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Abstract. Event data is increasingly being represented according to
the Linked Data principles. The need for large-scale machine learn-
ing on data represented in this format has thus led to the need for
efficient approaches to compute RDF links between resources based
on their temporal properties. Time-efficient approaches for comput-
ing links between RDF resources have been developed over the last
years. However, dedicated approaches for linking resources based on
temporal relations have been paid little attention to. In this paper, we
address this research gap by presenting AEGLE, a novel approach
for the efficient computation of links between events according to
Allen’s interval algebra. We study Allen’s relations and show that we
can reduce all thirteen relations to eight simpler relations. We then
present an efficient algorithm with a complexity of O(n log n) for
computing these eight relations. Our evaluation of the runtime of our
algorithms shows that we outperform the state of the art by up to 4
orders of magnitude while maintaining a precision and a recall of 1.

1 INTRODUCTION

Over the past years, technological progress in hardware develop-
ment and network infrastructures have led to the collection of large
amounts of event data in scenarios as diverse as monitoring industrial
plants [12], monitoring open SPARQL endpoints [22], implementing
the Internet of Things (IoT) and Cloud Computing [13]. For exam-
ple, the LSQ dataset [22] consists of more than 1.2 billion facts which
describe more than 250 million query events on open SPARQL end-
points. The availability of such large collections of event data in Re-
source Description Framework (RDF)4 format as well as the uptake
of semantic technologies (in particular RDF) to represent machine
events [20] has consequently led to the need for interlinking these
events, especially to support structured machine learning [11] (e.g.,
predictive maintenance for machine data or discovering sequences
of query patterns that a triple store is often faced with) over these
datasets.

Given that the computation of links is the fourth principle of
Linked Data,5 a large number of frameworks have been developed
to facilitate the computation of links between knowledge bases (see
[14] for a survey). Still, to the best of our knowledge, only one ap-
proach has been developed for computing temporal links between
events [23]. The approach presented in [23] is based on the Multi-
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Block algorithm [8] and employs multi-dimensional blocking to re-
duce the number of comparisons necessary to compute temporal re-
lations. However, our evaluation suggests that this approach does not
scale to larger number of events.

In this paper, we hence address the problem of computing tem-
poral relations between events efficiently. To this end, we rely on
Allen’s Interval Algebra [1] as it encompasses all primitive tempo-
ral relations betwen events. Our approach, dubbed AEGLE (Allen’s
intErval alGebra for Link discovEry), relies on two insights: First,
the 13 Allen relations can be reduced to 8 simpler relations that all
compare exactly either the beginning or the end of an event with the
beginning or end of another event. The second insight behind our ap-
proach is that given that time is ordered, we can reduce the problem
of detecting such relations to the problem of finding matching entities
in two sorted lists. As this problem has a complexity of O(n log n),
our approach should scale well even for larger datasets. Importantly,
our method achieves 100% precision and recall as it computes all
temporal relations between events from a source set S and a target
set T . The main contributions of our work are thus as follows:

• We show how the 13 Allen relations can be reduced to 8 atomic re-
lations and how these 8 relations can be combined using set theory
to reconstruct the 13 Allen relations.

• We provide an efficient approach to computing each of the 8
atomic relations aforementioned.

• We evaluate the runtime of our approach using real and synthetic
data and show that we outperform the state of the art by up to 4
orders of magnitude.

The rest of this paper is organised as follows: Section 2 includes
the basic notation and preliminaries behind link discovery (LD)6 and
Allen’s Interval Algebra. Section 3 describes our approach by (1)
defining the set of atomic relations we use to compute temporal rela-
tions and(2) showing how to derive more complex relations from the
set of atomic relations derived previously. In Section 4, we present a
systematic comparison of our approach with the state of the art. Fi-
nally, we give an overview of the existing related work and conclude
with a brief summary of our work and future plans.

2 PRELIMINARIES

In this section, we present the concepts and notation that are neces-
sary to understand the rest of the paper. First, we introduce the LD
problem by providing a formal definition akin to that introduced in
[16]. Thereafter, we provide the notation for the basic relations be-
tween intervals as introduced in [1].
6 We use the term “link discovery” to signify the computation of links of

particular types between pairs of resources represented in RDF. Never do
we use this term in the sense of mining links between nodes in a graph.
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2.1 Link Discovery

Throughout this paper, we deal with facts represented in RDF. Each
fact is a triple (c, p, o) ∈ (R∪ B)× P × (R∪ B ∪ L), where

1. c is the subject of the triple (i.e., what the triple is mainly about),
2. p is the predicate of the triple (i.e., the relation that the subject has

with the object),
3. o is the object of the triple (that which is to be related to the subject

through the predicate),
4. R is the set of all RDF resources, where each resource stands for

a thing from the real world, e.g., an event,
5. P ⊆ R is the set of all RDF properties, which are binary predi-

cates,
6. B is the set of all RDF blank nodes, which basically model exis-

tential semantics and
7. L is the set of all literals, i.e., of all data types (e.g., time points).

An example of a fact would be (:E1, :begin, 0.1), which states
that the event :E1 begins at the point 0.1 in time.

We call a set of triples a knowledge base (KB). Given two sets of
resources S and T from two (not necessarily distinct) KBs as well
as a binary relation R, the main goal of LD is to discover the set
M = {(s, t) ∈ S × T : R(s, t)}. We call M a mapping. Naive ap-
proaches towards this goal are quadratic in complexity as they have
to compare every s ∈ S with every t ∈ T , which is clearly im-
practicable for large S and T . In this work, we thus consider the
efficient computations of temporal relations between events. Hence,
we assume that each of the resources in S and T considered in the
subsequent portion of this paper describes an event v with a begin-
ning time denoted b(v) and an end time denoted e(v). Note that we
assume that b(v) < e(v) throughout this work.

2.2 Allen’s Interval Algebra

Allen’s Interval Algebra [1] is a widely known time interval calcu-
lus, which provides a set of 13 “distinct, exhaustive, and qualitative”
relations between time intervals [2]. Table 1 illustrates this set of re-
lations and shows a set of six relations between two time intervals X
and Y , their corresponding symbols along with the symbols of their
inverse relation. The equal relation is symmetric.

2.3 Link Discovery between Events

An event can be modelled as a time interval because we assume that
its description always includes a begin time property and an end time
property, Thus, an event instance s can be described as pair of time
points (b(s), e(s)), where b(s) < e(s). Formally, computing the
temporal relations between events can thus be reduced to comput-
ing the following mappings M :

• if R = bf , then M = {(s, t) ∈ S × T : (b(s) < b(t)) ∧ (b(s) <
e(t)) ∧ (e(s) < b(t)) ∧ (e(s) < e(t))}

• if R = bfi, then M = {(s, t) ∈ S×T : (b(s) > b(t))∧ (b(s) >
e(t)) ∧ (e(s) > b(t)) ∧ (e(s) > e(t))}

• if R = m, then M = {(s, t) ∈ S × T : (b(s) < b(t)) ∧ (b(s) <
e(t)) ∧ (e(s) = b(t)) ∧ (e(s) < e(t))}

• if R = mi, then M = {(s, t) ∈ S×T : (b(s) > b(t))∧ (b(s) =
e(t)) ∧ (e(s) > b(t)) ∧ (e(s) > e(t))}

• if R = f , then M = {(s, t) ∈ S × T : (b(s) > b(t)) ∧ (b(s) <
e(t)) ∧ (e(s) > b(t)) ∧ e(s) = e(t)}

• if R = fi, then M = {(s, t) ∈ S × T : (b(s) < b(t)) ∧ (b(s) <
e(t)) ∧ (e(s) > b(t)) ∧ e(s) = e(t)}

Table 1. Allen’s Interval Algebra

Relation Notation Inverse Illustration

X before Y bf(X,Y ) bfi(X,Y )

X

Y

X meets Y m(X,Y ) mi(X,Y )

X

Y

X finishes Y f(X,Y ) fi(X,Y )

X

Y

X starts Y st(X,Y ) sti(X,Y )

X

Y

X during Y d(X,Y ) di(X,Y )

X

Y

X equal Y eq(X,Y ) eq(X,Y )

X

Y

X overlaps with Y ov(X,Y ) ovi(X,Y )

X

Y

• if R = st, then M = {(s, t) ∈ S × T : (b(s) = b(t)) ∧ (b(s) <
e(t)) ∧ (e(s) > b(t)) ∧ e(s) < e(t)}

• if R = sti, then M = {(s, t) ∈ S × T : (b(s) = b(t))∧ (b(s) <
e(t)) ∧ (e(s) > b(t)) ∧ e(s) > e(t)}

• if R = d, then M = {(s, t) ∈ S × T : (b(s) > b(t)) ∧ (b(s) <
e(t)) ∧ (e(s) > b(t)) ∧ e(s) < e(t)}

• if R = di, then M = {(s, t) ∈ S × T : (b(s) < b(t)) ∧ (b(s) <
e(t)) ∧ (e(s) > b(t)) ∧ e(s) > e(t)}

• if R = eq, then M = {(s, t) ∈ S × T : (b(s) = b(t)) ∧ (b(s) <
e(t)) ∧ (e(s) > b(t)) ∧ e(s) = e(t)}

• if R = ov, then M = {(s, t) ∈ S × T : (b(s) < b(t)) ∧ (b(s) <
e(t)) ∧ (e(s) > b(t)) ∧ e(s) < e(t)}

• if R = ovi, then M = {(s, t) ∈ S×T : (b(s) > b(t))∧ (b(s) <
e(t)) ∧ (e(s) > b(t)) ∧ e(s) > e(t)}

3 APPROACH

3.1 Overview

As we have now introduced the necessary notations and concepts be-
hind LD and Allen’s Interval Algebra, we can proceed to explain our
approach for the rapid computation of temporal links between events
in detail. The main goal of our approach is to compute all Allen’s in-
terval relations (as illustrated in Table 1) between two sets of atomic
events efficiently. The main insight underlying this work is that we
can reduce the computation of the 13 relations to the computation
and combinations of a mere 8 atomic relations and thus reduce the
overall computation time of Allen relations. We use this insight to
devised means to compute all interval relations efficiently by reduc-
ing all of Allen’s relations to re-usable atomic relations that can be
computed efficiently. We then combine the results of these atomic re-
lations to compute Allen’s relations. While doing so, we ensure that
we achieve 100% accuracy in retrieving all possible Allen relations
between resources in the given sets of resources S and T .
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3.2 AEGLE

The main idea behind our approach is to represent each relation of
Table 1 as a Boolean combination of atomic relations. By computing
each of the atomic relations only once and only if needed, we can
decrease the overall runtime of the computation of a given set of
Allen relations.

As described in Section 2.3, each atomic event s can be described
using two time points b(s) and e(s). To compose the atomic interval
relations, we define all possible binary relations between the begin
and end points of two event resources s = (b(s), e(s)) and t =
(b(t), e(t)) as follows:

• Atomic relations between b(s) and b(t):

– BB1(s, t) ⇔ (b(s) < b(t))

– BB0(s, t) ⇔ (b(s) = b(t))

– BB−1(s, t) ⇔ (b(s) > b(t)) ⇔ ¬(BB1(s, t) ∨BB0(s, t))

• Atomic relations between b(s) and e(t):

– BE1(s, t) ⇔ (b(s) < e(t))

– BE0(s, t) ⇔ (b(s) = e(t))

– BE−1(s, t) ⇔ (b(s) > e(t)) ⇔ ¬(BE1(s, t) ∨BE0(s, t))

• Atomic relations between e(s) and b(t):

– EB1(s, t) ⇔ (e(s) < b(t))

– EB0(s, t) ⇔ (e(s) = b(t))

– EB−1(s, t) ⇔ (e(s) > b(t)) ⇔ ¬(EB1(s, t) ∨ EB0(s, t))

• Atomic relations between e(s) and e(t):

– EE1(s, t) ⇔ (e(s) < e(t))

– EE0(s, t) ⇔ (e(s) = e(t))

– EE−1(s, t) ⇔ (e(s) > e(t)) ⇔ ¬(EE1(s, t) ∨ EE0(s, t))

Out of Table 1, we can derive how each of Allen’s relations can be
reduced to a Boolean combination of a subset of the relations above
as follows:

• bf(s, t) ⇔ BB1(s, t) ∧ BE1(s, t) ∧ EB1(s, t) ∧ EE1(s, t).
Now given that b(s) < e(s) and b(t) < e(t) and by virtue of the
transitivity of <, we get

1. e(s) < b(t) ⇒ b(s) < b(t),

2. e(s) < b(t) ⇒ b(s) < e(t) (by virtue of 1.) and

3. e(s) < b(t) ⇒ e(s) < e(t) .

Hence bf(s, t) = EB1(s, t).
• bfi(s, t) ⇔ BB−1(s, t) ∧ BE−1(s, t) ∧ EB−1(s, t) ∧

EE−1(s, t). Now given that b(s) < e(s) and b(t) < e(t) and
by virtue of the transitivity of <, we get

1. b(s) > e(t) ⇒ b(s) > b(t),

2. b(s) > e(t) ⇒ e(s) > b(t) (by virtue of 1.) and

3. b(s) > e(t) ⇒ e(s) > e(t) .

Hence bfi(s, t) = BE−1 = ¬(BE1(s, t) ∨BE0(s, t)).
• m(s, t) ⇔ BB1(s, t) ∧ BE1(s, t) ∧ EB0(s, t) ∧ EE1(s, t).

Now given that b(s) < e(s) and b(t) < e(t) and by virtue of the
transitivity of <, we get

1. e(s) = b(t) ⇒ b(s) < b(t),

2. e(s) = b(t) ⇒ e(s) < e(t) and

3. e(s) = b(t) ⇒ b(s) < e(t) (by virtue of 1.).

Hence m(s, t) = EB0(s, t).
• mi(s, t) ⇔ BB−1(s, t)∧BE0(s, t)∧EB−1(s, t)∧EE−1(s, t).

Now given that b(s) < e(s) and b(t) < e(t) and by virtue of the
transitivity of <, we get

1. b(s) = e(t) ⇒ b(s) > b(t),

2. b(s) = e(t) ⇒ e(s) > e(t) and

3. b(s) = e(t) ⇒ e(s) > b(t) (by virtue of 1.).

Hence mi(s, t) = BE0(s, t).
• f(s, t) ⇔ BB−1(s, t) ∧ BE1(s, t) ∧ EB−1(s, t) ∧ EE0(s, t).

Now given that b(s) < e(s) and b(t) < e(t) and by virtue of the
transitivity of <, we get

1. b(s) > b(t) ⇒ e(s) > b(t) and

2. e(s) = e(t) ⇒ b(s) < e(t)

Hence f(s, t) = {EE0(s, t) ∧ BB−1(s, t)} = {EE0(s, t) ∧
¬(BB0(s, t) ∨BB1(s, t))}.

• fi(s, t) ⇔ BB1(s, t) ∧ BE1(s, t) ∧ EB−1(s, t) ∧ EE0(s, t).
Now given that b(s) < e(s) and b(t) < e(t) and by virtue of the
transitivity of <, we get

1. b(s) < b(t) ⇒ b(s) < e(t) and

2. e(s) = e(t) ⇒ e(s) > b(t)

Hence fi(s, t) = {BB1(s, t) ∧ EE0(s, t)}.
• st(s, t) ⇔ BB0(s, t) ∧ BE1(s, t) ∧ EB−1(s, t) ∧ EE1(s, t).

Now given that b(s) < e(s) and b(t) < e(t) and by virtue of the
transitivity of <, we get

1. b(s) = b(t) ⇒ b(s) < e(t) and

2. e(s) < e(t) ⇒ e(s) > b(t)

Hence st(s, t) = {BB0(s, t) ∧ EE1(s, t)}.
• sti(s, t) ⇔ BB0(s, t)∧BE1(s, t)∧EB−1(s, t)∧EE−1(s, t).

Now given that b(s) < e(s) and b(t) < e(t) and by virtue of the
transitivity of <, we get

1. b(s) = b(t) ⇒ e(s) > b(t) and

2. b(s) = b(t) ⇒ b(s) < e(t)

Hence sti(s, t) = {BB0(s, t) ∧ EE−1(s, t)} = {BB0(s, t) ∧
¬(EE0(s, t) ∨ EE1(s, t))}.

• d(s, t) ⇔ BB−1(s, t) ∧ BE1(s, t) ∧ EB−1(s, t) ∧ EE1(s, t).
Now given that b(s) < e(s) and b(t) < e(t) and by virtue of the
transitivity of <, we get

1. b(s) > b(t) ⇒ e(s) > b(t) and

2. e(s) < e(t) ⇒ b(s) < e(t)

Hence d(s, t) = {EE1(s, t) ∧ BB−1(s, t)} = {EE1(s, t) ∧
¬(BB0(s, t) ∨BB1(s, t))}.

• di(s, t) ⇔ BB1(s, t)∧BE1(s, t)∧EB−1(s, t)∧EE−1(s, t).
Now given that b(s) < e(s) and b(t) < e(t) and by virtue of the
transitivity of <, we get

1. e(s) > e(t) ⇒ e(s) > b(t) and

2. b(s) < b(t) ⇒ b(s) < e(t)

Hence di(s, t) = {BB1(s, t) ∧ EE−1(s, t)} = {BB1(s, t) ∧
¬(EE0(s, t) ∨ EE1(s, t))}.

• eq(s, t) ⇔ BB0(s, t) ∧ BE1(s, t) ∧ EB−1(s, t) ∧ EE0(s, t).
Now given that b(s) < e(s) and b(t) < e(t) and by virtue of the
transitivity of <, we get
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1. e(s) = e(t) ⇒ e(s) > b(t) and

2. b(s) = b(t) ⇒ b(s) < e(t)

Hence eq(s, t) = {BB0(s, t) ∧ EE0(s, t)}.
• ov(s, t) ⇔ BB1(s, t) ∧ BE1(s, t) ∧ EB−1(s, t) ∧ EE1(s, t).

Now given that b(s) < e(s) and b(t) < e(t) and by virtue of the
transitivity of <, we get

1. b(s) < b(t) ⇒ b(s) < e(t).

Hence ov(s, t) = {BB1(s, t) ∧ EB−1(s, t) ∧ EE1(s, t)} =
{(BB1(s, t) ∧ EE1(s, t)) ∧ ¬(EB0(s, t) ∨ EB1(s, t))}.

• ovi(s, t) ⇔ BB−1(s, t)∧BE1(s, t)∧EB−1(s, t)∧EE−1(s, t).
Now given that b(s) < e(s) and b(t) < e(t) and by virtue of the
transitivity of <, we get

1. e(s) > e(t) ⇒ e(s) > b(t).

Hence ovi(s, t) = {BB−1(s, t) ∧ BE1(s, t) ∧ EE−1(s, t)} =
{(BE1(s, t) ∧ ¬(BB0(s, t) ∨ BB1(s, t))) ∧ ¬(EE0(s, t) ∨
EE1(s, t))}.

Clearly, we hence only need to compute the 8 atomic relations
EB0, EB1, EE0, EE1, BB0, BB1, BE0 and BE1 to be able to
generate all of Allen’s relations. In the following, we explicate our
approach to computing these 8 relations efficiently.

3.3 Algorithm

Algorithm 1: AEGLE

Input: source S, target T , set of Allen relations AIR
Output: Set of mappings M

1 M ←− ∅
2 A ←− ∅
3 foreach rel ∈ AIR do

4 requiredRelations ←− getAtmRelations(rel)
5 atomics(rel) ←− ∅
6 foreach atomicRel ∈ requiredRelations do

7 if A does not contain atomicRel then

8 a ←− computeAtmRelation(atomicRel, S, T )
9 A.put(atomicRel, a)

10 atomics(rel).put(atomicRel,A.get(atomicRel))

11 M ←− computeRelation(atomics(rel))
12 M.add(M)

13 Return M

Given a set AIR of Allen relations that are to be computed, the
basic idea behind our approach is to begin by detecting the subset of
the 8 atomic relations that needs to be computed and to compute each
of these relations exactly once. Algorithm 1 describes how the idea
was implemented. Our approach, AEGLE, takes two sets of events,
S and T , and the set AIR as input. The algorithm returns a set
of mappings M, of which each corresponds to exactly one of the
relations in AIR.

We begin by initialising the final set of mappings M in line 1
and the map A in line 2. A includes the labels of atomic relations
as keys and their corresponding mapping as values. During the first
step of our algorithm, for each rel ∈ AIR, AEGLE retrieves the
set of required atomic relations in line 4 by calling the function
getAtmRelations(rel). This function is responsible for retriev-
ing the set of the labels of the atomic relations that are required to

compute rel based on the rules defined in Section 3.2. For each re-
quired atomicRel of the current rel, the algorithm checks if the
mapping is already computed (line 7). If not, it invokes the function
computeAtmRelation to compute the appropriate atomic relations in
line 8 and places the resulting mapping along with the atomic rela-
tion label in A. Then, it retrieves the mapping from A and places it in
the atomics(rel) map needed to compute the mapping of rel. Each
Allen’s relation described in AIR constructs its own atomics(rel)
map that has the labels of the requisite atomic relations as keys and
their corresponding mappings as values. Finally, the algorithm com-
putes the mapping M of rel by calling the function computeRelation
(line 11) and adds the resulting set of links in M (line 12).

The time-critical portion of the execution lies in the computation
of the atomic relations. The idea underlying our approach to com-
puting these relations is that one can reduce their computation to
the problem of finding pairs of matching elements in two sorted
lists. For example, to compute BB0, one needs to (1) sort the list
of elements of S and T according to the time at which they began
(guaranteed time complexity: O(|S| log |S|) resp. O(|T | log |T |)),
(2) search for the elements of the smaller set in the larger set
(O(min(|S|, |T |) log(max(|S|, |T |))). This leads to an overall com-
plexity of O(n log n). The complexity is the same for the computa-
tion of all relations.

Algorithm 2: computeAtmRelations(atomicRel, S, T ) for
atomicRel = BB0

Output: mapping of BB0 AM
1 AM ←− ∅
2 sources ←− orderByDate(S, beginDate)
3 targets ←− orderByDate(T, beginDate)
4 AM ←− mapEvents(sources, targets, concurrent)
5 Return AM

Algorithm 3: computeAtmRelations(atomicRel, S, T ) for
atomicRel = EE1

Output: mapping of EE1 AM
1 AM ←− ∅
2 sources ←− orderByDate(S, endDate)
3 targets ←− orderByDate(T, endDate)
4 AM ←− mapEvents(sources, targets, predecessor)
5 Return AM

Algorithm 4: orderByDate(S, dateType)

Output: O
1 foreach s ∈ S do

2 timeStamp ←− s.getDate(dateType)
3 tempO ←− ∅
4 if O contains timeStamp then

5 tempO ←− O.get(timeStamp)

6 tempO ←− tempO ∪ s
7 O.put(timeStamp, tempO)

8 Return O

To illustrate the main procedure of Algorithm 1 (lines 3- 12), con-
sider AIR = {st, sti} as example. The other relations are com-
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Algorithm 5: mapEvents(sources, targets, eventType)

Output: mapped events Events
1 Events ←− ∅
2 foreach sourceT imeStamp ∈ sources do

3 if eventType == concurrent then

4 tempT ←− targets.get(sourceT imeStamp)

5 else

6 tempT ←−
targets.getHigher(sourceT imeStamp)

7 if tempT ! = ∅ then

8 foreach s ∈ sources.get(sourceT imeStamp) do

9 Events.put(s, tempT )

10 Return Events

Algorithm 6: computeRelation(atomics) for st
Output: mapping M

1 M ←− ∅
2 foreach s ∈ atomics.get(BB0) do

3 M1 ←− atomics.get(BB0).get(s)
4 tempEE1 ←− atomics.get(EE1)
5 if tempEE1 contains s then

6 M2 ←− tempEE1.get(s)
7 M.put(s,M1 ∩M2)

8 Return M

puted analogously. In line 8 of Algorithm 1, AEGLE calls com-
puteAtmRelations in order to generate the mappings for the required
atomic relations for rel, where rel = st and requiredRelations =
BB0, EE1. Since A is empty and the condition in line 7 holds, Al-
gorithm 1 will call the function computeAtmRelation for BB0 and
then for EE1.

For BB0, Algorithm 2 describes the necessary steps to compute
the mapping of BB0. To begin with, Algorithm 2 invokes the func-
tion orderByDate for the source S and the target T datasets, to
order both complex event resources using the property beginDate.
Algorithm 4 illustrates the procedure of ordering a complex event S
given the value of a property dateType, in this case beginDate. The
main idea of this function is to assert each atomic event s ∈ S to the
appropriate time-bucket, given its dateType value. orderByDate
returns a map that has the unique dateType values of the input KB
S as keys and the set of events that correspond to each dateType
as values. Once sources and targets are retrieved (lines 2, 3 resp.
of Algorithm 2), computeAtmRelations calls the function mapEvents
using the label concurrent, that is responsible for matching each
source event s with the set of target events with the same b(s). In the
function mapEvents (Algorithm 5), for each source event s that be-
longs to a time-bucket with time-stamp sourceT imeStamp, the al-
gorithm retrieves the appropriate subset of target events that have the
same time-stamp (line 4), if any (line 7). Then, it constructs a map-
ping between each s and the matching set of target events (line 9).
Finally, the mapping is returned to Algorithm 1 and it is placed in A
in line 9.

To continue, Algorithm 1 calls again computeAtmRelations since
the mapping of EE1 is not contained as well in A, following the
procedure described in Algorithm 3. For EE1, computeAtmRela-
tions is going to order S and T by invoking the orderByDate func-

tion that is going to order the event sources using the endDate
property. Once both sources and targets are retrieved (lines 2, 3
resp. of Algorithm 3), mapEvents will be called with eventType =
predecessor, in order to match each source s ∈ S with the target
events that were terminated after the source event s ended (line 6 of
Algorithm 5). Finally, the mapping is returned to the main algorithm
and it is placed in A in line 9.

Once both mappings of BB0 and EE1 are retrieved and placed
in atomics(rel), Algorithm 1 calls computeRelation for st. Algo-
rithm 6 illustrates the procedure of computing st. For each source
event s, the algorithm retrieves the set of targets with the same b(s)
from the atomics set (line 3). Then, Algorithm 6 checks if there
exists a set of targets with endDate higher than e(s) (line 5). If the
condition holds, then computeRelation retrieves the aforementioned
set of targets (line 6) and based on the equation in Section 3.2, it
computes the intersection between the two sub-sets of targets. The
procedure is performed for each source instance and the final map-
ping M is returned in Algorithm 1 and placed in M.

Then, the AEGLE proceeds into computing the sti relation, fol-
lowing the steps described above. However, since sti(s, t) =
{BB0(s, t) ∧ ¬(EE0(s, t) ∨ EE1(s, t))}, the algorithm will only
have to compute EE0 and retrieve the mappings for BB0 and EE1.

4 EVALUATION

The aim of our evaluation was to address the following questions:

• Q1: Does the reduction of Allen relations to 8 atomic relations
influence the overall runtime of the approach?

• Q2: How does AEGLE perform when compared with the state of
the art in terms of time efficiency?

To the best of our knowledge, only one other link discovery frame-
work implements an approach for the discovery of temporal rela-
tions. In [23], the blocking approach underlying SILK was extended
to deal with spatio-temporal data. We thus compared our approach
with the SILK LD framework.

4.1 Experimental Setup

We evaluated our approach on two different sets of datasets (see Ta-
ble 2 for their characteristics):

• The first set of datasets (3KMachines, 30KMachines, 300KMa-
chines) was created by generating synthetic event data using in-
formation obtained from real logs generated by production ma-
chinery. To this end, we retrieved 30,000 events from production
machines which covered a full day of event generation.7 Then,
we computed the probability that an event began or ended at any
given point in time. Finally, we constructed our synthetic datasets
by generating a fixed number of events that maintained the proba-
bility of an event beginning or ending at a particular point in time.

• The second set of datasets (3KQueries, 30KQueries,
300KQueries) was obtained by collecting real event data
from query logs of triple stores exposed on the Web. The data was
retrieved from the SPARQL endpoint of the LSQ project [22].8

For each dataset, we performed a SPARQL query against the LSQ
endpoint and obtained a set of events from a set of consecutive
days.

7 The source of the events cannot be disclosed due to legal reasons.
8 More information can be found at http://aksw.github.io/LSQ/
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As evaluation measure, we computed the runtime of each of the
atomic relations, the time required by our implementation to perform
the computeRelation for each Allen Relation (Algorithm 6) and the
total runtime required for computing all 13 relations. For SILK, we
measured the time it required to compute each of the Allen relations.9

Table 2. Characteristics of data sets. Size stands for the number of events
contained in the dataset.

Log Type Dataset name Size Unique b(s) Unique e(s)

Machinery
3KMachines 3,154 960 960
30KMachines 28,869 960 960
300KMachines 288,690 960 960

Query
3KQueries 3,888 3,636 3,638
30KQueries 30,635 3,070 3,070
300KQueries 303,991 184 184

We set the value of SILK’s block size to 1 ms.10 Each tempo-
ral relation implemented in SILK was given a maximum runtime of
6 hours. We will use the symbol NA to signify that a run did not
terminate within 6 hours. For the sake of comparison, we also imple-
mented a naive baseline for the eq relation. This naive implementa-
tion performs an exhaustive comparison of the events of S and T to
compute eq. For each experiment, we linked each data source with
itself, i.e., we set S = T . All experiments for all implementations
were carried out on the same 20-core Linux Server running OpenJDK
64-Bit Server 1.8.0 74 on Ubuntu 14.04.4 LTS on Intel(R) Xeon(R)
CPU E5-2650 v3 processors clocked at 2.30GHz. Each experiment
was ran on exactly one core using 64 GB of RAM. We implemented
AEGLE using Java 1.8.0 60 and the sorting algorithm described in
orderByDate (Algorithm 4) was performed using the MergeSort
algorithm [9] as implemented in Java 1.8.0 60 with a guaranteed
time complexity O(n log n).

4.2 Results

To address Q1, we computed the execution runtime of all 8 atomic
relations as described in Section 3.2. Table 4 shows the run-
times of the atomic relations as well as the total runtime required
to run the full set of atomic relations. For our largest dataset
300KQueries, our approach needs only 84.83 s to compute all
atomic relations. The maximum required runtime is achieved on the
300KMachines dataset, where our algorithm needs approximately
7min. As expected, the atomic relations which rely on equality (i.e.,
BB0, BE0, EB0, EE0) require less time than the rest of the atomic
relations.

Table 3. Total runtime of Allen Relation for all datasets for AEGLE and
SILK. All runtimes are presented in seconds.

Log Type Dataset Name Total Runtime
AEGLE AEGLE * SILK

Machine
3KMachines 11.26 5.51 294.00

30KMachines 1,016.21 437.79 29,846.00
300KMachines 189,442.16 78,416.61 NA

Query
3KQueries 26.94 17.91 541.00

30KQueries 988.78 463.27 33,502.00
300KQueries 211,996.88 86,884.98 NA

9 To measure this time, we contacted the author of [23], who informed us that
measuring the duration of the “Match Task” was the way to measure the
runtime of his approach.

10 We contacted the authors of SILK’s temporal relation extension and were
informed that this setting should return the best results.

Another interesting observation derived from Table 4 is the rela-
tion between the size of the data, the number of the unique b(s) and
e(s) among the event sources and the execution runtime of each re-
lation. In the Machines datasets, the distribution of beginning and
end times is equal among the different sizes of data. As expected
by virtue of the complexity of our approach, the total runtimes grow
in accordance with O(n log n) with the increase of the data. From
Query datasets, we notice that the number of unique b(s) and e(s)
has a significant impact on the runtime of our approach. For ex-
ample, even though 300KQueries includes 10 times more data than
30KQueries, 30KQueries has a significantly higher number of unique
b(s) and e(s) than 300KQueries. Hence, AEGLE requires 15 secs less
for 300KQueries than for the 30KQueries dataset. The benefits of our
implementation can be noticed clearly when comparing AEGLE with
the baseline (see Table 6). For the eq relation, we see that AEGLE

is 470 times faster than the brute-force approach. We can thus an-
swer Q1 by stating that (1) both the number of unique events and the
distribution of events across time have a significant influence on the
overall runtime and (2) our approach improves the overall runtime of
the computation of Allen relations significantly.

Tables 3, 5 and 6 provide us with the insights necessary to answer
Q2. They show clearly that AEGLE outperforms SILK on all datasets
in terms of time efficiency while achieving 100% precision and re-
call, i.e., while computing all the links that can be found. Therefore,
our idea proves to be beneficial and time-efficient for the task of link-
ing temporal data of various sizes.

In more detail, AEGLE requires 211, 996.88 s to run the complete
computation of Allen relations on our largest dataset (300KQueries),
whereas SILK is unable to produce full results for any of the rela-
tions withing the time frame of 280, 800 s (3.25 days). 30KQueries
is the largest dataset for which SILK was able to produce links for
the given time limit. Here, we observe that AEGLE is more than 33
times faster than SILK. Furthermore, Table 5 suggests that the most
costly operations are carried out for the inverse relations. However,
by relying on the semantics of Allen relations, we can refrain from
computing inverse relations and have them inferred by any forward
or backward chaining system. The results under AEGLE∗ in Table 3
show that overall, the total runtime for computing the seven Allen
relations bf,m, f, st, d, eq and ov amounts to less than half of AE-
GLE’s runtime.

To conclude our answer for Q2, we studied what would happen if
we computed each of the Allen relation individually, i.e., we ran 13
experiments where we set AIR to contain exactly one of the Allen
relations. We used this setting to allow for a fine-granular compari-
son of our runtimes with SILK’s. The results of this experiment are
shown in Table 6. Overall, we outperform SILK clearly even when
computing each of the Allen relations on its own. This suggests that
our core implementation for the computation of atomic relations is
superior to the generic blocking scheme followed by SILK. This is
especially clear when looking at the results on large datasets in more
detail. For 30KQueries for example, SILK needs 2,473 seconds while
AEGLE only needs 0.45. The answer to Q2 is hence that AEGLE out-
performs the state of the art in all our experimental settings. Note that
the total runtime of a relation is increased by the number of atomic
relations involved in its computation when computed using AEGLE.
As a result, AEGLE needs more time for the ovi relation (which is
derived by combining 5 atomic relations) than for eq (2 atomic rela-
tions).
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Table 4. Execution runtime of all 8 atomic relations for all datasets. All runtimes are presented in seconds.

Log Type Dataset Name BB0 BB1 BE0 BE1 EB0 EB1 EE0 EE1 Total runtime of atomic relations

Machine
3KMachines 0.02 0.41 0.02 0.41 0.02 0.41 0.02 0.42 1.73

30KMachines 0.19 5.55 0.19 5.51 0.19 5.48 0.18 5.49 22.78
300KMachines 2.70 95.55 2.14 92.26 3.39 115.66 2.13 94.4 408.23

Query
3KQueries 0.03 2.93 0.03 3.04 0.02 2.89 0.03 2.90 11.87

30KQueries 0.19 24.5 0.19 26.28 0.21 23.85 0.19 23.80 99.22
300KQueries 2.52 12.11 1.98 12.57 3.89 25.41 1.93 24.42 84.83

Table 5. Execution runtime of the 13 Allen Relations for all datasets for AEGLE and SILK and baseline. The runtimes reported for AEGLE are the times
required to perform the set operations necessary to compute each relation. The overall runtimes (i.e., computation of required sets plus times for set operations)

are presented in Table 6. All runtimes are presented in seconds.

Machine Query
Relation Approach 3KMachines 30KMachines 300Machines 3KQueries 30KQueries 300KQueries

bf
AEGLE 0.00 0.00 0.05 0.00 0.00 0.03

SILK 22.00 2,511.00 NA 43.00 2,794.00 NA

bfi
AEGLE 1.52 127.37 27,103.19 2.37 127.37 32,023.10

SILK 24.00 2,547.00 NA 42.00 2,961.00 NA

m
AEGLE 0.00 0.00 0.03 0.00 0.00 0.00

SILK 23.00 2,219.00 NA 41.00 2,466.00 NA

mi
AEGLE 0.00 0.00 0.03 0.00 0.00 0.00

SILK 23.00 2,290.00 NA 44.00 2,584.00 NA

f
AEGLE 0.73 77.88 13,775.31 1.18 70.53 16,280.24

SILK 23.00 2,306.00 NA 41.00 2,531.00 NA

fi
AEGLE 0.42 47.07 7,837.04 0.62 40.04 8,600.89

SILK 23.00 2,305.00 NA 43.00 2,535.00 NA

st
AEGLE 0.21 29.48 4,849.29 0.34 22.70 5,796.87

SILK 21.00 2,166.00 NA 40.00 2,613.00 NA

sti
AEGLE 0.74 76.14 14,063.02 1.19 69.69 16,270.20

SILK 21.00 2,226.00 NA 43.00 2,533.00 NA

d
AEGLE 1.14 125.20 24,094.20 1.84 107.60 26,213.64

SILK 24.00 2,363.00 NA 41.00 2,546.00 NA

di
AEGLE 1.20 125.04 24,083.00 1.83 108.50 26,149.58

SILK 23.00 2,293.00 NA 41.00 2,476.00 NA

eq
AEGLE 0.01 0.40 45.01 0.00 0.06 344.10

SILK 23.00 2,250.00 NA 41.00 2,473.00 NA
baseline 2.05 171.10 23,436.30 3.15 196.09 31,452.54

ov
AEGLE 1.70 182.04 35,244.48 2.68 163.16 38,165.31

SILK 22.00 2,181.00 NA 39.00 2,487.00 NA

ovi
AEGLE 1.87 202.80 37,939.27 3.02 179.90 42,068.13

SILK 22.00 2,189.00 NA 42.00 2,503.00 NA

5 RELATED WORK

Over the past few years, the problem of scalable and time-efficient
Link Discovery has been addressed by several approaches and frame-
works such as LIMES[16], SILK [26], KnoFuss [18] and Zhishi.links
[19]. These tools incorporate declarative approaches towards LD,
with SILK and KnoFuss using blocking techniques to identify links
between KBs so as to avoid unnecessary comparisons between re-
sources. LIMES reduces the time-complexity of the LD procedure by
combining techniques such as PPJoin+ [27] and HR3 [15] with set
theoretical operators and planning algorithms [17]. LIMES provides
both theoretical and practical guarantees of completeness and effi-
ciency. A review comprising further LD approaches can be found in
[14].

Up until now, only SILK provides temporal LD for RDF datasets

by incorporating the recently published work of Smeros et al.[23].
The authors of this paper used MultiBlock to develop an approach for
the efficient computation of temporal links. As shown in Section 4.2,
AEGLE is able to outperform this approach by 4 orders of magnitude.

In the field of stream reasoning and CEP on Linked Data, there
has been a notable amount of research over querying temporal data.
For example, Continuous SPARQL (C-SPARQL) [4] provides a syn-
tactic and semantic extension of SPARQL to query RDF temporal
data by defining a time window for processing events. C-SPARQL is
able to incrementally re-materialise the input data, using partial static
background knowledge. The novel idea behind C-SPARQL is the au-
thor’s contribution to add an expiration date to each RDF triple in
order to support fast deletion of events that are no longer valid. How-
ever, the use of time window frames for linking events prohibits the
opportunity of linking previous events with current or future events.
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Table 6. Execution runtime of all Allen Relations if computed individually. All runtimes are presented in seconds.

Machine Query
Relation Approach 3KMachines 30KMachines 300Machines 3KQueries 30KQueries 300KQueries

bf
AEGLE 0.41 5.48 115.71 2.89 23.86 25.44

SILK 22.00 2,511.00 NA 43.00 2,794.00 NA

bfi
AEGLE 1.95 133.42 27,197.59 5.58 153.84 32,037.64

SILK 24.00 2,547.00 NA 42.00 2,961.00 NA

m
AEGLE 0.02 0.19 3.42 0.02 0.21 3.89

SILK 23.00 2,219.00 NA 41.00 2,466.00 NA

mi
AEGLE 0.02 0.20 2.17 0.03 0.19 1.98

SILK 23.00 2,290.00 NA 44.00 2,584.00 NA

f
AEGLE 1.20 84.18 13,875.70 4.20 95.67 16,296.80

SILK 23.00 2,306.00 NA 41.00 2,531.00 NA

fi
AEGLE 0.85 53.74 7,934.73 3.57 64.78 8,614.93

SILK 23.00 2,305.00 NA 43.00 2,535.00 NA

st
AEGLE 0.66 35.23 4,946.39 3.29 46.70 5,823.81

SILK 21.00 2,166.00 NA 40.00 2,613.00 NA

sti
AEGLE 1.20 83.71 14,162.25 4.13 94.39 16,299.07

SILK 21.00 2,226.00 NA 43.00 2,533.00 NA

d
AEGLE 2.10 138.55 24,286.85 7.69 156.87 26,252.70

SILK 24.00 2,363.00 NA 41.00 2,546.00 NA

di
AEGLE 2.15 138.47 24,275.08 7.67 157.75 26,188.04

SILK 23.00 2,293.00 NA 41.00 2,476.00 NA

eq
AEGLE 0.05 0.79 49.84 0.05 0.45 348.51

SILK 23.00 2,250.00 NA 41.00 2,473.00 NA
baseline 2.05 171.10 23,436.30 3.15 196.09 31,452.54

ov
AEGLE 2.96 199.73 35,553.48 11.42 236.87 38,231.15

SILK 22.00 2,181.00 NA 39.00 2,487.00 NA

ovi
AEGLE 3.16 222.27 38,226.32 11.97 257.59 42,121.68

SILK 22.00 2,189.00 NA 42.00 2,503.00 NA

Similarly, Streaming SPARQL [5] provides an extension of seman-
tics and algebraic functions of SPARQL that translates queries into
logical algebra plans.

ETALIS is an open-source engine that is able to detect and re-
port changes over events in near real time, by combining both static
and streaming knowledge. It incorporates the ETALIS Language for
Events (ELE) and Event Processing SPARQL (EP-SPARQL) [3]. The
core of ETALIS is implemented in Prolog and incorporates the fun-
damentals of logic programming: an event is modeled by ELE, using
logic facts and Prolog-style rules. In addition, EP-SPARQL was used
to assist real-time complex event detection. In contrast to C-SPARQL,
using this framework, the user is able to define time windows in the
past.

A novel approach in the area of query processing over Linked
Stream Data is C-QUELS [10]. In this work, the authors proposed a
white-box approach for querying stream data efficiently. To this end,
they define and use techniques such as query optimisation, caching
and indexing. Similarly, INSTANS [21] (which is based on the Rete-
algorithm) is able to process streams of RDF data and cache the data
after the processing is over. Moreover, INSTANS is the only approach
that supports the simultaneous processing of SPARQL queries, where
the immediate results of a query can be used from other queries once
stored. Additionally, another SPARQL query extension language is
described in [25], where the authors proposed τ -SPARQL that com-
bined with an index structure for temporal intervals achieves better
runtime performance.

Most of these approaches focus on extending the semantics and

functions of SPARQL. To the best of our knowledge, the only
SPARQL extension that incorporates Allen’s Interval Algebra is T-
SPARQL [7]. T-SPARQL is a temporal extension of SPARQL using
the multi-temporal RDF database model of [6], using similar design
characteristics as TSQL2 [24]. To query an event KB, T-SPARQL en-
hances the FILTER field in order to identify links between monodi-
mensional temporal data. T-SPARQL utilises operators that explicitly
define the bf , eq, ov, m and di relations.

6 CONCLUSIONS AND FUTURE WORK

With the use of RDF to represent an ever-growing amount of event
data (e.g., for predictive maintenance of industrial machinery) comes
the need to compute temporal relations between events. We presented
an approach based on the reduction of Allen relations to 8 atomic
relations that can be computed efficiently. We showed that by us-
ing simple sorting, we can reduce the complexity of computing any
of these relations to O(n log n). Our experiments showed that our
approach outperforms the state of the art, which is based on multi-
dimensional blocking. In future work, we will extend the scalability
of our approach by providing dedicated solutions for load balanc-
ing within a parallel execution setting. Moreover, we will study the
incremental computation of temporal links on streams of data.
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