

Definition 8. Let K be a knowledge base. We define an edge parti-
tion of GK

mus as:

Pe =
⊎

M∈V

Pe(M) s.t. Pe(M) ⊆ {(M,M ′) ∈ E}

From the definition of a partition of the edges of GK
mus, each

edge between two MUSes M and M ′ belongs either to Pe(M) or
to Pe(M

′). Additionally, an edge partition Pe may contain empty
sets and its size |Pe| = |MUSes(K)|. Such partition allows us to
quantify the contribution of each MUS M as a function of the num-
ber of edges in Pe(M).

Proposition 3. Let K be a knowledge base and Pe an edge partition
of GK

mus. {M ∈ MUSes(K)| Pe(M) �= ∅} is a MUS cover of K.

Proof. By definition, for each edge a = (M,M ′), M or M ′ belongs
to {M ∈ MUSes(K)| Pe(M) �= ∅}.

Now, we define the inconsistency measure of an edge partition as
follows:

Definition 9. Let Pe be an edge partition of GK
mus. We define the

inconsistency measure of Pe as:

Incf (Pe) =
∑
M∈V

f(|Pe(M)|)

where f is a strictly decreasing function over N such that{
f(0) = 1

lim
n→+∞

f(n) = c, 0 < c < 1

As f is a strictly decreasing function over the size of the elements
of the edges partition, this means that when an edge is added to
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Pe(M), the contribution of M to the inconsistency measure of Pe

decreases. In other words, the inconsistency degree of a MUS M de-
pends on the number of edges attributed to Pe(M). It is important to
observe that the maximum inconsistency value Incf (Pe) is reached
for disjoint set of MUSes. In this last case, Incf (Pe) = IMI .

Different functions f can be defined. For example, one can con-
sider f1(n) = 1− c+ cn+1 or f2(n) = 1− c+ c

n+1
s.t. 0 < c < 1.

Example 2. Let us consider again the example depicted in Figure
2. Pe(M1) = {e1}, Pe(M2) = {e2}, Pe(M3) = {e3}, Pe(M4) =
{e4}, and Pe(M5) = {e5} is an edge partition. Using f1, we have
Incf (Pe) = 5(1− c+ c2)

Now, we are ready to define our inconsistency measure of given
knowledge base.

Definition 10. Let K be a knowledge base. The inconsistency of K
is defined as:

Inc(K) = max
Pe

Incf (Pe)

Let us provide the intuition behind the application of the maxi-
mum function over edge partitions. Assume we have n pairwise dis-
joint MUSes namely {M1, . . . ,Mn} and an additional MUS Mn+1

admitting a non empty intersection with the n first MUSes. Among
the possible edge partitions we have Pe where ∀i(1 ≤ i ≤ n)
Pe(Mi) = {(Mi,Mn+1)} and Pe(Mn+1) = ∅. Another edge
partition P ′

e can be defined as ∀i(1 ≤ i ≤ n), P ′
e(Mi) = ∅

and P ′
e(Mn+1) = {(M1,Mn+1), . . . , (Mn,Mn+1)}. We have

Incf (Pe) = n + 1 − f(1)n and Incf (P ′
e) = n + 1 − f(n). As

monotony is required, we should have Inc(K) ≥ n. Incf (Pe) fails
to satisfy such requirement when n is large enough. In contrast, with
P ′
e, the monotony property is satisfied. As it will be proved later,

choosing the maximum inconsistency value among all the edge par-
titions is a key point towards the satisfaction of all the required prop-
erties.

Example 3. Let us consider again the example of Figure 2. Using f1,
there are two edge partitions maximizing the inconsistency. The first
one is Pe defined as follows: Pe(M1) = {e1, e2, e5}, Pe(M2) =
{e3}, Pe(M3) = ∅, Pe(M4) = {e4}, and Pe(M5) = ∅. The second
edge partition P ′

e can be obtained from Pe by permuting M2 and
M3. The maximum value is obtained either with Pe or P ′

e:

Inc(K) = 5− 3c+ 2c2 + c3

Let us now take another example described in Section 3 (see
Figure 1). Applying our new measure, we obtain:

Inc(K1) = 3− c+ c3 Inc(K2) = 3− c+ c3

Inc(K3) = 3− c+ c2 Inc(K4) = 3

Inc(K5) = 3− 2c+ c2 + c3 Inc(K6) = 3− 2c+ c2 + c3

Our inconsistency measure allows to reorder the set of knowledge
bases {K1, . . . ,K6} in the following way:

Inc(K5) = Inc(K6) < Inc(K1) = Inc(K2) < Inc(K3) < Inc(K4)

As we can see, K4 is the most inconsistent one, while K5 and K6

are the least inconsistent ones. Furthermore Inc(K1) < Inc(K3)
and Inc(K2) < Inc(K3) are required to satisfy the sub-additivity
property. Our measure do not make distinction between K5 and K6

or K1 and K2. Indeed, the MUSes graph of K5 and K6 are very
similar, as well as for K1 and K2.

We now show that Inc satisfy all required properties.

Proposition 4. Inc satisfies Consistency, Free Formula Indepen-
dence, MinInc, Monotony, Ind-Additivity and Sub-Additivity proper-
ties.

Proof.

Consistency: If the knowledge base is consistent, the only partition
Pe is the empty set. According to Definition 9, Incf (Pe) = 0.
Consequently, Inc(K) = 0.

Free Formula Independence: Our measure consider only the
MUSes, so the free formula independence is satisfied i.e., Inc(K) =
Inc(unfree(K)).

MinInc: For a knowledge base K with a single MUS M , we have a
single edge partition Pe s.t. Pe(M) = ∅. Consequently Inc(K) = 1.

Monotony: Let K be a knowledge base and α a formula. There is two
cases:

• α ∈ free(K): Inc(K) = Inc(K ∪ {α})

• α ∈ unfree(K): Let {M1, . . . ,Mn} = MUSes(K),
{M ′

1, . . . ,M
′
m} = MUSes(K ∪ {α}) \ MUSes(K) and Pe

an edge partition of K. Pe can be extended to an edge parti-
tion P ′

e of K ∪ {α}. P ′
e is such that if a = (Mi,M

′
j) ∈ E

or a = (M ′
i ,M

′
j) ∈ E , then a ∈ P ′

e(M
′
j). Consequently,

Incf (P ′
e) = Incf (Pe) +

∑m
i=1 f(M

′
i). As f(M ′

i) > 0 for
all 0 < i < m, then Incf (P ′

e) > Incf (Pe). Consequently,
Inc(K ∪ {α}) > Inc(K).

Ind-Additivity: If {K1, . . . ,Kn} satisfies the conditions of the appli-
cation of ind-Additivity then, each Pe an edge partition of K1∪ . . .∪
Kn can be decomposed into disjoint edge partitions of K1,K2, . . . ,
and Kn. Consequently, Inc(K1 ∪ . . . ∪Kn) =

∑n
i=1 Inc(Ki)

Sub-Additivity: Let K1, . . . ,Kn such that MUSes(K1 ∪ . . . ∪
Kn) =

⊎n
i=1 MUSes(Ki) and there exists i, j such that Ki∩Kj �=

∅. Performing
∑n

i=1 Inc(Ki) is equivalent to remove in the MUSes
graph Gmus of (K1 ∪ . . . ∪ Kn) the edges S linking the MUSes
of Ki to MUSes of Kj . Let us note G′

mus such obtained graph. Let
Pe be an edge partition of Gmus. Let us consider P ′

e such that if
Pe(M) ∈ Pe then Pe(M) \ S ∈ P ′

e. P ′
e is an edge partition of

G′
mus. As S �= ∅, we have Incf (Pe) < Incf (P ′

e). Finally, P ′
e is an

edges partition of G′
mus, Inc(K1∪· · ·∪Kn) <

∑n
i=1 Inc(Ki).

Finally, in Proposition 5, we show that our inconsistency measure
is bounded by the cardinality of the maximum independent set of the
graph of MUSes.

Proposition 5. Let K be a knowledge base. We have

Inc(K) ≥ maxS∈IS(GK
mus)

(|S|)

where IS(GK
mus) is the set of independent sets of GK

mus.

Proof. Let S be an independent set of GK
mus. Then, there is no M ,

M ′ in S such that M ∩ M ′ �= ∅. Then it is possible to build an
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edge partition Pe such that Pe(M) = ∅ for all M ∈ S. It is suf-
ficient to attribute an edge (M,M ′) to Pe(M

′) if M ∈ S and
M ′ ∈ MUSes(K) \ S. As f(M) = 1 when Pe(M) = ∅, then
Inc(K) ≥ maxS∈IS(GK

mus)
(|S|).

5 Discussion
Let us analyze the behavior of Inc inconsistency measure through
its MUSes dependencies. We focus our study on three hypergraph
classes: stars and chains (Figure 3.a and 3.c), and near disjoint (Fig-
ure 3.b). As f , we use the f1 function defined in Section 4.
Stars: Let K a knowledge base with a set of MUSes {M1, . . . ,Mn}.
We suppose that the MUSes hypergraph of K is a star. The
MUSes graph GK

mus is a clique. In this case, one edge parti-
tion Pe maximizing Inc(K) is: Pe(M1) = ∅ and Pe(Mi) =
{(Mi,M1), . . . , (Mi,Mi−1)}. By simplifying Inc(K), we obtain
the following result:

Inc(K) = Incf1(Pe) = (1− c)n+ c+
c2

1− c
(1− cn−1)

Let us note that asymptotically, for large number of MUSes, the aver-
age contribution of each MUS tends to (1−c) since lim

n→+∞
Inc(K)

n
=

1− c.
Chains: Suppose now that GK

mus is a chain and contains an odd num-
ber of nodes. The partition Pe maximizing Incf1(Pe) is: Pe(Mi) =
∅, if i = 2k + 1 and Pe(Mi) = {(Mi−1,Mi), (Mi,Mi+1)} if
i = 2k. Then, the inconsistency value can be expressed as:

Inc(K) = Incf1(Pe) = 1 + (1− c

2
+

c3

2
)(n− 1)

Asymptotically, we obtain lim
n→+∞

Inc(K)
n

= 1− c
2
+ c3

2
, the average

contribution of each MUS to the inconsistency when n is large
enough. It is worth noticing that, for chains MUSes hypergraph,
the average contribution of each MUS is higher than for stars
MUSes hypergraph (1 − c

2
+ c3

2
> 1 − c). This is rational since

chains are less connected than stars (MUS graph is a clique). Simi-
lar reasoning can be applied for GK

mus with an even number of nodes.

Near disjoint: Let us consider the MUSes {M1, . . . ,Mn+1} of
a knowledge base K such that {M1, . . . ,Mn} are pairwise dis-
joint and Mn+1 has a non empty intersection with a subset S ⊆
{M1, . . . ,Mn} such that |S| = k. This near disjoint MUSes hyper-
graph is depicted in Figure 3).b. We obtain:

Inc(K) = n+ 1− c+ ck+1

For a fixed value of n, Inc suggests that the inconsistency value grows
inversely to that of k. In other words, the inconsistency grows as the
connections between MUSes decreases.

6 Computing Inconsistency Value
In this section, we are interested in computing Inc(K). We provide a
formulation as an optimization problem allowing the computation of
Inc(K), when the function f is fixed (see Definition 10 and 9). Let
us recall that our approach is based on a partition of the set of edges
over the set of vertices (MUSes) such that an edge e = (M,M ′)
is attributed either to M or to M ′. The contribution of each MUS
depends on the number of edges attributed to it. Formally, to seek
for an optimal solution, we associate to each edge e = (M,M ′)

¬p

p ∧ q1p ∧ q2

p ∧ qnp ∧ q3

p 1
∨
..
.∨

p k

¬p1 p1

pk¬pk

pn¬pn

a. Star b. Near Disjoint

¬p2¬p1 p1 ∨ p2 p2 ∨ p3 ¬p3 ¬pn+1¬pn pn ∨ pn+1

c. Chain

Figure 3. MUSes Hypergraph Classes

of GK
mus, a new variable xe. If e is attributed to M then xe is true,

otherwise it is false and it is associated with M ′. This is equivalent to
the attribution of xe to M and ¬xe to M ′. Then the global formula-
tion can be obtained by considering the function used in Definition 9.

To illustrate the formulation of Definition 10 as an optimiza-
tion problem, we consider the example of Figure 2. Let xei

(1 ≤ i ≤ 5) be the variable associated to edge ei as depicted in
Figure 2 (right hand side).

Using the function f1, computing Inc(K), is equivalent to the
maximization of the objective function depicted in Equation (2)
obtained in the following way. We recall that f1(n) = 1− c+ cn+1.
Let M1 ≺ M2 ≺ . . . ≺ M5 a total ordering on the set
of MUSes and Γe(M) the set of edges connected to M in
the MUSes graph. The edge partition can be expressed as
Pe(Mi) = {e ∈ Γe(Mi)|e �∈ Pe(Mj), j < i}. In our
example, the size of the elements of the edges partition can
then be expressed as follows: |Pe(M1)| = xe1 + xe2 + xe5 ,
|Pe(M2)| = ¬xe2 + xe3 , |Pe(M3)| = ¬xe1 + ¬xe3 ,
|Pe(M4)| = xe4 and |Pe(M5)| = ¬xe4 + ¬xe5 . Then
the objective function (Equation 2) can be derived from
Incf (Pe) =

∑5
i=1 f1(|Pe(Mi)|).

Similarly, for the function f2, we obtain the objective function
described in Equation (3). Let us remark that the expression of
Definition 10 as an optimization problem leads to a nonlinear
objective function as illustrated by both Equations (2) and (3).
Solving nonlinear optimization problems is generally more difficult
than for linear problems. One can prove that Equation 2 can be
linearized. A classical approach to find such optimum is to use a
branch and bound like procedure.
As using an exact optimization method is computationally more
costly, we propose in the sequel, an approximation of the Inc(K)
value. If the set of MUSes can be obtained in reasonable amount of
time, one can use minimum vertex cover problem as an approxima-
tion of Inc(K). Indeed, to maximize Inc(K), one have to minimize
the set of MUSes M with Pe(M) = ∅ which is equivalent to the
problem of finding the minimum vertex cover of the MUSes graph.
Computing the minimum vertex cover is known to be an NP-Hard

S. Jabbour and L. Sais / Exploiting MUS Structure to Measure Inconsistency of Knowledge Bases996



2.
Incf1(Pe) = 5(1− c) + c1+xe1+xe2+xe5 + c1+¬xe2+xe3 + c1+¬xe1+¬xe3 + c1+xe4 + c1+¬xe4+¬xe5 (2)

Incf2(Pe) = 5(1− c) +
1

1 + xe1 + xe2 + xe5

+
1

1 + ¬xe2 + xe3

+
1

1 + ¬xe1 + ¬xe3

+
1

1 + xe4

+
1

1 + ¬xe4 + ¬xe5

(3)

problem. It can be formulated easily as a linear program.

Problem: Minimum Vertex Cover

minimize
∑
v∈V

xv (minimize the total cost)

subject to

xu + xv ≥ 1 ∀{u, v} ∈ E (cover every edge)

xv ∈ {0, 1} ∀v ∈ V (xv = 1 ⇔ v in the vertex cover)

Another alternative consists in approximating the minimum vertex
cover using a greedy approach as shown in Algorithm 1. This algo-
rithm is linear and allows to compute a reasonable approximation of
the value of Inc(K). For instance, using the greedy algorithm, the
value obtained for the knowledge base of Figure 2 corresponds ex-
actly to the optimal inconsistency value Inc(K).

Algorithm 1 Inc(K): Greedy Approximation Approach

Require: A graph Gk
mus = (V,E)

Ensure: An edge partition Pe

1: Pe ← ∅
2: val ← 0
3: for M ∈ V do
4: Ed(M) ← {e | e = (M,M ′) ∈ E}
5: end for
6: repeat
7: node ← maxM∈V |Ed(M)|
8: E ← E \ Pe(M)
9: V ← V \ {node}

10: val ← val + f(|Pe(M)|)
11: Pe(node) ← Ed(node)
12: for M ′ ∈ V do
13: Pe(M

′) ← Pe(M
′) \ Pe(node)

14: end for
15: until (V = ∅)
16: return val

Algorithm 1 describes a greedy approach that aims to find an
approximation of Inc(K) based on vertex cover. First, the edges are
distributed over vertices (MUSes). If e = (M,M ′) ∈ E, then e is
associated temporarily to M and M ′. At each iteration, the most
connected vertex node is chosen and Pe is updated accordingly.
Then, the edges of this node are removed. The process is iterated
until the set of vertices V becomes empty.

7 Related Work
In this section, we provide a brief overview of some works related to
inconsistency measures. Several inconsistency measures have been

proposed over the years. An interesting work has been performed
recently in [37] to compare a large set of inconsistency measures in
terms of their ability to discriminate between knowledge bases. How-
ever, it is common to partition the set of approaches into three sepa-
rate classes. The first one includes those based on either minimal in-
consistent subsets [19, 28, 29, 21, 1, 24], or maximal consistent sub-
sets [13, 8]. The second one [10, 16, 17, 30, 18, 12, 27, 38, 26, 15],
focus on the semantics of the language, often based on some multi-
valued semantics [32]. For example, in [39], the authors take the ra-
tio of the propositions appearing in a minimal inconsistent subset
wrt. the total number of propositions as the inconsistency value. The
third one is based on probabilistic models [25, 8].

Among original approaches, one can cite also the one of [19].
It exploits the Shapley value, originally introduced in cooperative
game, to analyze and quantify the amount of inconsistency that can
be imputed to each formula in a given knowledge base. Usually, in-
consistency measures can be partitioned according to their depen-
dence on syntax or semantics. Semantic based measures aim to com-
pute the proportion of the language that is affected by the inconsis-
tency. The inconsistency measures belonging to this class are often
based on some paraconsistent semantics and, thus, syntax indepen-
dent, because we can still find paraconsistent models for inconsistent
KBs. Whilst, syntax based approaches are concerned with the mini-
mal number of formulas that cause inconsistencies. An overview of
inconsistency measures for classical logics can be found in [13].

There is also related work on inconsistency measures in the con-
text of quantitative logics. In particular, several works have ex-
tended existing inconsistency measures for classical frameworks to
the probabilistic setting, while investigating their properties. One can
quote for example the family of inconsistency metrics, proposed by
[25, 8, 31, 35], based on the quantification of the minimal adjust-
ments in the degrees of certainty (i.e., probabilities) of the statements
necessary to make the knowledge base consistent. In [34], another in-
consistency measure for probabilistic conditional logic is proposed.
It is based on generalized divergence which is a specific distance for
probability functions.

8 Conclusion and Future Work

In this paper we developed a novel approach to measure inconsis-
tency in a knowledge base. A new property called sub-additivity is
introduced providing a way to finely reorder knowledge bases. We
showed that the classical approaches based on MUSes and their vari-
ants fail to satisfy the sub-additivity property. Then, we propose a
new measure that exploits connections between MUSes and satisfies
several properties including sub-additivity.

Our results are clearly of great interest. First, sub-additivity push
further the issue of comparing the inconsistency of different knowl-
edge bases. Secondly, MUS dependencies have been proven to be
a key point for the design of more rational inconsistency measures.
Several challenges need to be tackled in the future. Finding a bet-
ter approximation of the inconsistency measure without enumerating
all the MUSes is an important research issue. Intersections between
MUSes can be more finely analyzed to improve the proposed mea-
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sure. Finally, as a short term issue, we plan to analyze our measures
in the light of the rational properties proposed in [6].
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