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Abstract. We describe a new exact algorithm for MaxClique, called
LMC (short for Large MaxClique), that is especially suited for large
sparse graphs. LMC is competitive because it combines an efficient
preprocessing procedure and incremental MaxSAT reasoning in a
branch-and-bound scheme. The empirical results show that LMC
outperforms existing exact MaxClique algorithms on large sparse
graphs from real-world applications.

1 INTRODUCTION

In an undirected graph G=(V , E), where V is the set of vertices and
E is the set of edges, a clique C is a subset of V such that all its ver-
tices are adjacent to each other. The size of C is its cardinality. The
density of G is computed as 2×|E|/(|V |×(|V |-1)). The Maximum
Clique Problem (MaxClique) is to find a clique of maximum size in
G, denoted by ω(G).

MaxClique is NP-Hard [12] and has many practical applications
such as fault diagnosis [6], bioinformatics and chemoinformatics [9],
coding theory [10], economics [7], and social network analysis [2].
The most deeply studied MaxClique algorithms are exact algorithms
based on the branch-and-bound (BnB) scheme [1, 8, 11, 16, 17, 20,
22, 29, 32]. There are also efficient heuristic algorithms such as [5,
13, 23, 24] that find approximate solutions.

In recent years, special attention has been paid to large graphs
from real-world applications such as graphs compiled from Internet,
social networks, biological networks, collaboration networks and in-
teraction networks. They usually have very low density, contain a
high amount of vertices, and have common statistical properties such
as small-world property, power-law degree distributions, and cluster-
ing [21]. Certainly, cliques are also a valuable property for analyzing
such graphs. For example, in biological networks, a clique might be a
functional group; in social networks of acquaintance, a clique might
identify an organization or a community; and in web networks, a
clique might help to find a certain topic.

State-of-the-art exact MaxClique algorithms are effective in solv-
ing DIMACS [14] and randomly generated graphs, but unfortunately
very few of them are able to solve large graphs from real-world appli-
cations. PMC [25] and BBMCSP [27] are exceptions. They were de-
signed to solve large sparse graphs. PMC implements a BnB scheme,
and uses approximate graph coloring bounds to prune search and par-
allelization to speed up the algorithm. BBMCSP is a very recent al-
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gorithm for large sparse graphs, which derives from an efficient bit-
string encoding and bit-parallel algorithm called BBMCI [28].

Standard MaxSAT reasoning was proposed for MaxClique in [20]
and was combined with an incremental upper bound in [16]. Incre-
mental MaxSAT reasoning was proposed in [17] and has shown a su-
periority over standard MaxSAT reasoning for MaxClique. However,
it is very hard to make sophisticated techniques such as incremen-
tal MaxSAT reasoning or standard MaxSAT reasoning effective for
large graphs, so that it is noted in [27] that sophisticated techniques
such as MaxSAT reasoning are not useful for large graphs. In this
paper, we present a new exact MaxClique algorithm for large graphs,
called LMC (short for Large MaxClique), that combines a novel ef-
ficient preprocessing and incremental MaxSAT reasoning. The em-
pirical results on a representative sample of large sparse graphs from
real-word applications show that LMC is a fast algorithm for graphs
with millions of vertices, and substantially outperforms PMC and
BBMCSP, proving that MaxSAT reasoning can be very effective for
large graphs.

The paper is organized as follows. Section 2 describes the new
algorithm and the techniques it implements. Section 3 reports and
analyzes the empirical results. Finally, Section 4 concludes.

2 LMC: A NEW ALGORITHM FOR LARGE
SPARSE GRAPHS

We describe algorithm LMC, designed for large sparse graphs, which
is composed of two main components: an efficient preprocessing pro-
cedure Initialize and a main search procedure SearchMaxClique em-
ploying incremental MaxSAT Reasoning.

2.1 The preprocessing procedure

Preprocessing in MaxClique BnB algorithms is decisive for effi-
ciency, especially for solving large sparse graphs. Preprocessing gen-
erally performs the following three tasks:

• Derive a vertex ordering for search;
• Find an initial clique;
• Reduce the input graph; i.e., remove as many vertices that do not

belong to any maximum clique as possible.

We define a novel preprocessing procedure called Initialize,
which performs efficiently all these three tasks at the same time. The
starting point is the notion of core, which was first used in social
network analysis [30]. Let degG(v) denote the number of vertices
that are adjacent to v in graph G = (V,E), or degree of v in G (G
is omitted when it is clear from the context). A subgraph G′ induced
by V ′ ⊆ V , written as G′=G(V ′), is a core of order k or a k-core
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iff degG′(v) ≥ k for each v ∈ V ′, and G′ is the subgraph with the
largest number of vertices with this property. The core number of a
vertex v, denoted by k(v), is the highest order of a core that contains
v. The core number of a graph G = (V,E), denoted by k(G), is the
maximum core number among the vertices of G. Refer to the graph
in Figure 1. The set {v1, v2, v3, v4, v5} induces a 2-core, and the
set {v1, v2, v3, v4, v5, v6} induces a 1-core. The core number of the
graph is 2, because the core number of v6 is 1 and the core number
of the other vertices is 2.

v1

v2 v3

v4 v5

v6

Figure 1. A graph with k(G)=2 and ω(G)=2.

The core number of a graph G = (V,E), as well as the core num-
ber of each vertex in V , can be efficiently computed in time O(|E|)
with an algorithm based on the following property [3, 4]: If we recur-
sively delete all vertices of degree less than k and all edges incident
with them in a graph G, the remaining subgraph is the k-core of G.

If a graph G has a clique C of size r, then G must have a core of
order greater than or equal to r− 1, because degG(C)(v) = r− 1 for
each v∈C. So, k(G) ≥ ω(G)−1; i.e., ω(G) ≤ k(G)+1. Similarly,
if a vertex v is in a clique C of size r, then k(v) ≥ r − 1. In other
words, if we want to find a clique of size greater than r, we just need
to consider the vertices v such that k(v) ≥ r. The vertices whose
core number is less than r can be discarded, because they cannot be
in any clique of size larger than r.

Procedure Initialize, showed in Algorithm 1, performs the reduc-
tion of the input graph G based on the core number of each vertex of
G. It removes all the vertices whose core number is less than a lower
bound lb of ω(G). The procedure should be called by a BnB algo-
rithm searching for a clique of size larger than lb. At the same time,
it also derives an initial clique C0 and determines an initial vertex or-
dering O0 for the subsequent search. In the pseudo-code, cur core
denotes the order of the current core, max core denotes the core
number of graph G, and core number[vi] denotes the core number
of vertex vi.

To compute the core number of each vertex of G, proce-
dure Initialize first sorts all vertices of V in increasing de-
gree ordering (i.e., deg(v1)≤deg(v2)≤· · ·≤deg(vn)), and assigns
deg(v1) to cur core. G is a core of order cur core, because
deg(vi)≥cur core for each vi∈V and G is the largest subgraph with
this property. Moreover, cur core is the core number of the small-
est vertex v1, because it is the greatest order of a core that contains
v1. Afterwards, the procedure considers the set V \{v1}: updating
the degree of the vertices adjacent to v1 (line 12), moving them for
keeping the increasing degree ordering (line 13). If the degree of v2
is greater than cur core, then the subgraph induced by V \{v1} is
a new core of order greater than cur core. In this case, cur core is
updated with the new order. Otherwise, v2 still belongs to a core of
order cur core. In this way, the core number of all the vertices of G
can be computed successively (line 6).

Note that if the set of vertices {vi, vi+1, . . ., v|V |} is in the in-
creasing ordering of their degree in the subgraph induced by {vi,
vi+1, . . ., v|V |} and the smallest vi is adjacent to the other vertices

(i.e., deg(vi) = |V | − i), then all pairs of vertices in {vi, vi+1,
. . ., v|V |} must be adjacent. So, {vi, vi+1, . . ., v|V |} forms a clique
in this case. As soon as a vertex vi with such a property is found,
the algorithm ends the loop and the core number of all the vertices
greater than or equal to vi is set to cur core (line 7-10), because they
cannot belong to a core of order greater than cur core. As a result,
{vi, vi+1, . . ., v|V |} is the initial clique C0 of G (line 14). If |C0| is
greater than lb, lb is set to |C0|. Finally, the vertices with core num-
ber less than lb are removed from G, because they cannot be in any
clique larger than lb.

Algorithm 1: Initialize(G, lb), a preprocessing for large sparse
graphs

Input: G=(V , E), a lower bound lb of ω(G)
Output: an initial clique C0, the core number of G, a reduced

graph G′ of G, and an initial vertex ordering O0

1 begin

2 Sort V in increasing degree ordering;
3 cur core ← deg(v1);
4 for i:= 1 to |V | do

5 if deg(vi) > cur core then cur core ← deg(vi);
6 core number[vi]← cur core;
7 if deg(vi) = |V | − i then

8 for j:= i+ 1 to |V | do

9 core number[vj ]← cur core;

10 break;

11 for each neighbor v of vi in {vi+1,vi+2,. . .,v|V |} do

12 deg(v) ← deg(v)− 1;
13 Move v and re-index vertices {vi+1,vi+2,. . .,v|V |}

for keeping the increasing degree ordering;

14 C0 ← {vi, vi+1, . . ., v|V |};
15 max core ← the maximum core number in vertices of V ;
16 if |C0| > lb then lb ← |C0|;
17 G′ ← reduced G by removing all vertices with core number

less than lb;
18 O0 ← the ordering in which the core number of each vertex

is computed;
19 return (C0, max core, G′, O0);

PMC and BBMCSP also use core numbers in their preprocessing
to reduce the input graph. Algorithm 1 differs from the preprocessing
of PMC and BBMCSP in that Algorithm 1 performs the following
three tasks at the same time: derive the vertex ordering for the subse-
quent search, find an initial clique, and reduce the graph G by com-
puting the core number of each vertex. However, PMC and BBMCSP
perform the three tasks separately. In fact, PMC and BBMCSP use
the original algorithm proposed in [4] to compute the core number
of each vertex. After computing the core number of a vertex v, it
only updates the degree of the vertices adjacent to v and with degree
greater than deg(v). In Algorithm 1, the degrees of all uncomputed
vertices adjacent to v are updated. So, the vertex ordering that Algo-
rithm 1 uses to compute the core numbers (i.e., v1 is the vertex with
the smallest degree in G, v2 is the vertex with the smallest degree in
G after removing v1, and so on) is exactly the degeneracy ordering,
which is a typical initial vertex ordering proposed in [8] and used in
many BnB MaxClique algorithms. Algorithm 1 returns this ordering
as the initial ordering O0 for the subsequent search. Furthermore,
Algorithm 1 naturally derives the initial clique C0 in line 14, while
PMC uses a heuristic [25] to derive C0 in a separate sub-procedure
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that can roughly be stated as follows: Let C0 be the largest clique
found so far. For each vertex v in decreasing core number order, if
the core number of v is greater than or equal to |C0|, greedily form
a clique with v and the neighbors of v. That heuristic has time com-
plexity O(|E|·�(G)), where �(G) is the maximum degree in graph
G. BBMCSP uses a similar heuristic to derive C0 [27].

The complexity of Algorithm 1 is dominated by the computation
of the core number of vertices. Observe that the cost to compute C0

and O0 is negligible. So, although Initialize performs more tasks
than the original algorithm in [4], the complexity of Algorithm 1
remains O(|E|). Note that the complexity of the preprocessing in
PMC and BBMCSP is dominated by the computation of C0, which
is in O(|E|·�(G)).

2.2 The BnB algorithm for MaxClique with
incremental MaxSAT reasoning

The graph G preprocessed by procedure Initialize will be solved by
a BnB MaxClique algorithm called SearchMaxClique, which is pre-
sented in this section. In the first subsection, we describe the branch
and bound scheme in SearchMaxClique. In the second subsection,
we present incremental MaxSAT reasoning for SearchMaxClique to
reduce the search space.

2.2.1 The BnB scheme in SearchMaxClique

SearchMaxClique is an improved variant of algorithm DoMC [17].
Given a graph G, whose vertices are ordered following a given or-
dering O, SearchMaxClique searches recursively for a clique larger
than the current maximum clique Cmax, combined with the growing
clique C.

Algorithm 2: SearchMaxClique(G, Cmax, C, O), an algorithm
for finding a clique of size larger than |Cmax|

Input: G=(V , E), the largest clique Cmax found so far, the
current growing clique C, a vertex ordering O

Output: a clique C, if |C|>|Cmax|, otherwise, Cmax

1 begin

2 if |V |=0 then return C;
3 B ← GetBranches(G, |Cmax|-|C|, O);
4 if B=∅ then return Cmax;
5 A← V \B;
6 Let B={b1, b2, . . ., b|B|} in the increasing ordering w.r.t. O;
7 for i := |B| to 1 do

8 P ← Γ(bi)∩({bi+1, bi+2,. . ., b|B|}∪A);
9 C′ ← SearchMaxClique(G(P ), Cmax, C∪{bi}, O);

10 if |C′| > |Cmax| then Cmax ← C′ ;

11 return Cmax;

Algorithm 2 shows the pseudo-code of SearchMaxClique. If the
set of vertices V is non-empty, it calls function GetBranches to par-
tition V into two sets A and B, respecting the vertex ordering O,
in such a way that the size of a maximum clique in A is not greater
than |Cmax| − |C|, and B=V \A={b1, b2, . . ., b|B|} is called the
set of branching vertices. If B is empty, the search is pruned and
it returns the current largest clique Cmax. Otherwise, the algorithm
searches recursively for a maximum clique, containing bi ∈B and of
size greater than |Cmax|, in the subgraphs induced by Γ(bi)∩({bi+1,
bi+2, . . ., b|B|}∪A) for i = |B|, . . . , 1, where Γ(bi) denotes the set
of vertices adjacent to bi in G and b1< b2<· · ·<b|B| w.r.t. O.

Algorithm 3: GetBranches(G, r, O), for an algorithm searching
for a maximum clique with more than r vertices in G.

Input: G=(V , E), an integer r and a vertex ordering O over V
Output: a set B of branching vertices

1 begin

2 B ← ∅; Π← ∅; /* Π is a set of Independent Sets (IS) */
3 while V is not empty do

4 v ← the biggest vertex of V w.r.t O;
5 remove v from V ;
6 if there is an IS D in Π in which v is not adjacent to any

vertex then

7 insert v into D;

8 else if |Π|<r then

9 create a new IS D = {v}; Π← Π ∪ {D};
10 else

11 if There is an IS D1 in which v has only one
adjacent vertex u, and u can be inserted into
another IS D2 then

12 insert u into D2; insert v into D1;

13 else B ← B ∪ {v};

14 B ← IncMaxSAT(G, O, V \B, B);
15 return B;

Function GetBranches(G, r, O) is described in Algorithm 3,
where r is an integer and O is a vertex ordering. GetBranches re-
turns a set B of branching vertices by showing that A=V \B does
not contain any clique of size greater than r. The set B is derived
by using a greedy sequential coloring process that successively as-
signs the smallest possible color to each vertex in V w.r.t. ordering
O. Note that each color is represented by a natural integer from 1,
and that all the vertices with the same color form an independent set
(IS) in which no vertex is adjacent to another. The vertices that can-
not be assigned a color smaller than or equal to r form the set B.
Since vertices in A=V \B can be colored using r colors, they cannot
form a clique of size larger than r.

Since the greater the cardinality of B, the greater the remaining
search space to be explored, GetBranches reduces B using procedure
Re-NUMBER [32]. It works as follows: when the coloring process
fails to color a vertex v with a color less than or equal to r, it checks
whether there exists a vertex u and two ISs D1 and D2, such that u
is the only vertex adjacent to v in D1 but there is no vertex adjacent
to u in D2. In this case, u is moved to D2 and v is inserted into D1,
obtaining this way one additional vertex in A and one less in B.

Finally, GetBranches further reduces B by applying incremental
MaxSAT reasoning [17], which is described in the next subsection.

2.2.2 Incremental MaxSAT reasoning

We first explain the rationale to use MaxSAT reasoning in BnB Max-
Clique algorithms. Then, we give basic notions of MaxSAT and de-
scribe standard MaxSAT reasoning for MaxClique. Finally, we de-
scribe incremental MaxSAT reasoning.

BnB MaxClique algorithms compute upper bounds (UBs) of ω(G)
to prune search [22, 31, 32, 20, 19, 29], using approximate algorithms
such as greedy sequential coloring to derive good quality UBs with
low overhead. Given a graph G = (V , E), greedy sequential color-
ing successively assigns the smallest possible color (from 1) to each
vertex v in a predefined ordering, and the computed UB of ω(G) is
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the greatest color r needed to color G. Let Di={v| v ∈ V and v is
assigned color i} for i=1,. . . , r. Di is an IS, and the vertex coloring
process partitions V into r ISs. In Figure 1, assuming that a coloring
process colors the vertices in V in the ordering v1, v2, v3, v4, v5,
v6, then three ISs D1={v1, v4, v6}, D2={v2, v3} and D3={v5} are
obtained.

The coloring process has a low time complexity O(n2). Neverthe-
less, the derived UB may not be tight enough; e.g., in Figure 1, UB=3
and ω(G)=2. A subset of q ISs is said to be conflicting if the q ISs
cannot form a clique of size q. Recent approaches [20, 19] use stan-
dard MaxSAT reasoning to improve the coloring-based UB by de-
tecting disjoint conflicting subsets of ISs, after encoding MaxClique
to MaxSAT. They apply the following proposition [20]: Let G be a
graph that can be partitioned into r ISs. If the r ISs can be partitioned
into c disjoint conflicting subsets of ISs, then ω(G)≤r−c.

Recall that a literal is a propositional variable x or its negation x̄,
and a clause is a disjunction of literals. A clause is unit if it con-
tains exactly one literal. A partial MaxSAT (PMaxSAT) instance is
a multiset of clauses in which some clauses are declared to be hard
and the others are declared to be soft. Given a PMaxSAT instance,
the PMaxSAT problem is to find an assignment that satisfies all hard
clauses and the maximum number of soft clauses [18].

After G is partitioned into ISs, MaxClique can be reduced to
PMaxSAT as follows [20]: Given a graph G = (V,E), we define
a propositional variable xi for each vi ∈ V with the intended mean-
ing that xi is true iff vi belongs to the maximum clique Cmax, and
derive the PMaxSAT instance φ that contains (i) a hard clause x̄i∨x̄j

for each pair of non-adjacent vertices vi and vj , stating that vi and
vj cannot be both in Cmax, and (ii) a soft clause for each IS in the
partition, which is the disjunction of the variables associated to the
vertices in the IS. Notice that at most one vertex in each IS can be
in Cmax. So, at most one variable can be assigned true in each soft
clause. An assignment that satisfies all hard clauses and the maxi-
mum number of soft clauses in φ identifies a maximum clique in G
(containing one vertex per satisfied soft clause).

Nevertheless, the purpose of encoding G as a PMaxSAT instance
φ in [20] is not to solve φ with a MaxSAT solver, but to detect
conflicts in φ with an approximate PMaxSAT algorithm to improve
the coloring-based UB of ω(G).

Example 1 (from [20]) The vertices of the graph G in Figure 1
can be partitioned into three ISs: {v1, v4, v6}, {v2, v3}, {v5}. The
PMaxSAT encoding φ is formed by the hard clauses: {x̄1 ∨ x̄4,
x̄1 ∨ x̄5, x̄1 ∨ x̄6, x̄2 ∨ x̄3, x̄2 ∨ x̄5, x̄2 ∨ x̄6, x̄3 ∨ x̄4, x̄4 ∨ x̄6,
x̄5∨ x̄6}, and the soft clauses: {x1∨x4∨x6, x2∨x3, x5}. Standard
MaxSAT Reasoning detects a conflict as follows. Assume that x5

is true (i.e., v5 is in Cmax). Literal x̄5 must be removed from the
hard clauses x̄1 ∨ x̄5, x̄2 ∨ x̄5, and x̄5 ∨ x̄6, resulting in three hard
unit clauses: x̄1, x̄2, and x̄6. The satisfaction of these three unit
clauses removes x1, x2 and x6 from the soft clauses x1 ∨ x4 ∨ x6

and x2 ∨ x3, and results in two soft unit clauses: x4 and x3. The
satisfaction of these two new soft unit clauses makes the hard clause
x̄3 ∨ x̄4 falsified. Hence, the three soft clauses x1 ∨x4 ∨x6, x2 ∨x3

and x5 cannot be satisfied simultaneously, meaning that the three
corresponding ISs cannot form a clique of size 3. Consequently, the
coloring-based UB of ω(G) is improved from 3 to 2.

The improvement of UB depends on the number of disjoint con-
flicts detected. Standard MaxSAT reasoning has no impact if the im-
proved UB is still greater than the size of the largest clique found so
far. It is easy to see that the greater the average cardinality of ISs,

the harder to detect conflicts. This fact might explain why standard
MaxSAT reasoning in sparse graphs is not as useful as in medium
and dense graphs, because the ISs in sparse graphs are generally very
large.

Algorithm 4: IncMaxSAT(G, O, A, B), incremental MaxSAT
reasoning to reduce the set of branching vertices B

Input: G=(V , E), V is ordered w.r.t. O and is partitioned into
two subsets: A and B, and A is partitioned into ISs

Output: a set of branching vertices B
1 begin

2 φ ← the PMaxSAT instance: hard clauses encoded from G
and soft clause according to the IS partition of A;

3 while B is not empty do

4 v ← the biggest vertex in B w.r.t. O;
5 Add the soft unit clause {v} in φ;
6 if a conflict can be detected in φ then

7 Let c1, c2, . . ., cp are the conflicting soft clauses;
8 Remove c1, c2, . . ., cp from φ;
9 Add the soft clauses c1∨z1, c2∨z2, . . ., cp∨zp to φ;

10 Add the constraint z1 + z2 + · · ·+ zp = 1 to φ;
11 Remove v from B;

12 else break;

13 return B;

To remedy that drawback of standard MaxSAT reasoning, incre-
mental MaxSAT reasoning was proposed in [17], resulting in two
efficient algorithms: DoMC and SoMC. These algorithms partition
the set of vertices V into two sets, A and B, in such a way that the
vertices in A are colored with |Cmax| colors, and B=V \A={b1, b2,
. . ., b|B|} is the set of branching vertices. If B is empty, the search
is pruned. Otherwise, the algorithms get the PMaxSAT instance φ:
the hard clauses encode the non-adjacent vertices of G, and there is
a soft clause for each IS of the partition of A. The MaxSAT encod-
ing is implicit. The propositional variables are directly represented
by the vertices, the soft clauses are represented by the corresponding
ISs, and the hard clauses are represented using the adjacency matrix.
In addition, each vertex is associated with the list of the non-adjacent
vertices. In this way, no extra space is needed, and the cost of the
encoding is negligible once A and B are obtained.

Then, incremental MaxSAT reasoning successively adds to φ the
highest vertex bi of B as a soft unit clause {bi} for i=|B| to 1, re-
specting the ordering O. If a new conflict is detected in φ after adding
{bi}, then bi is removed from B and added to A. Let c1, c2, . . ., cp
be the soft clauses involved in the detected conflict. Note that at least
one of these soft clauses is falsified by each truth assignment that sat-
isfies all the hard clauses. These soft clauses are weakened before de-
tecting the next conflict: A fresh propositional variable zi is added to
soft clause ci for i=1 to p, and a hard constraint z1+z2+· · ·+zp = 1
is added to require that exactly one of these variables is assigned true.
The weakened soft clauses can then be used to detect further con-
flicts. The constraint z1 + z2 + · · · + zp = 1 is treated as follows:
if one variable zi is assigned true, the other variables are assigned
false. Adding the fresh variables and the hard constraint allows one
to satisfy exactly one soft clause that was previously falsified by each
assignment.

If b|B|, b|B|−1, . . ., and bi are removed from B and added to A,
and a conflict is detected for each one of these vertices, then the set
A∪{b|B|, b|B|−1, . . ., bi} cannot form a clique of size greater than

H. Jiang et al. / Combining Efficient Preprocessing and Incremental MaxSAT Reasoning for MaxClique in Large Graphs942



|Cmax|. To see this, note that the PMaxSAT instance φ contains now
|Cmax|+|B|-i+1 soft clauses and, for each truth assignment satis-
fying all the hard clauses, |B|-i+1 soft clauses have to be satisfied
because of the fresh variables. So, at most |Cmax| soft clauses can
be satisfied by the vertices.

If a conflict cannot be detected when adding a soft unit clause {bi}
to φ, the reduced set B={b1, b2, . . ., bi} is returned. Algorithm 4
shows the pseudo-code of incremental MaxSAT reasoning.

Example 2 (adapted from [17]). Refer to the graph G in Figure 1. As-
sume that |Cmax|=2, and a coloring process partitions the graph into
A={D1, D2} and B={v5, v6}, where D1={v1, v4} and D2={v2,
v3}. IncMaxSAT encodes the graph into a PMaxSAT instance φ by
directly treating the vertices as Boolean variables, the ISs D1 and
D2 as soft clauses, and the non-adjacency relations between vertices
as hard clauses. Then, it adds a new soft unit clause {v5} to φ, and
proves that {D1, D2, {v5}} cannot form a clique of size 3 as follows.
If v5 is in the clique (i.e., v5 is assigned true), then v1 and v2 cannot
be in the clique (i.e., v1 and v2 should be assigned false), because
they are non-adjacent to v5. So, the only remaining vertices v4 in D1

and v3 in D2 should be in the clique, which is impossible because
v4 and v3 are non-adjacent (if so, the hard clause v̄3 ∨ v̄4 would be
falsified). So the three soft clauses D1, D2 and {v5} are conflicting.

Then, IncMaxSAT adds a fresh variable z1 (z2, z3) to D1 (D2,
{v5}) together with the hard constraint z1+z2+z3=1, before adding
the soft unit clause {v6} to φ. It proves that the three soft clauses
D1={v1, v4, z1}, {v5, z3} and {v6} are conflicting as follows. As-
sume that v6 is true. Then, v1, v4 and v5 should be false, because
they are not adjacent to v6. However, z1 and z3 cannot both be true
because of the hard constraint z1+z2+z3=1. A fresh variable z4 (z5,
z6) is then added to D1 ({v5, z3} and {v6}) together with the hard
constraint z4+z5+z6=1.

The two conflicts are clearly disjoint. Recall that φ contains now
four soft clauses. Given a truth assignment satisfying all the hard
clauses, at most two soft clauses can be satisfied due to the original
variables vi (1≤i≤6), and the other two soft clauses are satisfied
due to the fresh variables zi (1≤i≤6). This shows that A∪{v5, v6}
cannot form a clique of size greater than 2.

The advantage of incremental MaxSAT reasoning over standard
MaxSAT reasoning for MaxClique is that if it eliminates all the
branching vertices, then the search is pruned; otherwise, the set of
branching vertices is generally significantly reduced. We note that al-
though large real-world graphs are usually sparse, they might contain
cliques with hundreds of vertices. So, BnB MaxClique algorithms
will develop wider and deeper search trees for such graphs. The re-
duction of the set of branching vertices B by incremental MaxSAT
reasoning has a dramatic impact on performance when hard large
sparse graphs are solved, as we will see in Section 3.

2.3 Algorithm LMC for large sparse graphs

Algorithm 5 describes LMC, which is especially suited for large
sparse graphs. Roughly speaking, given a graph G, LMC calls pro-
cedure Initialize to preprocess both G and the first level subgraphs in
the search tree, and then calls the search procedure SearchMaxClique
to recursively search for a maximum clique in the reduced subgraphs.

LMC first calls Initialize(G, 0) (the initial lb of ω(G) is 0) to
derive an initial clique C0, the core number of G and of each vertex,
a reduced subgraph G′ and an initial ordering O0. If the size of C0

is k(G) + 1, then C0 is a maximum clique of G and is returned (line

Algorithm 5: LMC(G), a BnB algorithm for MaxClique in large
sparse graphs

Input: G=(V , E)
Output: a maximum clique Cmax of G

1 begin

2 (C0, k(G), G′, O0) ← Initialize(G, 0);
3 if |C0| = k(G) + 1 then return C0 ;
4 Cmax ← C0;
5 V ′ ← the vertex set of G′;
6 Order V ′ w.r.t the initial ordering O0;
7 for i:= |V ′| to 1 do

8 P ← Γ(vi)∩{vi+1,vi+2,. . .,v|V ′|};
9 (C′

0, k(G(P )), G′′, O′
0) ←

10 Initialize(G(P ), |Cmax| − 1);
11 if |C′

0|≥|Cmax| then Cmax ← C′
0∪{vi};

12 if k(G(P )) + 1≥|Cmax| then

13 Construct the adjacency matrix for G′′;
14 C′ ← SearchMaxClique(G′′, Cmax, {vi}, O′

0);
15 if |C′|>|Cmax| then Cmax ← C′ ;

16 return Cmax

3), because k(G)+1 is an UB of ω(G). Otherwise, LMC unrolls the
first level subgraphs induced by the set of candidates Γ(vi)∩{vi+1,
. . ., v|V ′|}, denoted by P , for i = |V ′| to 1, where vertices follow the
initial ordering O0. For each first level subgraph G(P ) of the search
tree, LMC calls Initialize(G(P ), |Cmax| − 1) to compute an ini-
tial clique C′

0 of G(P ), the core number of G(P ) and of each ver-
tex in G(P ), a subgraph G′′ of G(P ) obtained by removing all the
vertices whose core number is less than |Cmax| − 1, and a vertex or-
dering O′

0. Finally, the search procedure SearchMaxClique is called
to recursively search for a clique containing vi, of size greater than
|Cmax|, in the subgraph G′′. Observe that the size of a maximum
clique in G(P ) is at most k(G(P ))+1. When k(G(P ))+1<|Cmax|,
a clique containing vi of size greater than |Cmax| cannot be found
from G′′ and the search in G′′ is pruned.

LMC also calls Initialize for the first level subgraphs. The ratio-
nale is: (i) the vertex ordering computed by Initialize is degeneracy
ordering; re-ordering the vertices in the subgraphs near the root of
the search tree was proven to be beneficial for BnB MaxClique al-
gorithms [15]. (ii) Since G is large, the first level subgraphs may
still contain a lot of vertices. With a growing lower bound |Cmax|
of ω(G), the first level subgraphs can be further reduced, which is
beneficial for speeding up the search in SearchMaxClique. We note
that the first level subgraphs are also preprocessed in BBMCSP.

Maintaining an adjacency matrix for large sparse graphs has a
costly space complexity. LMC does not construct a global adjacency
matrix for the input graph G. When the search in the first level sub-
graphs is necessary, the adjacency matrix for them is constructed dy-
namically to serve SearchMaxClique (line 13). Since G is sparse, the
number of vertices in the first level subgraphs should be substantially
reduced by the preprocessing in line 9 and line 10. So, constructing
an adjacency matrix for the reduced first level subgraphs is feasible
and beneficial. In the implementation, we use bit-sets to store the
adjacency matrix.

3 EMPIRICAL INVESTIGATION

We empirically evaluated LMC, and compared it with PMC and
BBMCSP, which are, to our best knowledge, the two most efficient
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Table 1. The graphs tested in the experiments, excluding those graphs whose init and search times are below 10s for all solvers.

Graph |V | |E| Graph |V | |E| Graph |V | |E|
adaptive 6815744 13624320 inf-great-britain osm 7733822 8156517 soc-ljournal-2008 5363186 49514271
aff-digg 872622 22501700 inf-road-usa 23947347 28854312 soc-orkut 2997166 106349209
aff-flickr-user-groups 395979 8537703 packing-500x100

x100-b050 2145852 17488243 soc-orkut-dir 3072441 117185083
aff-orkut-user2groups 8730857 327036486 rec-amazon-ratings 2146057 5743132 soc-pokec 1632803 22301964
bio-human-gene1 22283 12323680 rec-dating 168792 17351416 soc-sinaweibo 58655849 261321033
bio-human-gene2 14340 9027024 rec-eachmovie 74424 2811458 soc-twitter-higgs 456631 12508442
bio-mouse-gene 45101 14461095 rec-epinions 755761 13396042 soc-wiki-conflict 118100 2027871
bn-human-BNU 1 0
025864 session 1-bg 1827218 143158339 rec-libimseti-dir 220970 17233144 soc-youtube-growth 3223589 9376594
bn-human-BNU 1 0
025864 session 2-bg 1827241 133727516 rec-movielens 71567 9991339 socfb-A-anon 3097165 23667394
bn-human-BNU 1 0
025865 session 1-bg 1398408 42296922 rgg n 2 23 s0 8388608 63501393 socfb-B-anon 2937612 20959854
bn-human-BNU 1 0
025865 session 2-bg 1717207 22855526 rgg n 2 24 s0 16777216 132557200 socfb-konect 59216214 92522012
channel-500x100
x100-b050 4802000 42681372 sc-TSOPF-RS

-b2383-c1 38120 16115324 socfb-uci-uni 58790782 92208195
dbpedia-link 11621692 78621046 sc-ldoor 952203 20770807 tech-as-skitter 1694616 11094209
delaunay n22 4194304 12582869 sc-rel9 5921786 23667162 tech-ip 2250498 21643497
delaunay n23 8388608 25165784 soc-BlogCatalog 88784 2093195 tech-p2p 5792297 147829887
delaunay n24 16777216 50331601 soc-FourSquare 639014 3214986 twitter mpi 9862152 99940317
friendster 8658744 45671471 soc-LiveJournal1 4847571 42851237 web-ClueWeb09-50m 428136613 446534058
hugebubbles-00020 21198119 28857767 soc-buzznet 101163 2763066 web-baidu-baike 2141300 17014946
hugetrace-00000 4588484 6879133 soc-catster 149700 5448197 web-indochina-2004-all 7414865 150984819
hugetrace-00010 12057441 18082179 soc-digg 770799 5907132 web-it-2004-all 41291318 1027474947
hugetrace-00020 16002413 23998813 soc-dogster 426820 8543549 web-uk-2002-all 18520343 261787258
ia-enron-email-dynamic 87273 297456 soc-flickr-und 1715255 15555041 web-wiki-ch-internal 1930275 8956902
ia-wiki-Talk-dir 2394385 4659565 soc-flixster 2523386 7918801 web-wikipedia-growth 1870709 36532531
ia-wiki-user-edits-page 2104544 5572584 soc-friendster 65608366 1806067135 web-wikipedia link en 27154756 31024475
inf-europe osm 50912018 54054660 soc-livejournal

-user-groups 7489073 112305407 web-wikipedia link it 2936413 86754664
inf-germany osm 11548845 12369181 soc-livejournal07 5204176 48709773

exact MaxClique algorithms for large sparse graphs. LMC was im-
plemented in C and compiled using GNU gcc -O3. The algorithms
are also called solvers when they are used to solve MaxClique in-
stances. The experiments were performed on an Intel Xeon CPU
X5460@3.16GHz under Linux with 32GB of memory.

We next describe the compared solvers and the tested graphs, and
then discuss and analyze the experimental results.

3.1 The compared solvers and the tested graphs

The source code of PMC [25] is publicly available at
https://www.cs.purdue.edu/homes/dgleich/codes/maxcliques/. We
compiled it using the provided Makefile and ran it with ./pmc -f G -a
0 to solve G. We used the Linux binary executable of BBMCSP [27]
available at http://venus.elai.upm.es/logs/results sparse/bin/.

The measures considered for each tested graph are the following:

The size of initial clique C0 (ω0). PMC and BBMCSP use a dedi-
cated heuristic to compute C0, while LMC derives C0 in proce-
dure Initialize as a by-product of computing core numbers.

The time for preprocessing (init). For PMC and BBMCSP, it in-
cludes the time of the k-core analysis, finding C0, and reducing
the graph. For LMC, it is the time needed by procedure Initialize
to preprocess the input graph at the root of the search tree. It does
not include the preprocessing of the first level subgraphs.

The time for search (search). The runtime after finishing the pre-
processing. For LMC, it includes both the time of search and pre-
processing of first level subgraphs. The cut-off time was set to 5
hours.

We considered 170 real-world graphs from the Network Data
Repository [26] available at http://networkrepository.com, including
the 90 graphs reported to evaluate BBMCSP in [27]. The number of
vertices ranges from 4K to 400M. We exclude the graphs whose init
and search times are below 10s for all the solvers and report results
for the remaining 77 graphs, providing a clearer comparison. Table 1

shows the number of vertices (|V |) and number of edges (|E|) of
these 77 graphs.

3.2 Comparison of LMC with PMC and BBMCSP

Table 2 shows the experimental results, where k(G)+1 is the UB
of ω(G) derived by the k-core analysis. When the size of an initial
clique (ω0) is k(G)+1, the search time is 0 in LMC and BBMCSP
because no search is performed. PMC does not return search = 0 in
some cases for some unknown reason. The best times are in bold.

LMC solves all graphs in at most 1120s, while PMC (BBMCSP)
cannot solve 12 (6) instances in 5h. In addition, BBMCSP runs out of
memory on two graphs. Furthermore, LMC is almost always faster
than BBMCSP and PMC. For example, for bio-mouse-gene, the total
time (init+search) of LMC is 147s, which is 4.4 and 35.5 times
faster than PMC (643s) and BBMCSP (5220s); for soc-sinaweibo,
the total time of LMC is 80s, which is 59 and 40 times faster than
PMC (4742s) and BBMCSP (3206s), respectively.

Observe that the init times of LMC are significantly below the
ones of PMC and BBMCSP due to the overhead of the dedicated
heuristic for finding the initial clique in PMC and BBMCSP. Sur-
prisingly, although the method for finding an initial clique in LMC
is very simple, it finds larger initial cliques than the ones found by
PMC and BBMC for 14 and 18 instances, respectively. For example,
the initial clique found by LMC for tech-p2p is of size 172, while the
initial clique found by PMC and BBMCSP is of size 155 and 153,
respectively.

Although the initial clique found by LMC is smaller than the one
found by PMC and BBMCSP in many cases, the search after the pre-
processing of LMC is almost always faster than PMC and BBMCSP.
For example, the search time of LMC for rec-epinions is 123 and 20
times faster than PMC and BBMCSP, respectively; and LMC finishes
the search in 150s for twitter mpi, whereas PMC and BBMCSP can-
not terminate in 5h. For these two graphs, the initial cliques found by
LMC (resp. 2 and 79) are smaller than the ones found by PMC (resp.
7 and 113) and BBMCSP (resp. 7 and 121). This also happens on
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Table 2. Runtimes in seconds of LMC, PMC and BBMCSP to solve the large graphs in Table 1. For each graph, the cpu time limit is 5h, ω0 is the size of the
initial clique found by the solvers, init denotes the time for preprocessing, and search denotes the time for search after the preprocessing.

Graph k(G) ω LMC PMC BBMCSP
+1 ω0 init search ω0 init search ω0 init search

adaptive 3 2 2 1.74 0.01 2 4.25 6.09 2 13.42 1.44
aff-digg 646 32 29 1.98 175.6 24 62.38 >5h 25 49.01 1397
aff-flickr-user-groups 187 14 12 0.85 3.62 10 9.43 53.06 10 15.79 22.42
aff-orkut-user2groups 472 6 2 83.06 436.5 6 932.4 >5h 5 2410 3727
bio-human-gene1 2048 1335 1328 0.65 1047 1272 90.48 >5h 1268 16.55 >5h
bio-human-gene2 1903 1300 1290 0.48 178.4 1241 66.54 >5h 1229 7.77 >5h
bio-mouse-gene 1046 561 435 1.29 145.8 525 33.06 610.4 520 24.35 5196
bn-human-BNU 1 0025864 session 1-bg 1210 294 222 14.72 642.8 271 177.8 >5h 276 277.3 >5h
bn-human-BNU 1 0025864 session 2-bg 1088 271 199 13.91 544.1 271 154.9 1595 271 252.4 912.8
bn-human-BNU 1 0025865 session 1-bg 912 196 159 3.90 192.9 172 56.16 12611 186 84.43 >5h
bn-human-BNU 1 0025865 session 2-bg 582 201 83 2.18 40.91 201 20.73 120.9 201 33.76 12.64
channel-500x100x100-b050 10 4 4 10.19 2.10 4 18.96 32.37 4 33.44 11.41
dbpedia-link 140 33 10 17.62 16.07 30 4050 3774 32 243.4 118.1
delaunay n22 5 4 3 2.69 0.12 4 6.21 13.54 4 15.75 2.51
delaunay n23 5 4 3 5.60 0.25 4 12.46 25.70 4 32.26 5.13
delaunay n24 5 4 3 11.55 0.50 4 24.76 32.82 4 67.06 10.71
friendster 52 37 17 8.26 1.42 37 18.71 24.36 37 67.91 5.56
hugebubbles-00020 3 2 2 15.78 0.01 2 23.47 41.27 2 62.42 6.78
hugetrace-00000 3 2 2 2.24 0.01 2 3.52 4.91 2 10.04 1.06
hugetrace-00010 3 2 2 6.35 0.01 2 9.60 16.51 2 30.21 2.99
hugetrace-00020 3 2 2 10.14 0.01 2 16.19 27.23 2 47.16 4.30
ia-enron-email-dynamic 54 33 24 0.02 0.02 28 0.48 16.03 30 0.15 0.02
ia-wiki-Talk-dir 132 26 25 0.35 0.37 22 4.18 8.01 16 12.56 0.89
ia-wiki-user-edits-page 67 15 13 0.27 0.10 14 689.9 >5h 11 46.60 0.34
inf-europe osm 4 4 3 9.34 0.01 4 7.93 0.00 4 12.83 0.00
inf-germany osm 4 3 3 2.13 0.01 3 2.06 2.57 3 16.43 0.01
inf-great-britain osm 4 3 3 1.32 0.01 3 1.47 1.78 3 11.10 0.01
inf-road-usa 4 4 3 7.93 0.01 3 0.01 5.96 4 10.13 0.00
packing-500x100x100-b050 10 4 4 3.17 0.94 4 8.16 11.96 4 15.21 5.75
rec-amazon-ratings 30 5 4 1.15 0.18 4 3.39 5.32 4 10.40 2.24
rec-dating 261 13 8 1.76 12.16 11 11.89 161.4 9 35.32 55.74
rec-eachmovie 221 12 11 0.24 0.81 11 9.68 49.98 10 2.87 1.51
rec-epinions 149 8 2 1.69 2.50 7 169.0 308.8 7 44.00 51.87
rec-libimseti-dir 274 14 13 1.79 10.47 12 14.97 159.3 11 38.46 45.53
rec-movielens 532 29 24 0.96 17.72 23 18.08 541.8 20 14.05 127.0
rgg n 2 23 s0 21 21 21 9.16 0.00 21 11.48 0.00 21 15.92 0.00
rgg n 2 24 s0 21 21 21 19.43 0.00 21 25.13 0.00 21 33.80 0.00
sc-TSOPF-RS-b2383-c1 656 7 3 0.84 6.82 7 3.28 162.7 6 3.25 2.65
sc-ldoor 35 21 21 1.50 2.46 21 10.56 9.85 21 5.83 1.84
sc-rel9 5 4 3 2.03 0.19 4 6.53 21.14 4 28.76 4.56
soc-BlogCatalog 222 45 41 0.16 1.81 39 2.67 14.36 37 2.12 4.02
soc-FourSquare 64 30 25 0.19 0.22 29 36.82 36.53 27 7.09 0.39
soc-LiveJournal1 373 321 320 5.30 0.10 314 8.26 5.71 316 53.89 0.03
soc-buzznet 154 31 28 0.22 1.15 25 4.41 17.56 23 3.52 2.37
soc-catster 420 81 56 0.32 4.78 80 8.08 16631 58 6.20 1.35
soc-digg 237 50 18 0.57 2.56 46 2.37 13.32 42 9.35 2.43
soc-dogster 249 44 39 0.61 2.65 40 10.95 18.42 33 13.94 4.50
soc-flickr-und 569 98 74 1.49 24.32 77 11.50 1027 68 24.24 155.3
soc-flixster 69 31 30 0.60 0.18 29 1.46 1.84 29 10.28 0.91
soc-friendster 305 129 14 726.7 393.6 129 1253 7458 out of memory
soc-livejournal-user-groups 117 9 4 19.83 42.48 8 7360 >5h 8 1351 2064
soc-livejournal07 375 358 358 6.32 0.05 358 7.21 1.35 356 62.03 0.01
soc-ljournal-2008 426 400 389 5.50 0.04 400 9.16 2.50 400 47.18 0.01
soc-orkut 231 47 17 23.39 29.25 43 72.84 268.5 46 190.8 85.72
soc-orkut-dir 254 51 14 26.01 34.08 48 79.94 291.3 50 209.2 96.67
soc-pokec 48 29 15 4.28 1.90 29 8.30 8.36 29 34.53 6.68
soc-sinaweibo 194 44 8 53.14 26.83 37 3493 1249 41 3012 194.8
soc-twitter-higgs 126 71 21 1.35 1.71 71 15.13 28.28 70 29.11 4.43
soc-wiki-conflict 146 25 22 0.17 0.46 21 7.48 62.82 22 1.75 0.77
soc-youtube-growth 89 20 18 1.44 0.39 17 51.63 33.97 18 32.41 2.01
socfb-A-anon 75 25 23 3.75 5.02 23 12.43 22.21 24 40.41 15.48
socfb-B-anon 64 24 11 3.64 4.55 24 10.44 19.41 24 35.46 14.10
socfb-konect 17 6 6 17.94 0.15 6 26.20 20.26 6 131.8 1.72
socfb-uci-uni 17 6 6 20.01 0.16 6 30.28 20.69 6 164.5 1.75
tech-as-skitter 112 67 57 0.87 0.10 66 1.55 0.87 50 11.09 0.14
tech-ip 254 4 3 2.22 7.47 3 67.79 >5h 4 103.9 24.76
tech-p2p 854 178 172 26.21 208.8 155 229.8 >5h 153 564.2 >5h
twitter mpi 678 131 79 15.68 149.5 113 1456 >5h 121 537.8 >5h
web-ClueWeb09-50m 189 56 41 130.9 2.40 55 411.8 258.2 out of memory
web-baidu-baike 79 31 12 2.84 1.11 31 38.13 30.62 31 46.77 8.46
web-indochina-2004-all 6870 6848 6848 5.61 82.38 6848 3621 162.5 6848 86.62 0.85
web-it-2004-all 3225 3222 3222 47.20 2.99 3222 682.1 >5h 3222 451.8 0.45
web-uk-2002-all 944 944 944 16.40 0.00 944 35.30 9.71 944 21.29 0.00
web-wiki-ch-internal 121 33 13 1.17 0.52 32 13.67 10.53 33 14.90 2.17
web-wikipedia-growth 207 31 15 6.26 6.41 31 354.9 273.5 31 131.9 52.22
web-wikipedia link en 378 44 4 6.99 2.09 43 24.79 93.24 44 57.70 13.80
web-wikipedia link it 895 870 869 5.67 0.25 870 152.1 >5h 869 85.28 0.06

other graphs such as dbpedia-link, friendster, soc-livejournal-user-
groups and soc-orkut-dir. This fact provides evidence that incremen-
tal MaxSAT reasoning is effective in pruning search in large sparse
graphs, even with a smaller initial clique.

Overall, LMC is clearly superior to PMC and BBMCSP. These
results show that the combination of the novel preprocessing and in-
cremental MaxSAT reasoning in the proposed BnB scheme is com-
petitive to find maximum cliques in large sparse graphs, which is

analyzed in details in the next subsection.

3.3 The impact of preprocessing and incremental
MaxSAT reasoning in LMC

To analyze the impact of preprocessing in LMC, we report in Table 3
the density of the graphs whose search time is more than 5s in Ta-
ble 2, before and after the preprocessing at the root of the search tree
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(see line 2 in Algorithm 5), and the ratio of the number of vertices
of the reduced graph to the number of vertices of the original graph,
as well as the mean density of a subgraph G(P ) and of its reduced
graph G′′ (see line 8 and line 9 in Algorithm 5), and the mean ratio of
the number of vertices of G′′ to the number of vertices of G(P ). We
can see that most graphs are already significantly reduced by prepro-
cessing at the root of the search tree, which considerably increases
their density. The preprocessing in the first level of the search tree
further reduces the graphs and substantially increases the density of
G′′, which is really solved by the BnB algorithm SearchMaxClique
(line 14 of Algorithm 5). While an IS in the original graph G with
very low density is usually huge, an IS in G′′ is much smaller, which
explains the effectiveness of incremental MaxSAT reasoning when
solving G′′ in LMC, because conflicts among small ISs can be easily
detected to efficiently reduce the set B of branching vertices.

Table 3. Impact of the preprocessing in LMC. The columns d and d′ are
respectively the density of the original graph G and of its reduced graph G′
in the root of the search tree, rt the ratio of the number of vertices of G′ to
the number of vertices of G; dP and d′′ the mean density of the subgraph
G(P ) and of the reduced subgraph G′′ in the first level of the tree, and rt′′
the ratio of the number of vertices of G′′ to the number of vertices of G(P ).
The entries marked with ’-’ mean that all vertices of the first level subgraphs

have been removed by the preprocessing.

Graph Original Graph First Level Subgraphs
d rt d′ dP rt′′ d′′

aff-digg 0.000059 0.16 0.002066 0.302 0.32 0.35
aff-orkut-user2groups 0.000009 0.78 0.000014 0.005 0.01 0.18
bio-human-gene1 0.049641 0.20 0.636241 0.968 0.79 0.98
bio-human-gene2 0.087802 0.27 0.693864 0.973 0.80 0.98
bio-mouse-gene 0.014219 0.38 0.080813 0.780 0.28 0.93
bn-human-BNU 1 0
025864 session 1-bg 0.000086 0.13 0.003767 0.591 0.15 0.70
bn-human-BNU 1 0
025864 session 2-bg 0.000080 0.14 0.003416 0.587 0.17 0.69
bn-human-BNU 1 0
025865 session 1-bg 0.000043 0.06 0.009783 0.524 0.29 0.66
bn-human-BNU 1 0
025865 session 2-bg 0.000016 0.05 0.005656 0.461 0.22 0.65
dbpedia-link 0.000001 0.18 0.000028 0.147 0.01 0.52
rec-dating 0.001218 0.81 0.001869 0.056 0.10 0.28
rec-libimseti-dir 0.000706 0.79 0.001128 0.044 0.04 0.28
rec-movielens 0.003902 0.91 0.004667 0.255 0.27 0.35
sc-TSOPF-
RS-b2383-c1 0.022181 1.00 0.022181 0.004 0.00 -
soc-flickr-und 0.000011 0.03 0.007760 0.349 0.18 0.62
soc-friendster 0.000001 0.42 0.000004 0.041 0.01 0.33
soc-livejournal
-user-groups 0.000004 0.42 0.000022 0.044 0.01 0.37
soc-orkut-dir 0.000025 0.82 0.000036 0.185 0.03 0.40
soc-orkut 0.000024 0.75 0.000039 0.191 0.02 0.44
soc-sinaweibo 0.000001 0.12 0.000006 0.055 0.01 0.61
socfb-A-anon 0.000005 0.13 0.000191 0.163 0.01 0.77
tech-ip 0.000009 0.19 0.000206 0.002 0.01 0.15
tech-p2p 0.000009 0.03 0.003944 0.236 0.09 0.67
twitter mpi 0.000002 0.03 0.001355 0.241 0.10 0.64
web-indochina
-2004-all 0.000005 0.01 0.999713 0.999 0.89 0.99
web-wikipedia
-growth 0.000021 0.49 0.000071 0.172 0.02 0.43

We now show the individual impact of preprocessing the first level
subgraphs and of incremental MaxSAT reasoning in LMC by com-
paring it with the following solvers:

LMC\prep1. It is LMC without preprocessing the first level sub-
graphs; i.e., line 9 and line 10 that call procedure Initialize are
removed in Algorithm 5.

LMC\MaxSAT. It is LMC without incremental MaxSAT reason-
ing; i.e., line 14 in the GetBranches function (Algorithm 3) is re-
moved.

Table 4 shows the search tree size and the search time of LMC,
LMC\prep1 and LMC\MaxSAT on the graphs of Table 3. With
preprocessing and incremental MaxSAT reasoning, the search tree
size of LMC is always the smallest. The search time of LMC is
comparable with that of LMC\prep1 and LMC\MaxSAT on easy

Table 4. Search tree sizes in thousands and search times in seconds (s) of
LMC, LMC\prep1 and LMC\MaxSAT. The cpu time limit is 5h.

Graph LMC LMC\prep1 LMC\MaxSAT
tree search tree search tree search

aff-digg 5602 175.6 7055 181.5 13553 202.9
aff-orkut-user2groups 4173 436.5 6831 316.6 4173 457.3
bio-human-gene1 11.19 1047 12.53 1081 59.46 14618
bio-human-gene2 14.16 178.4 15.45 122.8 35.85 392.4
bio-mouse-gene 76.92 145.8 78.85 153.2 611.1 703.1
bn-human-BNU 1 0
025864 session 1-bg 210.1 642.8 - >5h - >5h
bn-human-BNU 1 0
025864 session 2-bg 215.4 544.1 - >5h - >5h
bn-human-BNU 1 0
025865 session 1-bg 104.3 192.9 - >5h 7490 1184
bn-human-BNU 1 0
025865 session 2-bg 53.70 40.91 105.7 60.11 96.31 40.17

dbpedia-link 684.6 16.07 686.7 13.30 685.0 16.12
rec-dating 138.3 12.16 142.8 9.87 138.3 12.21
rec-libimseti-dir 173.3 10.47 174.7 9.19 173.3 10.43
rec-movielens 120.8 17.72 144.3 10.51 160.1 17.81
sc-TSOPF-RS-
b2383-c1 34.25 6.82 34.26 11.87 34.25 6.83
soc-flickr-und 81.01 24.32 307.0 61.49 639.7 39.22
soc-friendster 2308 393.6 2318 412.3 2308 388.8
soc-livejournal-
user-groups 2403 42.48 2403 31.32 2403 42.88
soc-orkut-dir 714.0 34.08 731.5 27.81 724.3 34.14
soc-orkut 745.5 29.25 751.6 23.87 754.5 29.51
soc-sinaweibo 712.7 26.83 714.4 30.50 713.5 26.93
socfb-A-anon 355.2 5.02 355.2 3.76 355.2 4.99
tech-ip 79.29 7.47 79.29 9.70 79.29 7.48
tech-p2p 235.1 208.8 1116 746.5 2922 831.0
twitter mpi 323.1 149.6 - >5h 2911 249.7
web-indochina-
2004-all 0.14 82.38 0.14 24.36 0.14 82.45
web-wikipedia-
growth 358.4 6.41 359.6 5.18 360.7 6.35

graphs. However, LMC is substantially faster than LMC\prep1 and
LMC\MaxSAT on hard graphs. In particular, the search time of LMC
is smaller than 1047s for all the graphs, while LMC\prep1 fails to
solve 4 graphs and LMC\MaxSAT fails to solve 2 graphs within 5h.
In addition, LMC is 14 and 4 times faster than LMC\MaxSAT for
bio-human-gene1 and tech-p2p, respectively.

4 CONCLUSIONS

Clique is a valuable property for analyzing real-world large sparse
graphs. We have proposed a new exact algorithm, called LMC, to
find maximum cliques in large sparse graphs that combines a novel
preprocessing and incremental MaxSAT reasoning in a BnB scheme.
The preprocessing procedure Initialize performs effectively three
tasks at the same time with a very low overhead: derive a vertex or-
dering, reduce the graph, and compute an initial clique. LMC also
applies preprocessing to the subgraphs in the first level of the search
tree, so that the underlying algorithm SearchMaxClique can work
with a better vertex ordering and a more reduced graph when search-
ing these subgraphs with incremental MaxSAT reasoning.

Our new algorithm can solve all tested graphs efficiently and
shows a performance that is superior over PMC and BBMCSP, refut-
ing the opinion in the literature that sophisticated techniques such as
MaxSAT reasoning are not useful for large sparse graphs. The empir-
ical analysis suggests that the performance of incremental MaxSAT
reasoning in LMC comes from the fact that the proposed preprocess-
ing considerably increases the density of the graphs to be solved.
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