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Abstract. Renewable energy sources introduce uncertainty regard-
ing generated power in smart grids. For instance, power that is gener-
ated by wind turbines is time-varying and dependent on the weather.
Electric vehicles will become increasingly important in the develop-
ment of smart grids with a high penetration of renewables, because
their flexibility makes it possible to charge their batteries when re-
newable supply is available. Charging of electric vehicles can be
challenging, however, because of uncertainty in renewable supply
and the potentially large number of vehicles involved. In this paper
we propose a vehicle aggregation framework which uses Markov
Decision Processes to control electric vehicles and deals with un-
certainty in renewable supply. We present a grouping technique to
address the scalability aspects of our framework. In experiments we
show that the aggregation framework maximizes the profit of the
aggregator, reduces cost of customers and reduces consumption of
conventionally-generated power.

1 INTRODUCTION

The emergence of renewable energy sources in electricity grids is
accompanied by several challenges [29]. For instance, power produced
by solar panels and wind turbines is dependent on the weather and
may cause power production peaks outside the secure range of the
grid. Moreover, when many consumers use cheap electricity when
renewables have a high output, the grid may become significantly
congested. Traditionally such problems were addressed by expensive
reinforcements of the grid, but this can be very costly [34]. A recent
development is intelligently controlling generation and consumption
of local consumers, and thereby creating a smart distribution grid.

Smart distribution grids offer several opportunities and challenges
for the field of Artificial Intelligence, such as planning and scheduling
of charging of electric vehicles [24]. In order to reduce peak loads and
exploit locally produced renewable energy, such as small-scale wind
power, shifting flexible electric vehicle charging demand to periods
with sufficient renewable supply requires planning algorithms for so-
called aggregators. These aggregators are entities in smart distribution
grids responsible for coordinating a large number of vehicles, and
need to be able to deal with uncertain information regarding the
availability of renewable supply.

In this paper we consider uncertain wind power production com-
bined with the need to coordinate charging of a large number of
electric vehicles (EVs), to take advantage of renewable energy and to
reduce consumption of conventionally-generated power. To make sure
that vehicles charge their batteries when renewable supply is available,
we present an aggregation framework based on the Multiagent Markov
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Decision Process (MMDP) formalism [5]. The development of such a
framework poses challenges related to the number of agents involved
and the uncertainty associated with renewable energy sources. The
first challenge is the main topic of this paper, and for the second
challenge we build upon recent work related to modeling uncertainty
of renewables [35].

Our main contributions can be summarized as follows. First, we
present an electric vehicle aggregation framework which coordinates
charging of collection of EVs using MMDPs. Second, we describe
how the computation of value functions can be combined with tree-
based representations of uncertainty in renewable wind power, such
that the aggregation framework naturally accounts for uncertainty in
renewable supply. Third, we develop an abstraction of the original
MMDP which groups vehicles based on deadlines to keep the number
of joint states and actions manageable when increasing the number of
vehicles. We show how the enumeration of MMDP states and actions
can be limited to reduce the number of enumerated states and actions
during the computation of value functions.

In experiments based on realistic data we show that our aggregation
framework is able to optimize the profit of an aggregator while re-
ducing cost of individual consumers. Moreover, we show that electric
vehicles are charging when renewable supply is available, such that
consumption of conventionally-generated grid power is reduced. The
experiments also show that the group-based abstraction makes our
framework sufficiently scalable to control vehicles in a realistically-
sized street or a small neighborhood.

The structure of the paper is as follows. In Section 2 we introduce
background information about aggregation in smart grids, wind fore-
casting and Markov Decision Processes. Section 3 formalizes the
aggregated electric vehicle charging problem. We present the cor-
responding MMDP formulation in Section 4, and in Section 5 we
discuss an abstraction of the MMDP to improve scalability. Section 6
describes our experimental results, and the remaining sections discuss
related work and our conclusions.

2 BACKGROUND

In this section we provide background information about aggregation
in smart grids, wind forecasting and Markov Decision Processes.

2.1 Aggregators in Smart Grids

Aggregators in electricity grids are new entities that are acting be-
tween individual customers and the utility company [13]. From the
perspective of the utility company, an aggregator represents a large
number of vehicles that require power to charge their batteries. EVs
provide a certain amount of flexibility since typically they do not need
to be charged immediately.
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The flexibility of EVs can be used to address grid congestion prob-
lems. For example, during the early morning and the evening the
total power demand is high since many people are at home. Current
distribution grids have sufficient capacity to deal with the demand of
conventional devices during such periods. However, a large number of
EVs require a significant amount of power for charging, for which the
capacity may not be sufficient [21, 30]. Flexibility of EVs can be used
to address this problem, since EV demand can be shifted to periods
in which either renewable power supply or sufficient grid capacity
is available [2]. Since demand shifting for a large number of EVs
requires coordination, aggregators have been proposed to control flex-
ible demand of a large number of EVs. An aggregator is responsible
for the communication technology between it and the charging points,
allowing for direct control and coordination of vehicles connected to
the network.

Individual customers can be incentivized to participate in aggre-
gated charging of vehicles by providing a financial compensation. For
instance, customers can sell their flexibility and get a lower charging
tariff in return. From an aggregator point-of-view it is important that
the cost associated with the technologies and financial compensa-
tions paid to customers are less than the profits that can be made by
efficiently controlling vehicles of customers.

2.2 Wind Speed Forecasting using Scenarios

Wind forecasting methods can be categorized as either physical or sta-
tistical, where the latter are suitable for short-term prediction [11]. We
use a short-term forecasting method that finds analogs [31] between
observed wind speed and historical wind data [35].

The average wind speed during hour t is denoted wt, and becomes
known at the start of hour t+ 1.2 At the start of hour t, wind speed
forecasts ŵt, ŵt+1, . . . can be computed as follows. Given a sequence
of past observations wt−b, . . . , wt−2, wt−1 of length b, we identify
similar sequences in a historical dataset containing wind speed mea-
surements based on the Euclidean distance [35]. For each identified se-
quence ŵt−b, . . . , ŵt−2, ŵt−1, the subsequent historical wind speed
measurements ŵt, ŵt+1, . . . , ŵt+y provide a scenario of length y
describing future wind speed.

Probabilistic wind speed forecasts can be encoded using scenario
trees [7]. Scenario trees can also be combined with wind forecasting
methods such as ARMA models [28], and therefore the planning
methods that we present in this paper are not limited to analog-based
wind forecasting. Furthermore, the size of the tree can be managed
using scenario reduction techniques [10].

2.3 Markov Decision Processes

We use techniques based on the Markov Decision Process (MDP)
formalism [23] and its extension to multiple agents [5]. An MDP is
a tuple (S,A, P,R, T ), where S is a finite set of states and A is a
finite set of actions. The function P : S × A × S → R defines the
state transition probabilities, where P (s, a, s′) is the probability to
transition from state s to state s′ after executing action a. Similarly,
the function R : S × A × S → R defines the reward function,
where R(s, a, s′) is the immediate reward received when transitioning
from state s to s′ after executing action a. The feasible set of actions
that can be executed in state s is denoted A(s), and the MDP has a
finite time horizon T . A policy is a function π : S → A which maps
states to actions and this function can be used by a decision maker to

2 Note that throughout the paper we assume hourly intervals, but our method
is trivially generalized to other intervals.
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Figure 1: Vehicle aggregation with conventionally-generated grid
power, wind power and n electric vehicles.

select an action for a given state. Optimal policies can be defined in
terms of a value function V π : S → R. The value of a state s under
policy π, denoted by V π(s), is defined as the expected reward when
starting from state s and following policy π thereafter. For an optimal
policy π∗ it holds that V π∗

(s) ≥ V π(s) for each state s ∈ S and for
each policy π. The optimal value function of a finite-horizon MDP
can be computed as follows:

V ∗t (s) = max
a∈A(s)

∑
s′∈S

P (s, a, s′)(R(s, a, s′) + V ∗t+1(s
′)), (1)

for t = 0, . . . , T − 1. The corresponding time-dependent optimal
policy π∗t : S → A can be defined as follows:

π∗t (s) = argmax
a∈A(s)

∑
s′∈S

P (s, a, s′)(R(s, a, s′) + V ∗t+1(s
′)), (2)

for t = 0, . . . , T − 1. Note that the value V ∗T (s), corresponding to
the final recursive step, can be defined as zero. Alternatively, it can
represent a final reward corresponding to state s.

The MMDP formalism [5] generalizes MDPs to the multiagent
case, in which a state s ∈ S characterizes the joint state of the agents
and actions a ∈ A represent the joint actions that can be executed by
the agents. An MMDP can still be considered as a regular MDP, and
can be solved using the same algorithms (e.g., value iteration).

3 AGGREGATED EV CHARGING

We propose a vehicle aggregation framework as shown in Figure 1.
The aggregator is responsible for charging n EVs and is able to use
wind power generated by small-scale wind turbines in the residential
area, such as wind turbines mounted on tall apartment buildings. Wind
power has negligible marginal cost, and excess of wind power can
be sold to the utility company. If the amount of wind power is not
sufficient to charge the vehicles in time, additional conventionally-
generated power can be bought from the utility company.

Now we formally introduce the optimization problem that needs
to be solved by the aggregator. We consider an ordered set E =
(e1, . . . , en) containing n electric vehicles. A vehicle ei is connected
to its charging point at the start of hour ci, and needs to charge
hi hours before the start of hour di. Thus, we can define each vehi-
cle ei as a tuple ei = (ci, di, hi). We assume that the charging rate
of each charging point is equal to z kW and that each charging point
can only accommodate a single vehicle.

The aggregator is able to buy power from the utility company and
pays pbt per kWh during hour t. If the wind turbine produces more
power than needed, excess wind power can be sold to the utility
company for pst per kWh during hour t. The aggregator receives a
fixed payment mi from each EV ei ∈ E once charging has finished,
which is dependent on the amount of energy used to charge the vehicle.

The power generated by the wind turbine during hour t is g(wt)
kW, where wt is the wind speed during hour t. The mapping from
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wind speed to wind power can be modeled as follows [26]:

g(wt) = C · (1 + e6−
2
3
wt)−1, (3)

where C is the rated capacity of the wind turbine.
In order to define the objective function of the aggregator, we

introduce decision variables corresponding to the charging decisions
of the vehicles. Note that as the aggregator is contractually obligated
to charge all vehicles by their deadline (if feasible given deadline and
charge required), its payments mi are not present in the objective
function. Variable xi,t equals 1 if vehicle ei charges during hour t,
and is 0 otherwise. The total number of charging vehicles during
hour t can be defined as xt =

∑n
i=1 xi,t. The optimization problem

of the aggregator can be formulated as follows:

max

T−1∑
t=0

f(xt, wt)

s.t.
di−1∑
t=ci

xi,t = hi i = 1, . . . , n,

where the function f computes the benefit to be had by the aggregator
when charging xt vehicles if the wind speed is wt during hour t. The
function can be defined as follows:

f(xt, wt) =

{
pst · (g(wt)− xt · z) g(wt) > xt · z
pbt · (g(wt)− xt · z) otherwise

. (4)

Note that this function returns negative values if the amount of wind
power g(wt) is not sufficient to charge xt vehicles, because in such
cases additional power needs to be bought from the utility company.
The total profit of the aggregator can be defined as:

n∑
i=1

mi +

T−1∑
t=0

f(xt, wt). (5)

If the wind speed over time and the parameters of the vehicles are
known, then the optimization problem can be solved using mixed-
integer programming. However, the aggregator does not know pre-
cisely how much wind power will be generated in the future, and
needs to make decisions under uncertainty.

In this paper we address this problem using the MDP formalism
because of two reasons. First, it allows us to conveniently separate the
reasoning about exogenous wind uncertainty and the reasoning about
electric vehicles, as we will show in the next section. Second, MDPs
are particularly powerful in situations where the decision maker is
able to control the degree of uncertainty that will be encountered in
the future. For example, charging overnight before driving to work
influences the uncertain demand of the vehicle at the end of the day,
since the battery level upon arrival depends on the initial battery level
and the distance. This paper only focuses on supply uncertainty and
the problem representation, but we selected the MDP formalism based
on its potential for extension to uncertainty in charging demand.

4 PLANNING FOR AGGREGATED EV
CHARGING

In this section we show how the planning problem for aggregated
EV charging can be formulated as a Multiagent Markov Decision
Process (MMDP). First we discuss how MDP value functions can be
computed in scenario trees which encode wind forecasts. Thereafter
we introduce an MMDP model in which each agent represents an
electric vehicle that needs to be charged.
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. . .
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Figure 2: (a) Scenario tree representing wt−1, and k branches cor-
responding to forecasts of wt and their probabilities. (b) Value tree
containing a value function for hour t, and k value functions for
hour t+ 1.

4.1 Computing Value Functions in Scenario Trees

We use a scenario tree representation which encodes the scenarios as
a tree, as illustrated in Figure 2a. The tree is constructed at the start
of hour t, when wt−1 becomes known, and forecasted wind speed
values are represented by branches j in the tree with a corresponding
probability pj . We introduce separate value functions associated with
the nodes of the tree, which allows us to separate the exogenous wind
uncertainty and the state transitions of the MMDP model [19]. The
tree representation allows us to encode time-dependent wind forecasts,
and by doing so we can avoid separate time-dependent MMDP state
variables to encode wind uncertainty as part of the state transitions.

Figure 2b shows a value function Vwt−1,t(s) that can be used
to select an action at the start of hour t, and the corresponding
tree has the same structure as the scenario tree in Figure 2a. There
are k possible realizations for the wind speed during hour t, rep-
resented by ŵ1

t , . . . , ŵ
k
t , and there is a probability pj and value

function V
ŵ

j
t ,t+1

(s) corresponding to each realization. The value
function Vwt−1,t(s) can be computed as shown below:

Vwt−1,t(s) = max
a∈A(s)

k∑
j=1

∑
s′∈S

(pj · P (s, a, s′) · (6)

(
R(s, a, s′, t, ŵj

t ) + V
ŵ

j
t ,t+1

(s′))
)
,

where the function R(s, a, s′, t, ŵi
t) is an augmented reward function

that is also dependent on the wind speed ŵi
t during hour t. The state

transitions of the MMDP model do not depend on the wind speeds,
whereas the augmented reward function allows us to define a reward
function that is dependent on both the state and wind speed.

The value functions for the entire scenario tree can be computed
using dynamic programming, in which the value function of each
node is computed using the value functions of its child nodes. In
Figure 2b we show the tree for just one step ahead. However, the
value functions V

ŵ
j
t ,t+1

also need to be computed recursively based
on the value functions in multiple subsequent branches. The wind
forecast encoded by the scenario tree consists of a finite number of
future timesteps, and therefore we have a finite planning horizon.
Eventually, an optimal action can be chosen using the value function
associated with the root of the tree. The tree representation of the
value function corresponds to the recursive formulation in Equation 1,
which we formalize below.

Proposition 1. The value function in Equation 6 defines an optimal
value function for an MDP with wind-dependent rewards, whose state
transitions are independent of the wind transitions encoded by the
scenario tree.

Proof. We show that Equation 6 can be derived from Equation 1. For
the purpose of the proof we make a distinction between an MMDP
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state s and a global state 〈s, t, wt−1〉. The MMDP state encodes the
EV charging state. The global state encodes both the MMDP state as
well as the wind speed during the previous time period and a time step
index. Since an MMDP is an MDP, it suffices to use the equation of
an optimal MDP value function in the derivation. The value function
at the start of hour t maps global states to values and can be defined
as follows using Equation 1:

V (〈s, t, wt−1〉) = (7)

max
a∈A(s)

∑
〈s′,t+1,ŵ

j
t 〉∈Qt

P (〈s, t, wt−1〉, a, 〈s′, t+ 1, ŵj
t 〉)·

(
R(〈s, t, wt−1〉, a, 〈s′, t+ 1, ŵj

t 〉) + V (〈s′, t+ 1, ŵj
t 〉)

)
,

where Qt = {〈s′, t+1, ŵj
t 〉 | s′ ∈ S, ŵj

t ∈ {ŵ1
t , . . . , ŵ

k
t }} contains

all possible global states at the start of hour t + 1. The MMDP
state transitions are independent of the wind transitions and the wind
speed transitions are independent of the actions. Hence, it holds that
P (〈s, t, wt−1〉, a, 〈s′, t + 1, ŵj

t 〉) = pj · P (s, a, s′). The reward
function of the MMDP model depends on the wind speed. Therefore,
we define R(〈s, t, wt−1〉, a, 〈s′, t + 1, ŵj

t 〉) = R(s, a, s′, t, ŵj
t ) to

simplify notation. The variable wt−1 can be left out because the
reward received after hour t does not depend on the wind speed
during hour t − 1. Now the aforementioned value function can be
simplified as follows:

V (〈s, t, wt−1〉) = max
a∈A(s)

k∑
j=1

∑
s′∈S

pj · P (s, a, s′) · (8)

(
R(s, a, s′, t, ŵj

t ) + V (〈s′, t+ 1, ŵj
t 〉)

)
.

The sum operators still define a sum over all elements in Qt. Since
the transitions of the time step counter t are assumed determinis-
tic, the summation over all possibilities for t + 1 can be left out.
The resulting value function can be transformed to Equation 6 by
defining V (〈s, t, wt−1〉) = Vwt−1,t(s) and V (〈s′, t + 1, ŵj

t 〉) =
V
ŵ

j
t ,t+1

(s′), which is a simplification of the notation. This step com-
pletes the derivation of Equation 6 from Equation 1. An identical
derivation can be used to recursively transform the value function
equations in the other nodes of the value function tree. Since we
consider finite-horizon forecasts and thus a value function tree with a
finite number of leafs, this concludes the proof.

4.2 Vehicle-Based MMDP formulation

Now we describe how the aggregated EV charging problem can be
formulated as MMDP, in which each agent represents an electric
vehicle. At the start of hour t, we define the state ht

i of a vehicle as the
remaining number of hours during which it needs to charge (assuming
a vehicle should be fully charged by the deadline). Since charging
must finish before the deadline, it should hold that hdi

i = 0.
Each agent has two actions which it can execute: charge and idle.

The charge action reduces the demand by one hour: ht+1
i = ht

i − 1,
and the idle action does not affect its state of charge (i.e., ht+1

i = ht
i).

We use a state-dependent action space to ensure that vehicles are
guaranteed to meet their deadline. In state ht

i the idle action can only
be executed if ht

i < di − t, which ensures that there is always enough
time left to complete charging before the deadline. The action charge
can be executed if ht

i > 0, and must be executed if ht
i = di − t.

By using the state-dependent action space that we just described,
it is guaranteed that hdi

i = 0. This is formalized in the following
proposition.

Proposition 2. The state-dependent action space ensures that a vehi-
cle ei always completes charging before its deadline di.

Proof. In order to show that a vehicle always finishes charging before
its deadline, we need to show that the action idle is never executed
in situations where it would lead to a violation of the deadline. For
this purpose we assume the contrary, namely that the idle action is
executed in state ht

i , leading to a state ht+1
i in which the demand is

one higher than the time left for charging: ht+1
i = (di − (t+1))+ 1.

Since the idle action was executed, it holds that ht
i = ht+1

i . Now
we derive ht

i = ht+1
i = (di − (t + 1)) + 1 = di − t. In state ht

i ,
however, action charge must have been executed according to our
state-dependent action space. This contradicts the assumption that
idle was executed in state ht

i . We can conclude that the action idle is
never executed if it leads to a situation in which it violates a deadline,
and we can conclude that our state-dependent action space ensures
that vehicles meet their deadline (i.e., hdi

i = 0).

Until now we defined the states and state-dependent action space
for an individual vehicle. For multiple vehicles the joint states and
actions of the MMDP can be created by taking the Cartesian product
of the states and actions of individual vehicles. For example, if there
are two vehicles with states ht

1 and ht
2 at the start of hour t, then their

joint state is (ht
1, h

t
2) and an example of a joint action is (charge, idle).

The joint reward function of the agents can be computed using the
function f(xt, wt) defined in Equation 4, where xt is the number
of charging vehicles and wt is the wind speed during hour t. For
instance, if a joint action dictates that xt vehicles need to charge
during step t when the wind speed is wt, then the MMDP reward is
equal to f(xt, wt). The state transitions of the electric vehicles are
assumed deterministic and therefore we do not define a probabilistic
transition function. The probabilistic transitions of wind speed are
encoded separately using the scenario tree, as discussed in the previous
section.

In our MMDP formulation the individual vehicles are transition-
independent (i.e., P can be computed as the product of individual
transition functions defined over the individual states and actions of
each vehicle), as the decision whether or not to charge a particular
vehicle only affects that vehicle’s state of charge. However, since
they are coupled through the joint reward function (only a certain
number of vehicles can be charged for free using renewable energy),
the value function is not factored. Specific solution algorithms have
been designed for transition-independent Decentralized MDPs [4, 9],
in which vehicles would take decisions in a decentralized manner.
However, these solution techniques do not apply to our MMDP model
in which an aggregator controls vehicles in a centralized manner.
Other solution algorithms for transition-independent MMDPs exploit
sparse reward structures [25], in which only a small subset of the joint
actions has a non-zero reward. The latter is not the case in our model.

4.3 Reducing Enumerated States

In this section we present an optimization which reduces the number
of states that need to be enumerated in each node of the value function
tree when recursively computing the value functions. The number of
enumerated states can be reduced by observing that some parts of
the state space cannot be reached. For instance, states representing
a situation in which a deadline is going to be violated will never
be encountered, as stated in Proposition 2, and therefore such states
do not need to be considered. When recursively computing a value
function Vwt′−1,t

′(s) corresponding to time t′ ≥ t, it is necessary to
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Figure 3: Vehicle-based and group-based MMDPs.

determine which states s need to be enumerated. For instance, sup-
pose that state s = (ht′

1 , h
t′
2 ) encodes the joint state of two vehicles at

time t′, then all possible combinations of ht′
1 and ht′

2 can be enumer-
ated in order to enumerate all possible states s. The states ht′

i which
need to be enumerated for vehicle ei ∈ E can be defined as follows:

max(0, ht
i − (t′ − t)) ≤ ht′

i ≤ min(ht
i, d− t′). (9)

The lowerbound is achieved when charging as fast as possible
during hours t, . . . , t′−1, and the upperbound is achieved when being
idle as much as possible during this period. The actions a ∈ A(s) that
need to be enumerated during the computation of Vwt′−1,t

′(s) can be
defined using the state-dependent action space.

5 GROUP-BASED MMDPs

In order to reduce the number of joint states and actions when increas-
ing the number of electric vehicles, we present a group-based MMDP
formulation in which each agent represents a group of vehicles. The
difference between vehicle-based and group-based MMDP formula-
tions is illustrated in Figure 3. The grouping technique is based on
deadlines of vehicles, which is formalized below.

Definition 1 (Vehicle group). A vehicle group Gd ⊆ E is defined as
a subset of vehicles whose deadline is equal to d. In other words, for
each ei ∈ Gd it holds that di = d .

The state of group Gd at the start of hour t is defined as std =∑
ei∈Gd

ht
i , which is simply the aggregated demand of the vehicles

belonging to the group. It should hold that sdd = 0, since the deadline
of the vehicles belonging to the group is identical. Our group-based
planner only requires that all vehicles in a group share the same
deadline, hence an aggregator could create many Gd sets. If the
available renewable energy is split among them equally (for instance),
each such set can be planned for separately. The action space Ad

contains charging actions corresponding to group Gd. Each action a ∈
Ad corresponds to the number of vehicles that is charging within the
group. After executing action a, the demand of the entire group is
reduced accordingly: st+1

d = std − a.
Similar to the vehicle-based formulation, for multiple groups the

joint states and joint actions can be defined by taking the Cartesian
product of the states and actions of the groups. For example, if there
are two groups with states st1 and st2, then the joint state of the groups
is (st1, st2). If there is one vehicle that is charging within both groups,
then (1, 1) would be a joint action. In the next section we will elabo-
rate on the state-dependent action space which ensures that the planner
does not violate the deadline of a group, similar to the state-dependent
action space of the vehicle-based formulation. The joint reward can be
computed using the function f(xt, wt), similar to the vehicle-based
formulation, where xt is the number of charging vehicles and wt is
the wind speed during hour t.

Even with grouping of vehicles, obstacles to scalability might re-
main. In particular, it might be the case (and even likely in a typical
overnight charging scenario) that many vehicles share the same dead-
line and hence certain Gd sets will be large, resulting in large Ad

sets. A potential solution to this problem is restricting the Ad sets, by
considering charging only multiples of l vehicles, i.e.,

Ad = {0, l, 2l, 3l, . . . , |Gd|}. (10)

The loss of fine-grained control will typically be compensated by the
ability to solve for larger sets of vehicles. This aspect will also be
studied in our experiments.

Example 1 (Vehicle grouping). In our example formulation we con-
sider six electric vehicles connected to an aggregator at time t = 0.
The relevant properties of the individual vehicles are shown in Table 1.
First we compare the number of states and actions of vehicle-based
and group-based MMDP models. When formulating a vehicle-based
MMDP, the total number of states is equal to

∏6
i=1(h

0
i + 1) = 2160

and the number of actions is equal to 26 = 64. A group-based
MMDP formulation can be created by defining a group G4 with
demand 3, a group G5 with demand 3 and a group G6 with de-
mand 11. The number of states in such a formulation is equal to
(3 + 1) · (3 + 1) · (11 + 1) = 192 and the number of actions
equals 3 · 2 · 4 = 24. Clearly, the total number of states and actions
decreased compared to the vehicle-based MMDP formulation. A Dy-
namic Bayesian network representation of the group-based MMDP is
shown in Figure 4. It should be noted that the wind speed transitions
in the actual implementation are encoded in a tree-based fashion, as
discussed in Section 4.1.

Table 1: Deadlines and demand of example vehicles.

i 1 2 3 4 5 6
di 4 4 5 6 6 6
h0
i 2 1 3 4 5 2

5.1 Planning with Group-Based MMDPs

A group-based MMDP can directly be solved by computing value
functions in the scenario tree. However, due to the aggregation of
multiple vehicles into groups it becomes less straightforward which
states and actions need to be enumerated in each node of the tree. In
this section we first define which states need to be enumerated, and
thereafter we discuss the state-dependent action space which ensures
that the planner does not violate deadlines of vehicles.

We consider a group Gd, for which we can assume that std is known
at the start of hour t, as well as ht

i for each ei ∈ Gd. This assumption
can be made since the aggregator is able to observe the states of
the individual vehicles before making a decision for hour t. When
recursively computing the value function Vwt−1,t(s), it is necessary to
know which states s = st

′
d need to be enumerated for timesteps t′ ≥ t.

For this purpose we generalize the bounds shown in Equation 9 to
bounds on the demand of a group as shown below.∑
ei∈Gd

max(0, ht
i − (t′ − t)) ≤ st

′
d ≤

∑
ei∈Gd

min(ht
i, d− t′) (11)

The lower bound has been defined by taking the sum of the lower
bounds on the demand ht′

i for each vehicle ei ∈ Gd. Similarly, the
upper bound has been defined by taking the sum of the upper bounds
on the demand. The resulting bounds can be used to ensure that we
do not enumerate unreachable states in case we use a group-based
formulation.

Similar to the vehicle-based MMDP formulation, the executed
actions need to ensure that the demand of an entire group is decreased
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Figure 4: Dynamic Bayesian network corresponding to the group-
based MMDP of the example instance.

to zero before its deadline. Therefore, we define a state-dependent
action space for a group-based state st

′
d . For convenience we let 	st′d 


denote the lower bound on st
′
d and �st′d � denotes the upper bound on

st
′
d . In other words, we obtain the following equations:

	st′d 
 =
∑

ei∈Gd

max(0, ht
i − (t′ − t)), (12)

�st′d � =
∑

ei∈Gd

min(ht
i, d− t′). (13)

Now we can restrict the actions a ∈ A(st
′
d ) for a state st

′
d (t ≤ t′ < d)

as follows:

max
(
0, st

′
d − �st′+1

d �
)
≤ a ≤ min

(
|Gd|, st

′
d − 	st′+1

d 

)
. (14)

In the computation of the state-dependent action space A(st
′
d ) we also

use the lower- and upper bound on st
′+1
d . These bounds have been

properly defined in Equations 12 and 13. The state-dependent action
space ensures that in state st

′
d an action is selected in such a way that

	st′+1
d 
 ≤ st

′+1
d ≤ �st′+1

d �. It holds that 0 = 	sdd
 ≤ sdd ≤ �sdd� =
0, which implies that the total group demand is reduced to zero before
the deadline.

Proposition 3. The state-dependent action space for a group Gd

ensures that all vehicles ei ∈ Gd always complete charging before
their deadline d.

Proof. If the group demand st
′+1
d at time t′+1 is higher than �st′+1

d �,
then it is impossible to reduce the demand to zero before the deadline.
We will show that this never occurs. If st

′
d > �st′+1

d �, then the state-
dependent action space defines that at least st

′
d − �st′+1

d � vehicles
will be charged, such that st

′+1
d ≤ st

′
d − (st

′
d − �st′+1

d �) = �st′+1
d �.

In other words, any action executed in state st
′
d guarantees that st

′+1
d

does not exceed �st′+1
d �. Therefore, we can conclude that the state-

dependent action space ensures that the planner does not violate the
deadline of a group.

We have shown that our group-based formulation defines states for
groups of vehicles, while still being able to meet the deadlines of all
individual vehicles in the EV fleet. It should be noted, however, that
the group-based MMDP formulation does not define a Markovian
state representation for the original EV charging problem. In other

words, the state representation of the group-based formulation does
not preserve sufficient information to derive the individual states of
all the vehicles within the groups. Due to the aggregation of multiple
vehicles into one group the upper bound on the number of vehicles
that still needs to charge (i.e., the upper bound on a) may overestimate
the number of vehicles that is actually available for charging. In the
example below we discuss this potential overestimate in an example.
An overestimate might only occur during planning when selecting
the actions to compute value functions. When the resulting value
function is used to select actions to control the vehicles, then such
an overestimate never occurs, because the feasible actions can be
determined using the actual state of the individual vehicles.

Example 2 (Overestimate of demand). Using the previous example
instance we illustrate why infeasible actions may be enumerated
during the computation of value functions. We consider group G4

containing two vehicles with demand ht
1 = 2 and ht

2 = 1 at time t =
0. By definition it holds that st4 = 3. We consider the group-based
state st

′
4 at time t′ = 1, for which it holds that 1 ≤ st

′
4 ≤ 3. In

state st
′
4 = 2, the upper bound on the number of vehicles with non-

zero demand is min(|G4|, st′4 − ∑
ei∈G4

max(0, ht
i − ((t′ + 1) −

t))) = min(2, 2 − max(0, 2 − 2) − max(0, 1 − 2)) = 2, which
represents that we can charge at most two vehicles simultaneously
in this state. However, it may be possible that ht′

1 = 2 and ht′
2 = 0,

and then only one vehicle can be charged. In this case the number of
vehicles with non-zero demand is overestimated by 1.

6 EXPERIMENTS

This section describes the results of our experiments. We use historical
wind data from the Sotavento wind farm in Spain.3 We simulate the
hourly average wind speed for the period from September 2, 2012
until September 26, 2012. The forecasts are based on data from the
period September 1, 2009 until December 31, 2009. Unless stated
otherwise, the capacity of the wind turbine involved is 50 kW. We
assume that the charging rate of the vehicles is equal to 3 kW, which
corresponds to a compact car. The electricity price during the simula-
tion is time-dependent, for which we use data from a European power
market, which gives us an hourly price (unit EUR/kWh). Unless stated
otherwise, the feed-in tariff is 50 percent of the tariff for buying power.
To define EVs we use realistic vehicle arrival and departure times
from a Dutch mobility study, conducted by Statistics Netherlands [6].

6.1 Aggregator Profit and Power Consumption

First we investigate whether the aggregator is able to make profit by
coordinating vehicles. We simulate 25 days, and during each day we
charge 20 vehicles. For each vehicle ei ∈ E, the payment mi is 10
percent lower than the minimum cost the customer would pay to the
utility company without participation, which provides an incentive for
the customers to subscribe to the aggregator. In order to compensate
for the discount given to customers, the aggregator needs to efficiently
use zero-cost wind power. It is estimated that there is a 25 percent
market share of EVs starting in 2020 [14], hence 20 vehicles can
represent a realistically-sized street or a small neighborhood.

Figure 5 shows the cumulative daily profit of the aggregator for
several different planners, which needs to be maximized. In addition
to our MMDP planner with groups, we use a greedy planner which
charges each vehicle during its individually cheapest hours (i.e., min
cost), and another greedy planner which charges the vehicles as fast as

3 Data is available on www.sotaventogalicia.com.
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Figure 5: Cumulative profit made by the aggregator.
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Figure 6: Cumulative power consumption of the vehicles.

possible. Lower- and upper bounds on the profit have been computed
using a mixed-integer programming formulation, which computes
omniscient optimal and worst-case charging schedules based on the
wind speed during the day. In practice it would not be possible to find
such schedules, since wind speed in the future is uncertain.

We conclude that the aggregator is able to make profit by coordinat-
ing vehicles, even if it provides a financial compensation to customers
of the vehicles. Moreover, the group-based MMDP planner outper-
forms two greedy planners in terms of profit, and its profit is close to
the profit of the omniscient optimal planner.

Although the main objective of the aggregator is optimizing its
profit, it may be able to reduce power consumption from the grid, since
it is able to charge vehicles during periods in which wind speed is high.
Figure 6 shows the cumulative grid power consumption corresponding
to the simulation of the previous experiment. We observe that the
grid power consumption of the MMDP planner is lower than the
power consumption of the greedy planners involved in the experiment.
Therefore, we conclude that an aggregator that aims to maximize its
profit also reduces grid power consumption, which can be considered
as one of its side effects.

6.2 Vehicle-Based and Group-Based MMDPs

Next we study the influence of grouping on the scalability of MMDP
formulations for electric vehicle charging. To study the difference
between vehicle-based and group-based MMDPs, we constructed a
set of EVs E′ = (e1, . . . , e15), in which the first three vehicles do
not have common deadlines. When we run vehicle-based and group-
based planners on the first 1 ≤ δ ≤ 15 vehicles of E′, we expect that
grouping only provides improved scalability if δ > 3. In Figure 7 we
show the running times of vehicle-based and group-based MMDPs
for an increasing δ (i.e., number of vehicles), which confirms our
expectation that group-based formulations require less computation
time if groups of vehicles can be created. Note that a log scale is used
for the y-axis representing the running time.
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Figure 7: Running time comparison between vehicle-based and group-
based MMDP formulations (log scale).

6.3 Action Space Compression

When after grouping large sets of vehicles remain, it may be desir-
able to perform action space compression to reduce the number of
enumerated actions, as defined in Equation 10. This means that the
planner only considers charging multiples of l vehicles. For a case of
15 vehicles, Figure 8a shows the effect on runtime of increasing l (i.e.,
the level of discretization of the action space) and Figure 8b shows
the corresponding profit. We can see that as expected a small loss is
incurred, but the running time required for the computation of the
value functions decreases significantly. The dashed lines represent the
profit of the omniscient optimal and greedy min cost planners in the
simulation. Our MMDP planner still makes more profit compared to
the greedy min cost planner in the simulation.

6.4 Influence of Wind Turbine Capacity

Until now we assumed a fixed turbine capacity, but it can be expected
that the turbine capacity influences the profit of the aggregator. In
order to study this influence, we run simulations in which we charge
15 vehicles during each day, and we assume that wind power cannot
be sold to the utility company. The latter is assumed because this
eliminates the influence of selling wind power in our experiment.
Small-scale wind power involves turbines with a capacity of at most
50 kW, and therefore we repeat the simulation for an increasing
turbine capacity up to 50kW, as shown in Figure 9a. We can derive
three conclusions. First, if the turbine capacity is too low then the
aggregator is not able to make profit. This is caused by the fact that
the charging cost will exceed the customer payments if there is almost
no wind power available. Second, a relatively small wind turbine may
already be sufficient to make profit. Third, the experiment shows that
it is likely that our framework can be used in the residential area where
wind turbines typically have a capacity up to a few kilowatts [3].

6.5 Influence of Customer Payments

In the previous experiment we observed that the financial compensa-
tion paid to the customers influences the profit of the aggregator, and
we expect that profit becomes negative if the compensations are too
high compared to the usage of zero-cost wind power. In the current
experiment we assume that the payments mi are α percent lower than
the minimum cost the customer would pay to the utility company
without participation (0 < α ≤ 100), and we run simulations for an
increasing value of α. The parameter α is called the vehicle discount.
In Figure 9b we show the profit of the aggregator as a function of the
vehicle discount, which confirms our expectation that it is impossible
to make profit if the discount is too high. In order to provide an incen-
tive to customers of EVs to participate, it is sufficient to have a small
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Figure 8: Effect of action space compression (10).

non-zero α, and therefore we conclude that the payments mi of our
framework provide an incentive to customers to participate.

7 RELATED WORK

Leterme et al. discuss an MDP-based approach to control EVs for
wind balancing, in which wind uncertainty is encoded as a tree [19],
but in contrast to our work their solution does not control individ-
ual EVs. Huang et al. [16] cluster EVs based on remaining parking
time and use Monte Carlo simulations to estimate a value function.
Our scenario-tree encoding of the wind uncertainty provides a more
advanced representation of wind uncertainty and cannot directly be
combined with their approach. Other objective functions, such as
waiting time at charging stations, have also been studied in existing
work [37]. Aggregators can use reinforcement learning to learn a
consumption pattern of their fleet before buying energy in the day-
ahead market [32]. Currently our work only focuses on uncertainty
in renewable supply, and it does not model bids in a day-ahead or
intraday energy market.

In the power systems community research has focused on matching
demand and supply in the unit commitment problem using multi-stage
stochastic programming and mixed-integer programming, where ex-
ogenous uncertainty in the supply is also characterized using scenar-
ios [22]. Multi-stage stochastic programming methods are typically
used for problems with exogenous uncertainty that cannot be con-
trolled by the decision maker [8], whereas Markov Decision Processes
are well-suited if control actions influence the uncertainty encoun-
tered in the future. For example, stochastic state transitions in our
MDP models can also be used to model uncertainty in arrival time
and departure time of electric vehicles, which is hard to model in a
multi-stage stochastic programming formulation. Research has also
focused on inclusion of network characteristics in aggregate models
of multiple EVs [17]. Compared to our work, existing work in this
area focuses more on modeling the electrical aspects and the impact
on the power system. Congestion management schemes have been
developed for electric vehicles, which typically assume a determinis-
tic setting in which there is no uncertainty during optimization and
execution [33]. Our work can be used for congestion management if
renewable supply is uncertain.

Reducing computational requirements by aggregating states of
MDPs has been studied in the context of stochastic bisimulation [12],
which is an exact method to compute an equivalent smaller-sized
MDP, and symmetry reduction [18]. Both methods can theoretically
be combined with our work, but require a given MDP which needs
to be minimized [20] and often require full state-space enumeration.
The latter leads to problems in the multiagent setting because of the
exponential growth of the number of states. Our group-based model
can be created without needing an initial model, but the abstraction
method is not exact. Other abstraction methods include temporal
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Figure 9: Profit for increasing turbine capacity (a) and discount (b).

abstractions, such as macro-actions [15] and Semi-MDPs [27], which
would allow an aggregator to solve an abstract planning problem to
select sub-policies rather than actions. However, these abstractions do
not address scalability problems that follow from the large number
of EVs, and it is hard to combine such abstraction techniques with
exogenous wind uncertainty.

Constrained MDPs [1] include constraints in the dual formulation
of a linear program. This framework can also be used to impose
constraints to make sure that deadlines are satisfied, but it would be
difficult to separate the reasoning about exogenous wind uncertainty
in the corresponding linear programming formulations. Moreover,
linear programs for Constrained MDPs are typically based on the
assumption that the planning horizon is infinite.

8 CONCLUSIONS

In this paper we present an aggregated charging technique based on
Multiagent Markov Decision Processes which accounts for the un-
certainty in renewable supply and coordinates the charging process
of several EVs. We use groups of vehicles to create an abstraction
of the MMDP, which reduces the number of joint states and actions
and it reduces the running time required to compute MMDP solutions.
Our experiments show that our framework is able to charge a collec-
tion of EVs, reduces cost of the individual customers and reduces
consumption of conventionally-generated power. Moreover, our work
demonstrates that AI methods have the potential to support the de-
velopment of smart grids. For example, an interesting application of
our work can be found in parking garages with local grid capacity
constraints, where charging of a large number of EVs needs to be
coordinated and peak loads must be prevented.

In future work we aim to include information about uncertain de-
mand in our MMDP formulations, which can be naturally included in
stochastic state transitions. Our work can also be extended to asyn-
chronous events and actions using Generalized Semi-MDPs [36], and
it can be combined with wind scenario trees generated by ARMA
models [28]. Another interesting direction is creating groups of vehi-
cles based on additional characteristics besides their deadline, such as
the charging rate and spatial location in the network. Our method can
also be combined with power flow computations to derive the power
flows through the network. This is useful if capacity violations must
be prevented in a congested network.
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