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Abstract. Selectively forgetting information while preserving what
matters the most is becoming an increasingly important issue in many
areas, including in knowledge representation and reasoning. Depend-
ing on the application at hand, forgetting operators are defined to
obey different sets of desirable properties. Of the myriad of desir-
able properties discussed in the context of forgetting in Answer Set
Programming, strong persistence, which imposes certain conditions
on the correspondence between the answer sets of the program pre-
and post-forgetting, and a certain independence from non-forgotten
atoms, seems to best capture its essence, and be desirable in general.
However, it has remained an open problem whether it is always pos-
sible to forget a set of atoms from a program while obeying strong
persistence. In this paper, after showing that it is not always possible
to forget a set of atoms from a program while obeying this property,
we move forward and precisely characterise what can and cannot
be forgotten from a program, by presenting a necessary and suffi-
cient criterion. This characterisation allows us to draw some impor-
tant conclusions regarding the existence of forgetting operators for
specific classes of logic programs, to characterise the class of forget-
ting operators that achieve the correct result whenever forgetting is
possible, and investigate the related question of determining what we
can forget from some specific logic program.

1 Introduction

In this paper, we show that it is not always possible to forget some
set of atoms from an answer set program while preserving all existing
relations between the atoms not to be forgotten, and investigate the
when, what, and how related to adequately forgetting a set of atoms
from an answer set program.

Whereas keeping memory of information and knowledge has al-
ways been at the heart of research in Knowledge Representation and
Reasoning, with tight connections to broader areas such as Databases
and Artificial Intelligence, we have recently observed a growing at-
tention being devoted to the complementary problem of forgetting.

Forgetting – or variable elimination – is an operation that allows
the removal of middle variables no longer deemed relevant. It is most
useful when we wish to eliminate (temporary) variables introduced
to represent auxiliary concepts, with the goal of restoring the declar-
ative nature of some knowledge base, or just to simplify it. Further-
more, it is becoming increasingly necessary to properly deal with le-
gal and privacy issues, including, for example, the implementation of
court orders to eliminate certain pieces of illegal information. Recent
applications of forgetting to cognitive robotics [28, 29, 33], resolving

1 NOVA LINCS, Departamento de Informática, Faculdade de Ciências e Tec-
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conflicts [20, 45, 12, 21], and ontology abstraction and comparison
[42, 19, 17, 18], further witness its importance.

With its early roots in Boolean Algebra [24], forgetting has been
extensively studied in the context of classical logic [3, 20, 22, 23, 30,
31, 43] and, more recently, in the context of logic programming, no-
tably of Answer Set Programming (ASP). The non-monotonic rule-
based nature of ASP called for the development of specific methods
and techniques – just as it happened with other belief change op-
erations such as revision and update, cf. [2, 8, 34, 35, 36, 6, 37]
– resulting in a significant number of different forgetting operators
[45, 12, 44, 40, 39, 16, 41, 7], obeying different sets of properties
deemed desirable, and often defined for different classes of answer
set programs. Such properties include the so-called consequence per-
sistence, which requires that the answer sets of the result of forget-
ting correspond exactly to those of the original program, ignoring
the atoms to be forgotten, or existence which requires that the result
of forgetting belongs to the same class of programs admitted by the
forgetting operator, so that the operator can be iterated, among many
others. A complete picture of the existing forgetting operators and
properties they obey can be found in a recent survey [15].

From observing the landscape of existing operators and properties,
one can conclude that there cannot be a one-size-fits-all forgetting
operator for ASP, but rather a family of operators, each obeying a
specific set of properties. Furthermore, it is clear that not all proper-
ties bear the same relevance. Whereas some properties can be very
important, such as existence, since it guarantees that we can use the
same automated reasoners after forgetting, despite not being a prop-
erty specific of forgetting operators, other properties are less impor-
tant, sometimes perhaps even questionable, as discussed in [15].

There is nevertheless one property – strong persistence [16] –
which seems to best capture the essence of forgetting in the context of
ASP. The property of strong persistence essentially requires that all
existing relations between the atoms not to be forgotten be preserved,
captured by requiring that there be a correspondence between the an-
swer sets of a program before and after forgetting a set of atoms, and
that such correspondence be preserved in the presence of additional
rules not containing the atoms to be forgotten. With a slight abuse of
using notation that has not been introduced yet, an operator f is said
to obey strong persistence if, for any program P and any set of atoms
to be forgotten V , it holds that AS(f(P, V )∪R) = AS(P ∪R)‖V ,
for all programs R not containing atoms in V , where f(P, V ) denotes
the result of forgetting V from P , AS(P ) the answer sets of P , and
AS(P )‖V their restriction to atoms not in V .

Whereas it seems rather undisputed that strong persistence is a de-
sirable property, it is not clear to what extent we can define operators
that satisfy it. In [16], the authors propose an operator that obeys such
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property, but which is only defined for a restricted class of programs
and can only be applied to forget a single atom from a program in a
very limited range of situations.

In this paper, we investigate the limits of forgetting under strong
persistence, by answering the following fundamental questions.

Can we always forget some set of atoms from an ASP while obey-
ing strong persistence? This is perhaps the most fundamental open
question that remained in [15], not being clear whether such opera-
tor does not exist, or simply no one had found it. As the reader can
guess from the title of this paper, the answer to this question is nega-
tive: sometimes it is simply not possible to forget some set of atoms
from a program, while maintaining the relevant relations between
other atoms, since the atoms to be forgotten play a pivotal role. From
this negative result, the following questions become central, which
we will also address in this paper.

When can’t we forget some set of atoms from an ASP while obeying
strong persistence? We answer this by characterizing when a specific
set of atoms cannot be forgotten from a specific program. We define
a criterion (Ω) on a program and set of atoms which, when satisfied,
implies that such atoms cannot be forgotten from the program.

When (and how) can we forget some set of atoms from an ASP
while obeying strong persistence? We answer this by presenting a
class of operators that satisfy strong persistence, among many other
properties, and show that Ω is both sufficient and necessary to deter-
mine when some set of atoms can be forgotten from a program.

What can we forget from a specific ASP while obeying strong per-
sistence? We answer this by providing a constructive definition of
the sets of atoms that can be forgotten from a given program. While
investigating the answer to this question, we uncover certain classes
of programs from which we can always forget any single atom.

Throughout the paper, other relevant intermediate results are
shown, and the main concepts illustrated with examples. After the
next section with the background on ASP and on forgetting, the re-
mainder of the paper is structured according to the questions above.

2 Forgetting in ASP

In this section, we recall the necessary notions on answer set pro-
gramming and forgetting, following the presentation in [15].

We assume a propositional language LA over a signature A, a
finite set of propositional atoms2. The formulas of LA are inductively
defined using connectives ⊥, ∧, ∨, and ⊃:

ϕ ::= ⊥ | p | ϕ ∨ ϕ | ϕ ∧ ϕ | ϕ ⊃ ϕ (1)

where p ∈ A. In addition, ¬ϕ and � are resp. shortcuts for ϕ ⊃ ⊥
and ⊥ ⊃ ⊥. Given a finite set S of formulas,

∨
S and

∧
S denote

resp. the disjunction and conjunction of all formulas in S. In particu-
lar,

∨
∅ and

∧
∅ stand for resp. ⊥ and �, and ¬S and ¬¬S represent

resp. {¬ϕ | ϕ ∈ S} and {¬¬ϕ | ϕ ∈ S}. Unless otherwise stated,
we assume that the underlying signature for a particular formula ϕ is
A(ϕ), the set of atoms appearing in ϕ.

HT-models Regarding the semantics of propositional formulas,
we consider the monotonic logic here-and-there (HT) and equilib-
rium models [26]. An HT -interpretation is a pair 〈H,T 〉 s.t. H ⊆
T ⊆ A. The satisfiability relation in HT, denoted |=HT, is recursively
defined as follows for p ∈ A and formulas ϕ and ψ:

• 〈H,T 〉 |=HT p if p ∈ H;
• 〈H,T 〉 |=HT ⊥;

2 Often, the term propositional variable is used synonymously.

• 〈H,T 〉 |=HT ϕ ∧ ψ if 〈H,T 〉 |=HTϕ and 〈H,T 〉 |=HTψ;
• 〈H,T 〉 |=HT ϕ ∨ ψ if 〈H,T 〉 |=HT ϕ or 〈H,T 〉 |=HT ψ;
• 〈H,T 〉 |=HT ϕ ⊃ ψ if both (i) T |= ϕ ⊃ ψ,3 and (ii)

〈H,T 〉 |=HT ϕ implies 〈H,T 〉 |=HT ψ.

An HT -interpretation 〈H,T 〉 is an HT -model of a formula ϕ if
〈H,T 〉 |=HT ϕ. We denote by HT (ϕ) the set of all HT-models of
ϕ. In particular, 〈T, T 〉 ∈ HT (ϕ) is an equilibrium model of ϕ if
there is no T ′ ⊂ T s.t. 〈T ′, T 〉 ∈ HT (ϕ).

Given two formulas ϕ and ψ, if HT (ϕ) ⊆ HT (ψ), then ϕ entails
ψ in HT, written ϕ |=HT ψ. Also, ϕ and ψ are HT-equivalent, written
ϕ ≡HT ψ, if HT (ϕ) = HT (ψ).

The V -exclusion of a set of HT-interpretations M, denoted M‖V ,
is {〈X\V, Y \V 〉 | 〈X,Y 〉 ∈ M}. Finally, determining if a formula
has an HT-model is NP-complete [32].

Logic Programs An (extended) logic program P is a finite set of
(extended) rules, i.e., formulas of the form

∧
¬¬D ∧

∧
¬C ∧

∧
B ⊃

∨
A , (2)

where all elements in A = {a1, . . . , ak}, B = {b1, . . . , bl}, C =
{c1, . . . , cm}, D = {d1, . . . , dn} are atoms.4 Such rules r are also
commonly written as

a1 ∨ . . . ∨ ak ← b1, ..., bl, not c1, ..., not cm,

not not d1, ..., not not dn , (3)

and we will use both forms interchangeably. Given r, we distinguish
its head, head(r) = A, and its body, body(r) = B ∪ ¬C ∪ ¬¬D ,
representing a disjunction and a conjunction.

Any set of (propositional) formulas is HT-equivalent to an (ex-
tended) logic program [4], which is why we can focus solely on these.

This class of logic programs, Ce, includes a number of special
kinds of rules r: if n = 0, then we call r disjunctive; if, in addi-
tion, k ≤ 1, then r is normal; if on top of that m = 0, then we call r
Horn, and fact if also l = 0. The classes of disjunctive, normal and
Horn programs, Cd, Cn, and CH , are defined resp. as a finite set of
disjunctive, normal, and Horn rules. We have CH ⊂ Cn ⊂ Cd ⊂ Ce.

We now recall the answer set semantics [14] for logic programs.
Given a program P and a set I of atoms, the reduct P I is defined
as P I = {A ← B : r of the form (3) in P,C ∩ I = ∅,D ⊆ I}.
A set I ′ of atoms is a model of P I if, for each r ∈ P I , I ′ |= B
implies I ′ |= A. I is minimal in a set S, denoted by I ∈ MIN (S),
if there is no I ′ ∈ S s.t. I ′ ⊂ I . Then, I is an answer set of P iff
I is a minimal model of P I . Note that, for Cn and its subclasses,
this minimal model is in fact unique. The set of all answer sets of P
is denoted by AS(P ). Note that, for Cd and its subclasses, all I ∈
AS(P ) are pairwise incomparable. If P has an answer set, then P is
consistent. Also, the V -exclusion of a set of answer sets M, denoted
M‖V , is {X \ V | X ∈ M}. Two programs P1, P2 are equivalent
if AS(P1) = AS(P2) and strongly equivalent if P1 ≡HT P2, i.e.,
if AS(P1 ∪ R) = AS(P2 ∪ R) for any R ∈ Ce. It is well-known
that answer sets and equilibrium models coincide [26], but since the
former notion is frequently used in the literature and arguably easier
to use, we will mainly rely on it. Also, determining if program P has
an answer set is Σp

2-complete, and NP-complete if P is normal [5].

Forgetting The principal idea of forgetting in ASP is to remove
or hide certain atoms from a given program, while preserving its se-
3 |= is the standard consequence relation from classical logic.
4 Extended logic programs [27] are actually more expressive, but this form is

sufficient here.
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mantics for the remaining atoms. As the result, rather often, a repre-
sentative up to some notion of equivalence between programs is con-
sidered. In this sense, many notions of forgetting for logic programs
are defined semantically, i.e., they introduce a class of operators that
satisfy a certain semantic characterization. Each single operator in
such a class is then a concrete function that, given a program P and a
non-empty set of atoms V to be forgotten, returns a unique program,
the result of forgetting about V from P . Formally, given a class of
logic programs C over A, a forgetting operator (over C) is a partial
function f : C×2A → C s.t. f(P, V ) is a program over A(P )\V , for
each P ∈ C and V ∈ 2A \ ∅. We call f(P, V ) the result of forgetting
about V from P . Whenever C = Ce, we leave C implicit. Further-
more, f is called closed for C′ ⊆ C if, for every P ∈ C′ and V ∈ 2A,
we have f(P, V ) ∈ C′. A class F of forgetting operators is a set of
forgetting operators. Often, F is defined for a (maximal) class of pro-
grams C, denoted as a class F of forgetting operators over C. The
requirement for f being a partial function is a natural one given the
existing literature, where some operators as well as classes of these
are not closed for certain classes of programs.

Previous work on forgetting in ASP has introduced a variety of de-
sirable properties. Unless stated otherwise, F is a class of forgetting
operators, and C the class of programs over A of a given f ∈ F.

(sC) F satisfies strengthened Consequence if, for each f ∈ F, P ∈ C
and V ⊆ A, we have AS(f(P, V )) ⊆ AS(P )‖V .

(wE) F satisfies weak Equivalence if, for each f ∈ F, P, P ′ ∈ C
and V ⊆ A, we have AS(f(P, V )) = AS(f(P ′, V )) whenever
AS(P ) = AS(P ′).

(SE) F satisfies Strong Equivalence if, for each f ∈ F, P, P ′ ∈ C
and V ⊆ A: if P ≡HT P ′, then f(P, V ) ≡HT f(P ′, V ).

(W) F satisfies Weakening if, for each f ∈ F, P ∈ C and V ⊆ A,
we have P |=HT f(P, V ).

(PP) F satisfies Positive Persistence if, for each f ∈ F, P ∈ C and
V ⊆ A: if P |=HT P ′, with P ′ ∈ C and A(P ′) ⊆ A \ V , then
f(P, V ) |=HT P ′.

(NP) F satisfies Negative Persistence if, for each f ∈ F, P ∈ C and
V ⊆ A: if P |=HT P ′, with P ′ ∈ C and A(P ′) ⊆ A \ V , then
f(P, V ) |=HT P ′.

(SI) F satisfies Strong (addition) Invariance if, for each f ∈ F, P ∈
C and V ⊆ A, we have f(P, V ) ∪ R ≡HT f(P ∪ R, V ) for all
programs R ∈ C with A(R) ⊆ A \ V .

(EC) F satisfies Existence for C, i.e., F is closed for a class of pro-
grams C if there exists f ∈ F s.t. f is closed for C.

(CP) F satisfies Consequence Persistence if, for each f ∈ F, P ∈ C
and V ⊆ A, we have AS(f(P, V )) = AS(P )‖V .

(SP) F satisfies Strong Persistence if, for each f ∈ F, P ∈ C and
V ⊆ A, we have AS(f(P, V ) ∪ R) = AS(P ∪ R)‖V , for all
programs R ∈ C with A(R) ⊆ A \ V .

(wC) F satisfies weakened Consequence if, for each f ∈ F, P ∈ C
and V ⊆ A, we have AS(P )‖V ⊆ AS(f(P, V )).

Throughout the paper, whenever we write that a single operator f
obeys some property, we mean that the singleton class composed of
that operator, {f}, obeys such property.

3 Can We Always Forget?

Among the desirable properties of classes of forgetting operators re-
called in the previous section, strong persistence (SP) [16] is of par-
ticular interest, as it ensures that forgetting preserves all existing re-
lations between all atoms occurring in the program, but the forgotten.
In this sense, a class of operators satisfying (SP) removes the desired

atoms, but has no negative semantical effects on the remainder. The
importance of (SP) is also witnessed by the fact that a class of op-
erators that satisfies (SP) also satisfies all the other previously men-
tioned properties with the exception of (W) and (NP), which happen
to be equivalent and can hardly be considered desirable [15].

However, determining a forgetting operator that satisfies (SP) is
a difficult problem, since, for the verification whether a certain pro-
gram P ′ should be the result of forgetting about V from P , none of
the well-established equivalence relations can be used, i.e., neither
equivalence nor strong equivalence hold in general between P and
P ′, not even relativized equivalence [10], even though it is close in
spirit to the ideas of (SP). Hence, maybe not surprisingly, there is
no known general class of operators that satisfies (SP) and which is
closed (for the considered class of logic programs).

The two known positive results concerning the satisfiability of
(SP) are the existence of several known classes of operators that sat-
isfy (SP) when restricted to Horn programs [15], and the existence
of one specific operator that, in a very restricted range of situations
based on a non-trivial syntactical criterion, permits forgetting about
V from P while satisfying (SP) [16]. However, the former result is
probably of little relevance given the crucial role played by (default)
negation in ASP, while the criterion required in the latter result is
certainly too strong, excluding large classes of cases where forget-
ting about V from P is possible.

All this begs the question of whether there exists a forgetting op-
erator, or a class of these, defined over a class of programs C beyond
the class of Horn programs, that satisfies (SP). The following theo-
rem provides a negative answer to this question.

Theorem 1 There is no forgetting operator over C ⊇ Cn that satis-
fies (SP).

Proof: Let C be a class of programs with C ⊇ Cn and suppose
there exists f over C that satisfies (SP). Then, for each P ∈ C and
V ⊆ A, we have AS(f(P, V ) ∪ R) = AS(P ∪ R)‖V , for all pro-
grams R ∈ C with A(R) ⊆ A \ V . Consider P ∈ Cn:

a ← p b ← q p ← not q q ← not p

We construct HT (f(P, {p, q})), the set of HT-models of the result
of forgetting about V = {p, q} from P .

We know that 〈ab, ab〉5 must be part of HT (f(P, {p, q})), other-
wise it would not be possible to obtain the answer set {a, b} for the
result when adding R = {a ←; b ←} to f(P, {p, q}).

At the same time, since {a, b} (modulo V ) is not an answer set
of the original program, 〈X, ab〉 ∈ HT (f(P, {p, q})) for at least
one X ⊂ {a, b} to prevent {a, b} from being an answer set of
f(P, {p, q}). Consider the three alternatives:

• 〈∅, ab〉 ∈ HT (f(P, {p, q})), as adding R = {a ← b; b ← a},
whose HT-models are {〈∅, ∅〉, 〈∅, ab〉, 〈ab, ab〉}, yields one an-
swer set {a, b} for P ∪R (modulo V ) which the forgetting result
has to preserve;

• 〈a, ab〉 ∈ HT (f(P, {p, q})), since adding R = {a ←}, whose
HT-models include 〈a, ab〉, yields one answer set {a, b} for P ∪R
(modulo V ) which the forgetting result has to preserve;

• 〈b, ab〉 ∈ HT (f(P, {p, q})) symmetrically for R = {b ←}.

We derive a contradiction. �

5 We follow a common convention and abbreviate sets in HT-interpretations
such as {a, b} with the sequence of its elements, ab.
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Consequently, it is not always possible to forget a set of atoms
from a given logic program satisfying the property (SP). In the next
section, we address the question of when it is not possible to forget.

4 When Can’t We Forget?

Whereas Thm. 1 shows that in general it is not always possible to for-
get while satisfying (SP), its proof provides some hints on why this
is the case. Some atoms play an important role in the program, be-
ing pivotal in establishing the relations between the remaining atoms.
Therefore, it is simply not possible to forget them and expect that the
relations between other atoms be preserved. That is precisely what
happens with the pair of atoms p and q in the program

a ← p b ← q p ← not q q ← not p

presented in the proof of Thm. 1. It is simply not possible to forget
them both and expect all the semantic relations between a and b to
be kept. No program over atoms {a, b} would have the same answer
sets as those of the original program (modulo p and q), when both
are extended with an arbitrary set of rules over {a, b}.

This observation immediately leads to one of the central questions
here: under what circumstances is it not possible to forget about a
given set of atoms V from P while satisfying (SP)? In particular,
given a concrete program, which sets of atoms play such a pivotal
role that they cannot be jointly forgotten without affecting the seman-
tic relations between the remaining atoms in the original program?

To deal with these questions that no longer require the satisfaction
of certain properties in general for all programs P and all sets of
forgotten atoms V , but rather that (SP) holds for a concrete P and
set V , we introduce the notion of a forgetting instance.

Definition 1 (Forgetting Instance) Let C be a class of programs
over A. A (forgetting) instance (over C) is a pair 〈P, V 〉 s.t. P ∈ C
and V ⊆ A.

We also introduce a restriction of property (SP) to operators of
forgetting and such forgetting instances.

Definition 2 (Strong Persistence for Forgetting Instance) A for-
getting operator f over C satisfies (SP)〈P,V 〉 if AS(f(P, V ) ∪ R) =
AS(P ∪R)‖V , for all programs R ∈ C with A(R) ⊆ A \ V .

Also, f satisfies (SP)V if f satisfies (SP)〈P,V 〉 for all P ∈ C.

First, we focus on specific classes of programs.

Proposition 1 There is no forgetting operator over Cn that satisfies
(SP)V for any V .

Example 1 Consider forgetting about q from P :

p ← not q q ← not p

The only correct result that satisfies the condition of (SP) is strongly
equivalent to {p ← not not p}, which is not strongly equivalent to
any normal program.

This example shows that even if we can forget about some V from a
normal program, the result will in general be an extended program,
and we would have to revert to using operators over this general class
for subsequent forgetting operations.

We could also wonder whether considering Cd instead of Cn, in
the former proposition, would yield better results, but to no avail.

Proposition 2 There is no forgetting operator over Cd that satisfies
(SP)V for any V .

This can be verified by considering P in Ex. 1, since there is no dis-
junctive program which is strongly equivalent to the presented result.

The reason why Props. 1 and 2 hold is tied to the fact that the result
of forgetting is not within the class of programs considered. Since we
are interested in more essential reasons why a set of atoms cannot be
forgotten from a program, in what follows, unless otherwise stated,
we will focus on forgetting operators over the entire class Ce.

We now proceed with the introduction of a criterion (Ω) which will
play a fundamental role in characterizing the instances for which we
cannot expect forgetting operators to satisfy (SP)〈P,V 〉.

Definition 3 (Criterion Ω) Let P be a program over A and V ⊆ A.
An instance 〈P, V 〉 satisfies criterion Ω if there exists Y ⊆ A \ V
such that the set of sets

RY
〈P,V 〉 = {RY,A

〈P,V 〉 | A ∈ RelY〈P,V 〉}
is non-empty and has no least element, where

RY,A
〈P,V 〉 = {X \ V | 〈X,Y ∪A〉 ∈ HT (P )}

RelY〈P,V 〉 = {A ⊆ V | 〈Y ∪A, Y ∪A〉 ∈ HT (P ) and

�A′ ⊂ A such that 〈Y ∪A′, Y ∪A〉 ∈ HT (P )}.

The following example illustrates how criterion Ω can be checked.

Example 2 Recall P ∈ Cn used in the proof of Thm. 1:

a ← p b ← q p ← not q q ← not p

To check if the instance 〈P, {p, q}〉 satisfies criterion Ω, we need to
inspect the HT-models of P , HT (P ), which contains 15 elements:

〈ap, ap〉 〈bq, abq〉 〈b, abpq〉 〈abp, abpq〉
〈bq, bq〉 〈abq, abq〉 〈ab, abpq〉 〈abq, abpq〉

〈ap, abp〉 〈∅, abpq〉 〈ap, abpq〉 〈abpq, abpq〉
〈abp, abp〉 〈a, abpq〉 〈bq, abpq〉

To prove that instance 〈P, {p, q}〉 satisfies Ω, we need to find Y ⊆
A \ V = {a, b, p, q} \ {p, q} = {a, b} such that RY

〈P,V 〉 is non-
empty and has no least element. For that, we only need to focus on
those sets Y ′ ⊆ {a, b} for which there exists 〈H,T 〉 ∈ HT (P ) with
Y ′ = T \ {p, q}, since for all other Y ′ the set RY ′

〈P,V 〉 is necessarily
empty. In this case, such sets are Y ′ = {b}, since there is an HT-
model of P of the form 〈X, bq〉, Y ′ = {a}, since there is an HT-
model of P of the form 〈X, ap〉, and Y ′ = {a, b}, since there are
HT-models of P of the form 〈X, abp〉, 〈X, abq〉 and 〈X, abpq〉. For
Y ′ = {b}, RY ′

〈P,V 〉 has only one element and therefore necessarily a
least one. The same holds for Y ′ = {a}.

We are left to inspect Y ′ = {a, b}. For such Y ′ we need to focus
on HT-models of the form 〈X, abp〉, 〈X, abq〉 and 〈X, abpq〉.

Those of the form 〈X, abpq〉 are however not relevant (for prop-
erty (SP)), since {a, b, p, q} can never be an answer set of P ∪ R
with A(R) ⊆ {a, b}. This happens since, besides 〈abpq, abpq〉,
〈ab, abpq〉, 〈abp, abpq〉 and 〈abq, abpq〉 are also HT-models of P ,
and since any program R over {a, b} cannot distinguish these
HT-models, i.e., either all are HT-models of R or none is. There-
fore, {p, q} /∈ Rel

{a,b}
〈P,V 〉. Then, R{a,b}

〈P,V 〉 has only two elements,

R
{a,b},{p}
〈P,V 〉 = {{a, b}, {a}} and R

{a,b},{q}
〈P,V 〉 = {{a, b}, {b}}. Since

these two sets are incomparable, R{a,b}
〈P,V 〉 has no least element. There-

fore, taking Y = {a, b}, we conclude that 〈P, {p, q}〉 satisfies Ω.

Since criterion Ω heavily relies on HT-models, it helps to observe
that, for all instances 〈P, V 〉, any forgetting operator that satisfies
(SP)〈P,V 〉 produces a result whose HT-models are a subset of the
HT-models of the original program (modulo the forgotten atoms).
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Proposition 3 If a forgetting operator f over C satisfies (SP)〈P,V 〉
for an instance 〈P, V 〉 over C then

HT (f(P, V )) ⊆ HT (P )‖V .

Proof: We first prove that 〈Y, Y 〉 ∈ HT (P )‖V if 〈Y, Y 〉 ∈
HT (f(P, V )). Let R be a program over A(P ) \ V whose only HT-
model of the form 〈X,Y 〉 is 〈Y, Y 〉. Then Y ∈ AS(f(P, V ) ∪ R).
Since f satisfies (SP)〈P,V 〉, we have that Y ∈ AS(P ∪R)‖V . Then,
there exists A ⊆ V such that 〈Y ∪A, Y ∪A〉 ∈ HT (P ∪R). In par-
ticular 〈Y ∪A, Y ∪A〉 ∈ HT (P ), and hence 〈Y, Y 〉 ∈ HT (P )‖V .

Now let 〈X,Y 〉 ∈ HT (f(P, V )) with X ⊂ Y . We then have
that 〈Y, Y 〉 ∈ HT (f(P, V )), and, as we proved above, 〈Y, Y 〉 ∈
HT (P )‖V . Let R be a program over A(P ) \ V whose only HT-
models of the form 〈X ′, Y 〉 are 〈X,Y 〉 and 〈Y, Y 〉. Then, Y /∈
AS(f(P, V ) ∪ R). Since f satisfies (SP)〈P,V 〉, we have that Y /∈
AS(P ∪ R)‖V . Since R is a program over A(P ) \ V , the only HT-
models of R of the form 〈X ′, Y ∪ A〉 with A ⊆ V are of the form
〈X∪A′, Y ∪A〉 or 〈Y ∪A′, Y ∪A〉 with A′ ⊆ A. It is easy to prove
that there is A′ ⊆ A ⊆ V such that 〈X ∪ A′, Y ∪ A〉 ∈ HT (P ).
Otherwise, taking R′ over A(P ) \ V whose only HT-model of the
form 〈X,Y 〉 is 〈Y, Y 〉, we would have that Y /∈ AS(P ∪ R′), but
Y ∈ AS(P ∪R′). Therefore, 〈X,Y 〉 ∈ HT (P )‖V . �

We are now ready to state that Ω is a sufficient condition to deter-
mine that some set of atoms V cannot be forgotten from a program
P while satisfying strong persistence.

Theorem 2 If 〈P, V 〉 satisfies Ω, then no forgetting operator f sat-
isfies (SP)〈P,V 〉.

Proof: Let 〈P, V 〉 be an instance satisfying Ω, and assume that
there is a forgetting operator f that satisfies (SP)〈P,V 〉.

Since 〈P, V 〉 satisfies Ω, we have that there is Y ⊆ A \ V such
that the set RY

〈P,V 〉 = {RY,A
〈P,V 〉 | A ∈ RelY〈P,V 〉} – as defined in

Def. 3 – has no least element.
First, we prove that 〈Y, Y 〉 ∈ HT (f(P, V )). Assume it is not the

case. Consider the program R = {a ←| a ∈ Y } over A \ V . The
only HT-model of R of the form 〈X,Y 〉 is 〈Y, Y 〉. Since RY

〈P,V 〉 is
non-empty, P must contain an HT-model of the form 〈Y ′, Y ′〉 such
that Y = Y ′ \ V and there is no 〈X ′, Y ′〉 with X ′ ⊂ Y ′ and Y =
X ′ \V . Therefore, Y ∈ AS(P ∪R)‖V , but Y /∈ AS(f(P, V )∪R),
contradicting the assumption that f satisfies (SP)〈P,V 〉.

We now show that, for each 〈X,Y ∪ A〉 ∈ HT (P ) such that
A ∈ RelY〈P,V 〉 and X \ V /∈

⋂
RY

〈P,V 〉, we have that 〈X \ V, Y 〉 /∈
HT (f(P, V )). Assume that 〈X \ V, Y 〉 ∈ HT (f(P, V )). Consider
a program R over A \ V whose HT-models over A \ V of the form
〈X ′, Y 〉 are only 〈Y, Y 〉 and 〈X \V, Y 〉. Since X \V /∈

⋂
RY

〈P,V 〉,

there exists A′ ∈ RelY〈P,V 〉 such that X \ V /∈ RY,A′
〈P,V 〉. Therefore,

there is no A′′ ⊆ A′ such that 〈(X \ V ) ∪A′′, Y ∪A′〉 ∈ HT (P ).
Since R is a program over A\V then 〈Y, Y 〉 ∈ HT (R) implies that,
for any A′′ ⊆ V , we have that 〈Y ∪A′′, Y ∪A′′〉 ∈ HT (R) over A.
Then, Y ∪A′ ∈ AS(P ∪R), which implies that Y ∈ AS(P ∪R)‖V .
But Y /∈ AS(f(P, V )∪R), since 〈X \V, Y 〉 ∈ HT (f(P, V )∪R).
This contradicts the assumption that f satisfies (SP)〈P,V 〉.

Recall from Prop. 3 that HT (f(P, V )) ⊆ HT (P )‖V . This, to-
gether with 〈X,Y 〉 /∈ HT (f(P, V )) for X /∈

⋂
RY

〈P,V 〉, implies
that {X | 〈X,Y 〉 ∈ HT (f(P, V ))} ⊆

⋂
RY

〈P,V 〉.
Since we are assuming that RY

〈P,V 〉 has no least element, then, for
each A ∈ RelY〈P,V 〉, there exists XA ∈ RY,A

〈P,V 〉 s.t. XA /∈
⋂

RY
〈P,V 〉.

Now take a program R over A \ V whose HT-models of the form

〈X ′, Y 〉 are exactly 〈Y, Y 〉 and 〈XA, Y 〉 for each A ∈ RelY〈P,V 〉.
Then we clearly have that Y /∈ AS(P ∪R)‖V . Since each 〈XA, Y 〉
cannot belong to HT (f(P, V )) because XA /∈

⋂
RY

〈P,V 〉, we have
that Y ∈ AS(f(P, V )∪R). This is a contradiction to the assumption
that f satisfies (SP)〈P,V 〉. Therefore, f cannot satisfy (SP)〈P,V 〉. �

Example 3 Recall P ∈ Cn used in the proof of Thm. 1 and Ex. 2.

a ← p b ← q p ← not q q ← not p

Since 〈P, {p, q}〉 satisfies criterion Ω (cf. Ex. 2), no forgetting oper-
ator f satisfies (SP)〈P,{p,q}〉.

We can determine the complexity of testing Ω for a given instance.

Theorem 3 The complexity of checking if an instance 〈P, V 〉 satis-
fies criterion Ω is in Πp

3 .

Proof: We need to find RY,A1
〈P,V 〉, R

Y,A2
〈P,V 〉 ∈ RY

〈P,V 〉 s.t. both are
minimal in RY

〈P,V 〉 and do not coincide to ensure that Ω is satisfied.
We can guess Y , A1 and A2 in polynomial time.
The test of whether some RY,A

〈P,V 〉 ∈ RY
〈P,V 〉 requires verifying

whether A ∈ RelY〈P,V 〉. This can be solved in each case by verifying
whether (a) 〈Y ∪ A, Y ∪ A〉 ∈ HT (P ) and whether (b) there is no
proper subset A′ of A such that 〈Y ∪A′, Y ∪A〉 ∈ HT (P ). Testing
whether (a) a given HT-interpretation is a HT-model can be done in
PTIME, and (b) corresponds to a coNP problem with an NP oracle
(for finding HT-models). Hence, this test can be done in Πp

2 .
Checking whether each RY,Ai

〈P,V 〉 is minimal corresponds to a coNP
problem using a Σp

2 oracle for guessing and checking suitable
RY,A

〈P,V 〉 ∈ RY
〈P,V 〉. Hence, this test can be done in Πp

3 .

Finally, the test of whether the two RY,Ai
〈P,V 〉 do not coincide can

be done by finding a single HT-interpretation 〈X,Y ∪A1〉 such that
X \ V ∈ RY,A1

〈P,V 〉 but no corresponding 〈X ′, Y ∪ A2〉 ∈ HT (P )

such that X ′ \ V ∈ RY,A2
〈P,V 〉. This test can is also a coNP problem

with an NP oracle, hence in Πp
2 . Thus, the overall test is in Πp

3 . �

Even though showing hardness for this result remains open, it seems
clear that testing for Ω is non-trivial, the intuitive reason being that
besides the complexity of determining HT-models, there are two
minimizations to consider, one for RelY〈P,V 〉 and one for RY

〈P,V 〉.
Still, the complexity is lower than that of computing results of for-
getting, which is commonly exponential [15] – it’s not easy to forget.
Nevertheless, if the HT-models have already been computed, check-
ing Ω can be done in linear time on the number of HT-models.

Turning back to the reasons why we cannot forget some sets of
atoms from a given program, we can observe – both in the proof of
Thm. 1 as well as when the criterion Ω is satisfied – that they seem
to be strongly connected to the presence of atoms to be forgotten that
depend on themselves via an even (and non-zero) number of nega-
tions. This could raise the question of whether it is possible to forget
about sets of atoms under certain restrictions. For example, we can
verify that criterion Ω is not satisfied for forgetting only about p from
the normal program used in the proof of Thm. 1, i.e., we can forget
about p in this case. So it would seem that forgetting about certain
sets of atoms from normal programs should be a more admissible
problem. Unfortunately, this is not the case, since even if we were to
delimit V , e.g., by restricting its size, in general, no forgetting oper-
ator exists that satisfies (SP)V .

Proposition 4 There is no forgetting operator over Ce that satisfies
(SP)V for any V of fixed size.
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Example 4 Consider forgetting about p from P :

a ← p b ← not p p ← not not p ,

Even though we forget only about one atom p, the argument in the
proof of Thm. 1 applies just as well, and no program f(P, {p}) exists
whose HT-models match the requirements to satisfy (SP)V .

5 When (and How) Can We Forget?

So far we have focused on what cannot be forgotten. We now turn
our attention to what can be forgotten.

While Ω allows us to test when it is not possible to forget with-
out sacrificing (SP), we do not yet know whether this is a necessary
criterion. That being the case would ensure that whenever we forget
about V from P , and Ω is not satisfied, (SP)〈P,V 〉 could be obeyed.
In this section, we investigate this matter with the aim of being able
to determine when we can forget, and, if possible, to characterise
those operators that can obtain the desirable result. To this end, we
start by introducing a new class of forgetting operators that computes
the HT-models that represent a result of forgetting about V from P .

Definition 4 (SP-Forgetting) Let FSP be the class of forgetting op-
erators defined by the following set:

{f | HT (f(P, V ))={〈X,Y 〉 | Y ⊆ A(P )\V ∧X∈
⋂

RY
〈P,V 〉}}

As expected, the definition of this class of operators strongly relies on
the sets of sets RY

〈P,V 〉, where computing the intersections amounts
to determining the least elements in each RY

〈P,V 〉 if they exist, i.e.,
whenever criterion Ω is not satisfied.

Example 5 Consider the following normal program P ∈ Cn.

a ← not p p ← not b

Forgetting {p} from P while satisfying (SP) should preserve all
dependencies between a and b. Such dependencies are internalized
in the set of HT-models of P . In this case, all models in HT (P )
are of the form 〈X,Y 〉 with Y = {p}, Y = {a, p}, Y = {b, p},
Y = {a, b} or Y = {a, b, p}. Some of these models are how-
ever not relevant from the point of view of (SP). For example, since
〈b, bp〉 ∈ HT (P ), we have that {b, p} can never be an answer set
of (P ∪ R), for a program R over {a, b}. This is due to the fact
that any R over {a, b} cannot distinguish the models 〈b, bp〉 and
〈bp, bp〉, i.e., one is a model of R iff the other is. The same type of ar-
gument applies to Y = {a, b, p} since 〈ab, abp〉 ∈ HT (P ). There-
fore, {p} /∈ Rel

{b}
〈P,V 〉 and {p} /∈ Rel

{a,b}
〈P,V 〉, which intuitively means

that models of P of the form 〈X, bp〉 and of the form 〈X, abp〉 are not
relevant for the existence of models of the form 〈X, b〉 and 〈X, ab〉
in f(P, {p}), respectively. In the case of Y = {b}, we have that
R{b}

〈P,V 〉 = ∅, which means that f(P, V ) has no HT-model of the form

〈X, {b}〉. For the other possible models we have {p} ∈ Rel∅〈P,{p}〉,

{a} ∈ Rel
{a}
〈P,{p}〉 and {a, b} ∈ Rel

{a,b}
〈P,{p}〉. For each such Y , the

set RY
〈P,V 〉 has only one element, thus the intersection is precisely

that element. This immediately implies that the forgetting instance
〈P, {p}〉 does not satisfy criterion Ω. The resulting set of HT-models
of f(P, V ) for f ∈ FSP, is {〈∅, ∅〉, 〈∅, a〉, 〈a, a〉, 〈a, ab〉, 〈ab, ab〉}.
This means that for any f ∈ FSP, the program f(P, V ) is strongly
equivalent to {a ← not not b}.

The close connection between the definition of FSP and criterion
Ω is not mere coincidence. It turns out that every operator in FSP in
fact satisfies (SP) for those instances 〈P, V 〉 that do not satisfy Ω.

Theorem 4 Every f ∈ FSP satisfies (SP)〈P,V 〉 for every 〈P, V 〉 that
does not satisfy Ω.

Proof: Let f ∈ FSP and let 〈P, V 〉 be an instance such that
〈P, V 〉 does not satisfy (SP)〈P,V 〉. Recall that by construction,
HT (f(P, V )) = {〈X,Y 〉 | Y ⊆ A(P ) \ V ∧ X ∈

⋂
RY

〈P,V 〉}}.
Let R be a program over A(P ) \ V .

We start by proving that AS(f(P, V ) ∪ R) ⊆ AS(P ∪ R)‖V .
Suppose that Y ∈ AS(f(P, V )∪R). Then, 〈Y, Y 〉 ∈ HT (f(P, V )∪
R) and there is no X ⊂ Y such that 〈X,Y 〉 ∈ HT (f(P, V ) ∪ R).
We can then conclude that there is no X ⊂ Y with X ∈

⋂
RY

〈P,V 〉
and 〈X,Y 〉 ∈ HT (R). Since 〈Y, Y 〉 ∈ HT (f(P, V ) ∪ R), we can
conclude that RY

〈P,V 〉 is non-empty, and given that we are assuming
that 〈P, V 〉 does not satisfy Ω, the RY

〈P,V 〉 has a least element, which
is precisely

⋂
RY

〈P,V 〉. Let A ∈ RelY〈P,V 〉 be such that RY,A
〈P,V 〉 =

⋂
RY

〈P,V 〉. Then, since 〈Y, Y 〉 ∈ HT (R) and A(R) ⊆ A(P ) \ V ,
we have that 〈Y ∪A, Y ∪A〉 ∈ HT (R). Therefore, 〈Y ∪A, Y ∪A〉 ∈
HT (P ∪ R). Since A ∈ RelY〈P,V 〉 and there is no X ⊂ Y with
X ∈

⋂
RY

〈P,V 〉 such that 〈X,Y 〉 ∈ HT (R), we can conclude that
there is no X ⊂ Y ∪ A such that 〈X,Y ∪ A〉 ∈ HT (P ∪ R).
Therefore, Y ∪A ∈ AS(P ∪R), and so Y ∈ AS(P ∪R)‖V .

We now prove that AS(P ∪R)‖V ⊆ AS(f(P, V )∪R). Suppose
Y ∈ AS(P ∪R)‖V . Then there exists A ⊆ V such that 〈Y ∪A, Y ∪
A〉 ∈ HT (P∪R) and there is no X ⊂ Y ∪A such that 〈X,Y ∪A〉 ∈
HT (P ∪ R). Therefore, RY

〈P,V 〉 is non-empty and A ∈ RelY〈P,V 〉.
Also, there is no X ′ ∈

⋂
RY

〈P,V 〉 such that 〈X ′, Y 〉 ∈ HT (R).
Therefore, there is no 〈X ′, Y 〉 ∈ HT (f(P, V ) ∪R) such that X ′ ⊂
Y . In order to conclude that Y ∈ AS(f(P, V ) ∪ R) we just need to
prove that 〈Y, Y 〉 ∈ HT (f(P, V ) ∪ R). Since 〈Y ∪ A, Y ∪ A〉 ∈
HT (R) and A(R) ⊆ A(P ) \ V , we have that 〈Y, Y 〉 ∈ HT (R).
Since Y ∈ RY,A

〈P,V 〉 for all A ∈ RelY〈P,V 〉, we clearly have that Y ∈
⋂

RY
〈P,V 〉 and therefore, by construction, 〈Y, Y 〉 ∈ HT (f(P, V )).

We can then conclude that 〈Y, Y 〉 ∈ HT (f(P, V ) ∪ R). Therefore,
Y ∈ AS(f(P, V ) ∪R). �

It immediately follows from Thms. 2 and 4 that Ω is a necessary
and sufficient criterion for determining whether it is possible to forget
about V from P and preserve (SP).

Corollary 1 There is a forgetting operator f that satisfies (SP)〈P,V 〉
iff 〈P, V 〉 does not satisfy Ω.

Thus, given an instance 〈P, V 〉, we can test whether Ω is not satis-
fied, i.e., whether we are allowed to forget V from P while preserv-
ing (SP), in which case we can compute the HT-models that charac-
terise a result using the definition of FSP.

Also, whenever it is possible to forget, the class FSP precisely char-
acterises the result of forgetting.

Proposition 5 Let 〈P, V 〉 be an instance that does not satisfy Ω.
Then, for every forgetting operator f satisfying (SP)〈P,V 〉 and every
f′ ∈ FSP we have that f(P, V ) ≡HT f′(P, V ).

For the particular case of Horn programs, it is possible to simplify
the construction of the result since the set of HT-models of the re-
sult of forgetting coincides with the set of HT-models of the original
program, modulo the forgotten atoms. A side-effect of this is that the
result is guaranteed to be itself a Horn program.

Proposition 6 Let f be in FSP. Then, for every V ⊆ A:

HT (f(P, V )) = HT (P )‖V for P ∈ CH and f(P, V ) ∈ CH .
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Proof: We know from [9] that the HT-models M of Horn pro-
grams are characterized by the following conditions:

(A) 〈X,Y 〉 ∈ M,Y ⊆ Y ′ and 〈Y ′, Y ′〉 ∈ M ⇒ 〈X,Y ′〉 ∈ M
(B) 〈X,Y 〉 ∈ M iff X ⊆ Y, 〈X,X〉 ∈ M and 〈Y, Y 〉 ∈ M
(C) 〈X,Y 〉 ∈ M and 〈H,T 〉 ∈ M ⇒ 〈X ∩H,Y ∩ T 〉 ∈ M

We first prove that HT (f(P, V )) = HT (P )‖V for P ∈ CH .
Let us prove the two inclusions. Consider 〈X,Y 〉 ∈ HT (f(P, V )).
Then Y ⊆ A(P ) \ V and X ∈

⋂
RY

〈P,V 〉, i.e., there is at least one
A ∈ RelY〈P,V 〉 such that X ∈ RY,A

〈P,V 〉. Hence, there is 〈X ′, Y ∪A〉 ∈
HT (P ) with X = X ′ \ V .

Now consider 〈X,Y 〉 ∈ HT (P )‖V . Then, there exists A′ ⊆ A ⊆
V such that 〈X ∪A′, Y ∪A〉 ∈ HT (P ). Let A′′ ∈ RelY〈P,V 〉. Then
〈Y ∪A′′, Y ∪A′′〉 ∈ HT (P ). Using condition (C) we can conclude
that 〈(X ∪A′) ∩ (Y ∪A′′), (Y ∪A) ∩ (Y ∪A′′)〉 ∈ HT (P ), i.e.,
〈X ∪ (A′ ∩A′′), Y ∪ (A∩A′′)〉 ∈ HT (P ). Since Y ∪ (A∩A′′) ⊆
Y ∪ A′′, and using condition (A) we can conclude that 〈X ∪ (A′ ∩
A′′), Y ∪ A′′〉 ∈ HT (P ), and consequently X ∈ RY,A′′

〈P,V 〉. Hence
X ∈

⋂
RY

〈P,V 〉, and therefore 〈X,Y 〉 ∈ HT (f(P, V )).
We now prove that for P ∈ CH we have f(P, V ) ∈ CH . So, we

need to prove that conditions (A), (B) and (C) hold for HT (f(P, V )).
For condition (A) take 〈X,Y 〉 ∈ HT (f(P, V )) and 〈Y ′, Y ′〉 ∈

HT (f(P, V )) such that Y ⊆ Y ′. We aim to prove that 〈X,Y ′〉 ∈
HT (f(P, V )). By definition X ∈ RY

〈P,V 〉 and Y ′ ∈ RY ′
〈P,V 〉. There-

fore, 〈X ∪ A, Y ∪ A′〉 ∈ HT (P ) for some A ⊆ A′ ⊆ V . Also,
〈Y ′ ∪ A′′, Y ′ ∪ A′′〉 ∈ HT (P ) for every A′′ ∈ RelY

′
〈P,V 〉. Then,

since HT (P ) satisfies condition (B), we can easily conclude that
〈X ∪ (A ∩ A′′), Y ′ ∪ A′′〉 ∈ HT (P ) for every A′′ ∈ RelY

′
〈P,V 〉.

Therefore, X ∈
⋂

RY ′
〈P,V 〉, hence 〈X,Y ′〉 ∈ HT (f(P, V )).

For condition (B), first take 〈X,Y 〉 ∈ HT (f(P, V )). We aim to
prove that 〈X,X〉 ∈ HT (f(P, V )) and 〈Y, Y 〉 ∈ HT (f(P, V )).
Since 〈X,Y 〉 ∈ HT (f(P, V )) we have that X ∈

⋂
RY

〈P,V 〉. Then,
〈X∪A′, Y ∪A′′〉 ∈ HT (P ) for some A′ ⊆ A′′ ⊆ V . Using condi-
tion (B) for HT (P ) we have that 〈X ∪A′, X ∪A′〉 ∈ HT (P ) and
〈Y ∪A′′, Y ∪A′′〉 ∈ HT (P ). Using again condition (B), we can con-
clude that for every A′′′ ∈ RelX〈P,V 〉 we have 〈X ∪ (A′ ∩A′′′), X ∪
A′′′〉 ∈ HT (P ). Hence, X ∈

⋂
RX

〈P,V 〉, and therefore 〈X,X〉 ∈
HT (f(P, V )). In the same way, we can conclude that for every
A′′′ ∈ RelY〈P,V 〉 we have 〈Y ∪ (A′′ ∩ A′′′), Y ∪ A′′′〉 ∈ HT (P ).
Hence, Y ∈

⋂
RY

〈P,V 〉, and therefore 〈Y, Y 〉 ∈ HT (f(P, V )).
For the converse, assume that 〈X,X〉 ∈ HT (f(P, V )) and

〈Y, Y 〉 ∈ HT (f(P, V )). We aim to prove that 〈X,Y 〉 ∈
HT (f(P, V )). Since 〈X,X〉 ∈ HT (f(P, V )) and 〈Y, Y 〉 ∈
HT (f(P, V )) we have that X ∈

⋂
RX

〈P,V 〉 and Y ∈
⋂

RY
〈P,V 〉.

Then, there is A′ ⊆ V such that 〈X ∪ A′, X ∪ A′〉 ∈ HT (P ).
Also, for every A′′ ∈ RelY〈P,V 〉 we have 〈Y ∪ A′′, Y ∪ A′′〉 ∈
HT (P ). Since X ⊆ Y and using condition (C) we have that
〈X ∪ (A′ ∩ A′′), X ∪ (A′ ∩ A′′)〉 ∈ HT (P ). Since X ∪ (A′ ∩
A′′) ⊆ Y ∪ A′′ we can use condition (B) to conclude that 〈X ∪
(A′ ∩ A′′), Y ∪ A′′)〉 ∈ HT (P ), therefore X ∈

⋂
RY

〈P,V 〉. Then
〈X,Y 〉 ∈ HT (f(P, V )).

For condition (C) take 〈X,Y 〉 ∈ HT (f(P, V )) and 〈H,T 〉 ∈
HT (f(P, V )). We aim to prove that 〈X ∩ H,Y ∩ T 〉 ∈
HT (f(P, V )). Since 〈X,Y 〉 ∈ HT (f(P, V )) and 〈H,T 〉 ∈
HT (f(P, V )) we have that X ∈

⋂
RY

〈P,V 〉 and H ∈
⋂

RT
〈P,V 〉.

Then, there are A,A′, A′′, A′′′ ⊆ V such that 〈X ∪ A, Y ∪ A′〉 ∈
HT (P ) and 〈H ∪ A′′, T ∪ A′′′〉 ∈ HT (P ). Using condition (C)
for HT (P ) we have that 〈(X ∩H) ∪ (A ∩ A′′), (Y ∩ T ) ∪ (A′ ∩
A′′′)〉 ∈ HT (P ). Therefore, it follows easily from condition (B)

that 〈(X ∩ H) ∪ (A ∩ A′′ ∩ A∗), (Y ∩ T ) ∪ A∗〉 ∈ HT (P ) for
any A∗ ∈ RelY ∩T

〈P,V 〉. Therefore (X ∩ H) ∈
⋂

RY ∩T
〈P,V 〉, and hence

〈X ∩H,Y ∩ T 〉 ∈ HT (f(P, V )). �

We can now show that FSP is closed in the general case and for
Horn programs, but not for disjunctive or normal programs. This
turns out to be similar as for previous classes of operators defined
for the class of extended programs that are based on manipulating
HT-models, namely HT-forgetting [41] and SM-forgetting [39].

Theorem 5 FSP is closed for extended programs and Horn pro-
grams, but neither for disjunctive programs nor normal programs.

Proof: FSP is naturally closed for Ce, since 〈X,Y 〉 ∈
HT (f(P, V )), by construction, implies 〈Y, Y 〉 ∈ HT (f(P, V )).
The negative results for (ECd ) and (ECn ) follow from Props. 1 and 2.

Regarding (ECH ), by Prop. 6, f(P, V )) ∈ CH for P ∈ CH . �

We state the result in the general case here, i.e., independently of
whether we are allowed to forget or not, but these results obviously
apply in exactly the same way if we restrict our attention to the cases
where we can forget about some V from a given program P .

If we restrict our attention to the cases where we can forget, i.e.,
where the considered instance does not satisfy Ω, then most of the
properties mentioned in Sec. 2 are satisfied.

Theorem 6 Restricted to instances 〈P, V 〉 that do not satisfy Ω, FSP

satisfies (sC), (wE), (SE), (PP), (SI), (CP), (SP) and (wC).

Proof: By Thm 4, every f ∈ FSP satisfies (SP)〈P,V 〉 for every
〈P, V 〉 that does not satisfy Ω. Hence, FSP satisfies (SP) under this
restriction. Then, by Prop. 1 of [15], FSP also satisfies (sC), (wE),
(SE), (PP), (SI), (CP), (wC), but neither (W) nor (NP). �

The properties which are not satisfied – (W) and (NP) – have been
proved orthogonal to (SP) [15], hence of little relevance in our view.

Theorem 7 Let f be in FSP, P, P ′ ∈ Ce and V ⊆ A. Deciding if
P ′ ≡HT f(P, V ) is in Πp

3 .

Proof: If P ′ ≡HT f(P, V ), then there exists an HT-interpretation
〈X,Y 〉 such that either (a) 〈X,Y 〉 |=HT P ′ and 〈X,Y 〉 |=HT

f(P, V ), or (b) 〈X,Y 〉 |=HT P ′ and 〈X,Y 〉 |=HT f(P, V ).
Consider (a). Checking whether 〈X,Y 〉 |=HT P ′ can be done in

PTIME. Checking whether 〈X,Y 〉 |=HT f(P, V ) amounts to veri-
fying that X ∈

⋂
RY

〈P,V 〉. This holds if either
⋂

RY
〈P,V 〉 is empty

or there is at least one RY,A
〈P,V 〉 ∈ RY

〈P,V 〉 such that X ∈ RY,A
〈P,V 〉.

The first case corresponds to the co-problem of finding at least one
RY,A

〈P,V 〉 ∈ RY
〈P,V 〉, which is in Πp

2 (see proof of Thm. 3). The second

also requires finding such RY,A
〈P,V 〉 ∈ RY

〈P,V 〉, but also to ensure that
〈X ∪ V ′, Y ∪A〉 is not an HT-model of P for any V ′ ⊆ A using an
NP-oracle. Hence, (a) is in Πp

3 . A similar argument holds for (b). �

Still, computing the actual result (and not just its representation in
terms of HT-models) is exponential [15]. This high computational
complexity of computing a result, together with the fact that the test
used in the proof of Thm. 7 does not check if Ω holds, justifies the
use of our test for criterion Ω before proceeding with the operation.
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6 What Can We Forget?

We now approach the problem from a different angle, and determine
which sets of atoms can be forgotten from a specific program.

We begin with the case where the set of atoms to be forgotten is
a singleton and the program normal. As it turns out, we can always
forget single atoms from normal programs without having to test Ω.

Proposition 7 There is a forgetting operator satisfying (SP)〈P,V 〉,
for every P ∈ Cn and every V such that |V |= 1.

Proof: Let P ∈ Cn and assume that |V |= 1. We aim to prove that
〈P, V 〉 does not satisfy Ω. Since |V |= 1, for every Y ⊆ A(P ) \ V ,
the set RY

〈P,V 〉 has at most two elements: RY,∅
〈P,V 〉 and RY,V

〈P,V 〉. If
RY

〈P,V 〉 has at most one element then either the set is empty or it has
a least element. Suppose both RY,∅

〈P,V 〉 and RY,V
〈P,V 〉 belong to RY

〈P,V 〉.
Then both 〈Y, Y 〉 and 〈Y ∪ V, Y ∪ V 〉 are HT-models of P .

We now prove that RY,∅
〈P,V 〉 ⊆ RY,V

〈P,V 〉. Let X ∈ RY,∅
〈P,V 〉. Then

〈X,Y 〉 ∈ HT (P ). We can apply one of the conditions that charac-
terize the possible classes of models of programs in Cn: if 〈H,T 〉 ∈
HT (P ) and 〈T ′, T ′〉 ∈ HT (P ) such that T ⊆ T ′, then 〈H,T ′〉 ∈
HT (P ). Since 〈X,Y 〉 ∈ HT (P ) and 〈Y ∪ V, Y ∪ V 〉 ∈ HT (P )
we have that 〈X,Y ∪ V 〉 ∈ HT (P ), and therefore X \ V = X ∈
RY,V

〈P,V 〉. We can conclude that RY,∅
〈P,V 〉 ⊆ RY,V

〈P,V 〉, and so RY,∅
〈P,V 〉 is

the least element of RY
〈P,V 〉. Therefore, 〈P, V 〉 does not satisfy Ω for

every P ∈ Cn and V such that |V |= 1. �

This result also holds for the class of disjunctive programs, whose
proof, which we omit for lack of space, follows a similar strategy.

Proposition 8 There is a forgetting operator satisfying (SP)〈P,V 〉,
for every P ∈ Cd and every V such that |V |= 1.

As indicated in Thm. 5, no operator in FSP is closed for normal or
disjunctive programs, hence quite likely the result will not be appli-
cable throughout an iterative process of forgetting one atom at a time.
But for a one-time forgetting operation, they might be useful.

We now provide a general way to determine which sets of atoms
can be forgotten from a given program.

Theorem 8 Let P be a program. Then the set of sets of atoms

VP = {V ⊆ A(P ) |
⋂

RY
〈P,V 〉 ∈ RY

〈P,V 〉 for every RY
〈P,V 〉 = ∅}

is the set of all sets V of atoms for which it is possible to forget V
from P while satisfying (SP)〈P,V 〉.

Proof: Let P be a program. Using Cor. 1 we need to check that
VP is exactly the set of all V ⊆ A(P ) such that the instance 〈P, V 〉
does not satisfies criterion Ω.

Let V ∈ VP . By definition of VP , we have that for every Y ⊆
A(P ) \ V either RY

〈P,V 〉 = ∅ or
⋂

RY
〈P,V 〉 ∈ RY

〈P,V 〉. Since clearly⋂
RY

〈P,V 〉 is the least element of RY
〈P,V 〉, 〈P, V 〉 cannot satisfy Ω.

Now let V /∈ VP . Then, by definition of VP there exists Y ⊆
A(P ) \ V such that RY

〈P,V 〉 = ∅ and
⋂

RY
〈P,V 〉 /∈ RY

〈P,V 〉. Suppose
that RY

〈P,V 〉 has a least element, call it L. Then L ⊆ R, for every
R ∈ RY

〈P,V 〉. Therefore L ⊆
⋂

RY
〈P,V 〉. Since L ∈ RY

〈P,V 〉 we have
that

⋂
RY

〈P,V 〉 ⊆ L. Thus L =
⋂

RY
〈P,V 〉, which contradicts the fact

that
⋂

RY
〈P,V 〉 /∈ RY

〈P,V 〉. Therefore, RY
〈P,V 〉 has no least element,

and we can conclude that 〈P, V 〉 satisfies criterion Ω. �

Thus, this result provides a general way to obtain all sets of atoms V
that can be forgotten from a given program P while preserving (SP).
Notably, all possible sets contained in VP have to be determined in-
dividually as neither sub- nor supersets are necessarily contained in
the result. For example, for program P given in Ex. 2, VP contains
{p}, {q}, and, e.g., {p, q, a}, but not {p, q}.

7 Conclusions

We have studied forgetting in ASP, focusing on what is perhaps its
most crucial property – strong persistence (SP) – which captures the
essence of forgetting in ASP by ensuring that all semantic relations
between the atoms not forgotten are preserved.

We began by answering an important open question, showing that
it is not always possible to forget a set of atoms while obeying (SP).

Departing from this impossibility result, we conducted a thorough
study of the limits of forgetting in ASP, including a necessary and
sufficient criterion (Ω) to determine whether a particular set of atoms
can be forgotten from a program while obeying (SP). Whereas at a
technical level, criterion Ω is closely tied to certain conditions on
the HT-models of the program at hand, it seems that what cannot be
forgotten from a program are atoms used in rules that are somehow
equivalent to choice rules [25], and those atoms are pivotal in the
sense that they play an active role in determining the truth of other
atoms in some answer sets i.e., there are rules whose bodies mention
these atoms and they are true at least in some answer sets. Further
investigating this conjecture is an interesting line of future work.

We have also introduced a new class of operators that allows us
to show how to forget a set of atoms from a given program while
preserving (SP). It is worth noting that of the many classes of op-
erators investigated in [15], one, dubbed FSas, also satisfies (SP).
However, FSas is only partially defined, witnessed by the fact that
the only known operator in FSas, dubbed fSas, is only defined for a
non-standard class of programs (permitting double negation but no
disjunctions), and can only be applied to forget about single atoms p
if a sufficient (but not necessary) criterion, called p-forgettable (see
[16]), holds, which is considerably stronger than Ω, hence uneces-
sarily excluding many possible cases. Nevertheless, for the sake of
completeness, we formally relate such operator and the class FSP.

Corollary 2 Let fSas be the operator defined for FSas and P a pro-
gram for which fSas is defined. For any f ∈ FSP, if a single atom p is
p-forgettable from P , then HT (f(P, {p})) = HT (fSas(P, {p})).

We also provided a general condition to determine all sets of atoms
that can be forgotten from a given program, as well as special cases
in which a set of atoms can always be forgotten, namely singleton
sets in the case of normal and disjunctive programs.

Left open, for future work, is the definition of a syntactic operator
similar in style to that defined for strong as-forgetting [16], as well as
its implementation. Also, we may investigate the relation of Ω to pro-
jections of answer sets [11] and investigate the limits of forgetting for
semantics other than ASP, such as [41] based on the FLP-semantics
[38], or [1, 16] based on the well-founded semantics [13].
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[16] Matthias Knorr and José Júlio Alferes, ‘Preserving strong equivalence
while forgetting’, in Procs. of JELIA, eds., Eduardo Fermé and João
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