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Abstract. Link prediction is a key problem in social network anal-
ysis: it involves making suggestions about where to add new links in
a network, based solely on the structure of the network. We address
a special case of this problem, whereby the new links are supposed
to connect different communities in the network; we call it the inter-
links prediction problem. This is particularly challenging as there are
typically very few links between different communities. To solve this
problem, we propose a local node-similarity measure, inspired by the
Owen-value interaction index—a concept developed in cooperative
game theory and fuzzy systems. Although this index requires an ex-
ponential number of operations in the general case, we show that our
local node-similarity measure is computable in polynomial time. We
apply our measure to solve the inter-links prediction problem in a
number of real-life networks, and show that it outperforms all other
local similarity measures in the literature.

1 INTRODUCTION

Link prediction is one of the key problems in social network anal-
ysis [32, 28, 45]. Informally, it involves making recommendations
about where to add new links in a network, based solely on the struc-
ture of that network. Link prediction has many applications, such as
(i) identifying potential customers in online shops [10]; (ii) discover-
ing the interactions between proteins in biological networks [5]; and
(iii) finding hidden connections between terrorists [23].

The problem of link prediction is strongly associated with the no-
tion of similarity between nodes in a network [32]: the greater the
similarity between two nodes, the greater the likelihood of having a
link between them. Broadly speaking, computing the similarity be-
tween any two nodes may either involve local or global informa-
tion about those nodes. Each approach has its relative strengths and
weaknesses. In particular, compared to local measures, global ones
generally yield better results but are harder to compute, which limits
their applicability to small networks (more details can be found in
Section 7). In this paper, we restrict our attention to the problem of
link prediction based on local information.

Some researchers [43, 50] have suggested exploiting the fact that,
in real-life networks, nodes tend to form densely-connected groups,
or communities [15], and that nodes from the same community are
more likely to be connected.

We address a new problem, whereby we are given a network and a
community structure, and want to recommend new links between dif-
ferent communities. We call these “inter-links” (as opposed to intra-
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links, which connect nodes belonging to the same community). To
see why this new problem is significant, consider some applications
of the general link-prediction problem:

• One of the most lucrative business applications of link prediction
is product recommendation in e-commerce [29], whereby any cus-
tomer viewing a certain product is presented with a list of simi-
lar products. In this context, besides obviously-similar products, it
may be worthwhile to also recommend some other products that
are different yet relevant. This can be modeled as the problem of
recommending inter-links between products belonging to differ-
ent categories, or “communities”.

• Another promising application of link prediction is to recommend
new collaborations in academic networks [52]. While current tools
focus on recommending collaborations between academics from
the same field of study, such tools can benefit from identifying
any promising collaborations between members of different com-
munities, e.g., to foster interdisciplinary research and promote the
creation of diverse teams.

Our approach to the inter-link prediction problem draws inspiration
from the field of cooperative game theory. Concepts from network
science may be understood in a cooperative game theoretic setting as
follows:

• a node is represented as a player;
• a group centrality [13] is represented as a characteristic function

that assigns to each group a real value reflecting its payoff, or
power, according to some metric;

• a community (or a subset of nodes) is a coalition (or a subset of
players), and the community structure corresponds to a coalition
structure.

With this mapping in place, it is possible to measure the similarity
between any two nodes using the interaction index [18]—a game-
theoretic concept that measures the interaction between two players
by analyzing the payoffs of the many possible coalitions in the game.
At its core, an interaction index is built around a payoff-division
scheme (more on this in Section 2). Among the many schemes that
can be used for this purpose, one particularly attractive family of
schemes is Semivalues [19]; by using it, we obtain the Semivalue
interaction index. This particular index was recently proposed as a
local measure of node similarity [45]. Although this measure was
shown to be useful for link prediction, it does not take into account
the underlying community structure. To overcome this issue, our idea
is to use the Owen value [37]—a payoff division scheme inherently
designed to handle situations where there is an underlying coalition
structure; the resulting node-similarity measure is the Owen-value in-
teraction index. We also propose a family of schemes that generalize
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the Owen value, namely Coalitional Semivalues [47]; the resulting
node-similarity measure is the Coalitional-Semivalue interaction in-
dex. To the best of our knowledge, we are the first to study this latter
interaction index.

In summary, the contribution of this paper is as follows:

• We formulate the problem of inter-link prediction in networks
with a community structure;

• We introduce an extension of Owen-value interaction index called
the Coalitional-Semivalue interaction index, and use it to define
the new local similarity measure on networks;

• We propose polynomial time algorithms to efficiently compute the
Owen-value and Coalitional-Semivalue interaction index on net-
works;

• We empirically evaluate our measure by applying it to solve the
inter-links prediction problem for a number of real-life networks,
and show that it outperforms other local node-similarity measures.

The remainder of this paper is organized as follows. In Section 2,
we introduce some basic notations and concepts from graph theory
and cooperative games theory. We formally define the new node-
similarity measure in Section 5, and analyze its computational com-
plexity in Section 4. An efficient algorithm is then presented in Sec-
tion 5. The experimental results are presented in Section 6. A brief
discussion of related bodies of literature is presented in Section 7,
before concluding the paper.

2 PRELIMINARIES

In this section we introduce the key definitions and notation used
throughout the paper.

Network notation: A graph (or a network) is denoted by G(V,E),
where V = {v1, . . . , v|V |} is the set of nodes and E is the set of
edges. We will sometimes write G instead of G(V,E) for brevity. In
this paper we consider only undirected and unweighted graphs. We
will often use v and u to denote two arbitrary nodes. For any two
nodes, v, u ∈ V , the distance (i.e., the length of the shortest path)
between them will be denoted by d(v, u). A community in a network
is a subset of nodes, whereas a community structure is an exhaustive
and disjoint set of communities.

A centrality index (or simply a centrality) measures the impor-
tance of individual nodes. One of the fundamental centrality indices
is degree centrality [14, 13, 36], which simply measures the impor-
tance of a node, v, based solely on the degree of v—the number of
nodes within 1 step from v. This can be generalized to k steps, re-
sulting in what is know as k-steps degree centrality. The notion of
centrality can also be generalized to groups of nodes, resulting in
what is known as group centrality [13]. One such group centrality
that we will focus on in this paper is k-steps group degree centrality.

Definition 1 Given a network G, an integer k ∈ {1, . . . , |V |}, and
a community S ⊆ V , the k-steps group degree centrality of S is:

∣∣∣ {v ∈ V : min
u∈S

d(u, v) ≤ k
} \ S

∣∣∣ (1)

Some authors [35, 45] interpret the above formula as a sphere of
influence of the community S in the network. From this perspective,
the parameter k can be interpreted as the “diameter” of this sphere.

Coalitional games: A coalitional game in characteristic function
form (also called a cooperative game) is comprised of a set of play-
ers N = {1, 2, . . . , |N |} and a characteristic function ν : 2N → R

which evaluates each coalition C ⊆ N of players, under the assump-
tion that ν(∅) = 0. We often refer to ν(C) as the value, or payoff, of
C.

Semivalues: This is a family of payoff-division schemes, or solution
concepts, designed to specify how the payoff of any given coalition
should be divided among its members [11]. It is centered around the
notion of marginal contribution; for every player, i ∈ N , and every
coalition, C ⊆ N , the marginal contribution of i to C is:

MC(C, i) = ν(C ∪ {i})− ν(C).

Now, let β : {0, . . . , |N | − 1} → [0, 1] be a discrete probability
distribution, where β(k) is the probability that a coalition of size k
is drawn from the set of all possible coalitions whose size is no more
than |N | − 1. Then, a Semivalue is defined as follows:

Definition 2 Given a game, (N, ν), and a discrete probability dis-
tribution, β : {0, . . . , |N | − 1} → [0, 1],

∑
0≤k<|N| β(k) = 1, the

Semivalue of a player, i ∈ N , is:

SEMI i(N, ν) =
∑

0≤k<|N|
β(k)E[MC(Xk, i)], (2)

where Xk is a coalition of size k drawn uniformly from {C : C ⊆
N \ {i} ∧ |C| = k}, and E[·] is the expected-value operator.

The first Semivalue to appear in the literature was the Shapley
value [42], which is now recognized as a fundamental concept in
cooperative game theory due to its many desirable properties, see,
e.g., [7]. Another prominent Semivalue is the Banzhaf power index
[3], which has also been studied extensively. Those two Semivalues
are defined by the following β-functions:

βShapley(i) =
1

|N | and βBanzhaf (i) =

(|N|−1
i

)
2|N|−1

.

Interaction index: One possible way to interpret the synergy (or
added value) that results from the interaction between players i and
j is as follows: S(i, j) = ν({i, j}) − ν({i}) − ν({j}). One can
also measure such synergy with respect to any particular coalition,
C ⊆ N , as follows:

S(C, i, j) = MC(C, {i, j})− MC(C, i)− MC(C, j),

where MC(C, {i, j}) = ν(C ∪ {i, j}) − ν(C). The interaction in-
dex of i and j, denoted by Ii,j(N, ν), is a weighted average of such
synergy, taken over all coalitions in the game. The absolute value of
Ii,j(N, ν) indicates the intensity of the interaction between the two
players; greater values indicate greater intensity. In contrast, the sign
of Ii,j(N, ν) reflects the nature of the influence that i and j have on
one another: Ii,j(N, ν) < 0 means they influence each other neg-
atively; Ii,j(N, ν) > 0 means they influence each other positively;
Ii,j(N, ν) = 0 means they either do not influence each other, or their
influences cancel out.

By combining a Semivalue with the interaction index, we obtain a
Semivalue interaction index, defined as follows:

Definition 3 Given a game, (N, ν), and a discrete probability dis-
tribution, β : {0, . . . , |N | − 1} → [0, 1],

∑
0≤k<|N| β(k) = 1, the

Semivalue interaction index of a pair of players, i, j ∈ N , is:

ISEMI
i,j (N, ν) =

∑
0≤k≤|N|−2

β(k)E[S(Xk, i, j)], (3)
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where Xk is a coalition drawn uniformly at random from: {C : C ⊆
N \ {i, j} ∧ |C| = k}, and E[·] is the expected-value operator.

The three Semivalue interaction indices that are widely studied in
literature are presented in Table 1.

interaction index name β(l)

Shapley-value interaction index [37, 17] 1
|V |−1

Banzhaf-index interaction index [41]
(|V |−2

l

)

2|V |−2

Chaining interaction index [34] 2(l+1)
(n−1)(n−2)

Table 1. Values of β for the three main Semivalue interaction indices.

In addition to cooperative game theory, the interaction index has
also been studied in various other fields, such as fuzzy systems, ag-
gregation function theory, multi-criteria decision making, statistics
and data analysis [33].

Cooperative games with coalition structure: A cooperative game
can be viewed and analyzed from the ex ante perspective, where
the agents have not yet decided on which coalitions to form. Con-
versely, the game may be analyzed from the a priori perspective,
where the agents have already formed a specific coalition structure,
CS = {C1, . . . , Cm}. From this perspective, a cooperative game
with a coalition structure is a tuple, (N,CS , ν). Arguably, the most
established extension of the Shapley value to such games is the Owen
value [38]. Before explaining how it works, we need to first intro-
duce the notion of a quotient game. In particular, given a cooperative
game with a coalition structure, (N,CS , ν), the corresponding quo-
tient game, (CS , νQ), is a game whose set of players is CS (i.e.,
every coalition in CS is considered to be a single player), and whose
characteristic function is defined as follows:

νQ(R) = ν

( ⋃
r∈R

Cr

)
for all R ⊆ M,

where M = {1, . . . ,m} is the set of coalition numbers. For ev-
ery R ⊆ M , we will use QR to denote

⋃
r∈R Cr . For example, if

CS = {C1, C2, C3} : C1 = {1, 2}, C2 = {3, 4}, C3 = {5}, then
Q{1,3} = {1, 2, 5}, and νQ({1, 3}) = ν({1, 2, 5}).

Having presented the quotient game, we are now ready to define
the Owen value as follows:

Definition 4 Given a cooperative game with a coalition structure,
(N,CS , ν), the Owen value of a player i ∈ Cx ∈ CS is:

OV i(N,CS , ν) =
∑

R⊆M\{x}

1

|M |(|M|−1
|R|

)
∑

C⊆Cx\{i}

1

|Cx|
(|Cx|−1

|C|
)MC(QR ∪ C, i). (4)

One generalization of the Owen value that was recently introduced
in the literature is Coalitional Semivalues [47], defined as follows:

Definition 5 Given a game, (N,CS , ν), and a discrete probability
distribution, β : {0, . . . , |M | − 1} → [0, 1],

∑
0≤k<|M| β(k) = 1,

the Coalitional Semivalue of a player i ∈ Cx ∈ CS is:

CSEMI i(N,CS , ν) =
∑

0≤k≤|M\{x}|
β(k)

∑
0≤l<|Cx|

α(l)E[MC(QTk ∪Xl, i)], (5)

where T k is a subset drawn from {R : R ⊆ M \ {x} ∧ |R| = k}
uniformly at random; Xl is a subset of size l drawn from {C : C ⊆
Cx \ {i} ∧ |C| = l} uniformly at random; E[·] is the expected-value
operator; and α : {0, . . . , |Cx| − 1} → [0, 1],

∑|Cx|−1
l=0 α(l) = 1.

As shown in Table 2, by adopting the appropriate probability dis-
tributions, we obtain the Owen value [38] or any of its modifications
proposed in the literature to date, namely: Owen-Banzhaf value [39],
symmetric coalitional Banzhaf value [2], and symmetric coalitional
p-binomial Semivalues [6].

Solution name β(k) α(l)

Owen value [38] 1
|M|−1

1
|Cx|−1

Owen-Banzhaf value [39]

(|M|−1
k

)

2|M|−1

(|Cx|−1
l

)

2|Cx|−1

symmetric coalitional
Banzhaf value [2]

(|M|−1
k

)

2|M|−1
1

|Cx|

symmetric coalitional
p-binomial Semivalue [6]

pk(1−p)|M|−1−k

p ∈ [0, 1]
1

|Cx|

Table 2. Values of α and β for the Owen value and its various extensions.

Interaction index on games with coalition structure: Finally we
are ready to define the Owen-value interaction index for cooperative
games with a coalition structure. Here, our definition is for the inter-
action between nodes belonging to different coalitions [53].

Definition 6 Given a cooperative game with a coalition structure,
(N,CS , ν), and two players, i ∈ Cx ∈ CS and j ∈ Cy ∈ CS such
that Cx 	= Cy , the Owen-value interaction index between i and j is:

IOV
i,j (N,CS , ν) =

∑
R⊆M\{x,y}

1

(|M | − 1)
(|M|−2

|R|
)

∑
C⊆(Cx∪Cy)\{i,j}

S(QR ∪ C, i, j)

(|Cx|+ |Cy| − 1)
(|Cx|+|Cy|−2

|C|
)

(6)

3 A NEW INTERACTION INDEX FOR
NETWORKS

Inspired by the inter-links prediction problem, we construct a new
node-similarity measure using three building blocks. The first block
is the interaction index (to analyze pairs of nodes), the second block
is the Coalitional Semivalue (to analyze nodes given a community
structure), and the third block is the k-steps group degree centrality
(to quantify the importance of subsets of nodes). To put the three
pieces together, our first step is to introduce the following game.

Definition 7 A cooperative game with a coalition structure (played)
on a graph is a tuple, (G,CS , νG), where G is a graph, CS is a

P.L. Szczepański et al. / An Extension of the Owen-Value Interaction Index and Its Application to Inter-Links Prediction92



community structure, and νG : 2|V | → R is a characteristic function
defined over the graph G.

We use one such game, where the characteristic function is the k-
steps group degree centrality, defined for all k ∈ {1, . . . , |V |} and
all S ⊆ V as follows:

νk
D(S) =

∣∣∣ {v ∈ V : min
u∈S

d(u, v) ≤ k
} \ S

∣∣∣.
The second step is to combine the Coalitional Semivalue with the
interaction index, as shown below:

Definition 8 Given a cooperative game with a coalition structure,
(N,CS , ν), a discrete probability distribution, β : {0, . . . , |N | −
2} → [0, 1],

∑
0≤k≤|N|−2 β(k) = 1, and two players, i ∈ Cx ∈

CS and j ∈ Cy ∈ CS such that Cx 	= Cy , the Coalitional-
Semivalue interaction index between i and j is:

ICSEMI
i,j (N,CS , ν) =

∑
0≤k≤|M\{Cx,Cy}|

β(k)

∑
0≤l≤|Cx∪Cy\{i,j}|

α(l)E[S(QTk ∪Xl, i, j)], (7)

where T k is a subset of size k drawn from {R : R ⊆ M \ {x, y} ∧
|R| = k} uniformly at random; Xl is a subset of size l drawn from
{C : C ⊆ Cx ∪ Cy \ {i, j} ∧ |C| = l} uniformly at random; E[·]
is the expected-value operator; α : {0, . . . , |Cx ∪ Cy \ {i, j}|} →
[0, 1],

∑|Cx∪Cy\{i,j}|
l=0 α(l) = 1.

This is a natural extension of Owen-value interaction index that
is in line with the definition of Coalitional Semivalues. For instance,
by setting β(k) = 1

|M|−1
and α(l) = 1

|Cx|−1
, we obtain the Owen-

value interaction index.
Now, we are ready to introduce our new node-similarity measure:

Definition 9 The Coalitional-Semivalue similarity measure between
v ∈ Cx and u ∈ Cy in graph G(V,E) with community structure CS
is defined as:

ICSEMI
u,v (V,CS , νk

D).

Many standard measures evaluate the similarity between two
nodes by quantifying the intersection of their spheres of influence. In
contrast, the main advantage of our measure is that the intersection is
evaluated in the context of the exponential number of subsets of com-
munities and nodes in the network, which may allows us to compute
similarity more accurately. One potential drawback of our approach
is its potentially-high computational complexity, due to the exponen-
tial number of subsets. However, in the following section we develop
the closed-form formula for the k-steps Coalitional-Semivalue simi-
larity measure which allows us to compute it in polynomial time.

4 COMPUTATIONAL ANALYSIS

In this section, we circumvent the main potential obstacle that
may hamper the application of the Coalitional-Semivalue interaction
index—the computational complexity. In more detail, Equation (7)
requires iterating over an exponential number of subsets of V . How-
ever, building upon a combinatorial and probabilistic analysis, we
will develop two polynomial algorithms: one for the Coalitional-
Semivalues interaction index, which runs in O(|V |3) time, and the
other is for a special case of this index, namely the Owen-value in-
teraction index, which runs in just O(|V |) time.

To this end, let CSDEGREEII denote the problem of calculating
ICSEMI
u,v (V,CS , νk

D), where CS is a community structure, νk
D is the

k-steps degree centrality, and u, v ∈ V . The main theoretical result
in this paper is as follows:

Theorem 1 CSDEGREEII is in P.

We note that the above theorem fills a gap in the literature, as high-
lighted in Table 7 (see Section 7). Before presenting the proof, we
first need some additional notation. For every node v ∈ V , let Nk(v)
denote the set of “neighbors” reachable from v with at most k steps,
and let degk(v) denote the number of such nodes. More formally, we
have: Nk(v) = {u ∈ V : d(v, u) ≤ k ∧ v 	= u} and degk(v) =
|Nk(v)|. We extend this notation to sets of nodes. That is, Nk(C) =⋃

v∈C Nk(v)\C and degk(C) = |Nk(C)|. Moreover, for any given
node, v ∈ Cx ∈ CS , we denote the set of adjacent communities
as NCS

k (v) = {Cy ∈ CS \ Cx : Cy ∩ Nk(v) 	= ∅}, the inter-
community degree as degCS

k (v) = |NCS
k (v)|, the set of neighbors

within some community Cy ∈ CS as Ny
k (v) = Nk(v) ∩ Cy , and

the corresponding intra-community degree as degyk(v) = |Ny
k (v)|.

These can be extended to two communities as follows: Ny,z
k (v) =

Nk(v) ∩ (Cy ∪ Cz) and degy,zk (v) = |Ny,z
k (v)|.

In our proof we follow the line of our earlier work [45], where we
developed an algorithm to computed the Shapley value-based inter-
action index was proposed. In this work, we will extend the proof
from [45] to take into consideration both the community structure
the Owen value-based interaction index, which is much more com-
plex than its Shapley value-based counterpart.

Proof: First of all, let us focus on Equation (7). More specifically,
for each pair of nodes v, u ∈ V such that: v ∈ Ci ∈ CS and u ∈
Cj ∈ CS and Ci 	= Cj , we will show how to compute E[S(QTk ∪
Xl, u, v)]—the expected value of their synergy with respect to the
random set QTk ∪ Xl. Recall that T k is drawn uniformly from the
set {R : R ⊆ M \ {i, j} ∧ |R| = k}, and Xl is drawn uniformly
from the set {C : C ⊆ Ci ∪Cj \ {u, v} ∧ |C| = l}. Also recall that
QR denotes

⋃
r∈R Cr . Now if we denote Rk,l = QTk ∪Xl, then:

E[S(Rk,l, u, v)]=E[MC(Rk,l, {u, v})]−E[MC(Rk,l, u)]−E[MC(Rk,l, v)]

=E[MC(Rk,l, u)]+E[MC(Rk,l, v)]−E[MC(Rk,l, u ∩ v)]

−E[MC(Rk,l, u)]−E[MC(Rk,l, v)]

=− E[MC(Rk,l, u ∩ v)],

where MC(Rk,l, u ∩ v) is what we call the “common” contribution
of two nodes v and u, which is illustrated in Figure 1, and defined as
follows:5

E[MC(Rk,l, u ∩ v) =E[MC(Rk,l, u)] + E[MC(Rk,l, v)]

−E[MC(Rk,l ∪ {u}, v)]−E[MC(Rk,l ∪ {v}, u)].
Now given the function νk

D , the pair of nodes v, u ∈ V can make
a positive common contribution to the set of nodes Rk,l only through
some node from the intersection of their neighborhoods, i.e., some
node n ∈ Nk(v) ∩ Nk(u). Intuitively, this happens when such a
node n is not under the influence of the set Rk,l but is under the
influence of Rk,l ∪ {u, v}.

5 Here, we do not mean to take the intersection of nodes u and v, as this
would be incorrect. Instead, for notation convenience, we write u∩v when
referring to the intersection between the contributions of u and v.
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MC(Rk,l, {u}) MC(Rk,l, {v})

Figure 1. An illustration of MC(Rk,l, u ∩ v).

We formalize the above observation by introducing the Bernoulli
random variable indicating whether nodes v, u make a positive com-
mon contribution to the set Rk,l through a node n ∈ Nk(v)∩Nk(u):

E[B+
k,l,v,u,n] = P [(Nk(n) ∪ {n}) ∩Rk,l = ∅]. (8)

On the other hand, the pair v, u ∈ V can make a negative common
contribution to the set of nodes Rk,l through v or u. This happens
when either of those two nodes is under the influence of Rk,l but not
under the influence of Rk,l ∪ {v, u}.6 Note that when analyzing the
common contribution, we only consider nodes in Nk(v)∩Nk(u). As
such, from the negative-contribution perspective, we only consider
cases where v ∈ Nk(u) or u ∈ Nk(v).

We formalize the above observation by introducing two Bernoulli
random variables indicating whether nodes v, u make a negative
common contribution to Rk,l through the node v or u is defined as:

E[B−
k,l,v] = P [(Nk(v)) ∩Rk,l 	= ∅], (9)

E[B−
k,l,u] = P [(Nk(u)) ∩Rk,l 	= ∅]. (10)

Now, we will develop an exact formula for the equations (8), (9) and
(10). We start with a positive contribution. The important observation
is that the set Rk,l is drawn from the sample space Ω, where |Ω| =(|M|−2

k

)(|Ci|+|Cj |−2

l

)
. Having this in mind, we denote P [(Nk(n) ∪

{n}) ∩Rk,l = ∅] by P+ and we get:

P+ =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(|M|−1−degCS
k (n)

k )(|Ci|+|Cj |−deg
i,j
k

(n)

l
)

(|M|−2
k )(|Ci|+|Cj |−2

l
)

if n /∈ Ci ∪ Cj

(|M|−1−degCS
k (u)

k )(|Ci|+|Cj |−1−deg
i,j
k

(n)

l
)

(|M|−2
k )(|Ci|+|Cj |−2

l
)

if n ∈ Ci ∪ Cj

(11)
Now if n /∈ Ci∪Cj , the above formula has the following combina-

torial interpretation. The random set Rk,l can contain any community
from CS except for Ci and Cj ; there are |M |−2 such communities,
where M = {1, . . . ,m} is the set of community numbers. In order
to satisfy the condition Nk(v) ∩ T k 	= ∅, from all communities in
CS \ {Ci, Cj} we can draw all those that are not in the scope of n.
There are |M |−2−degCS

k (n) such communities. However, two ad-
ditional facts also play an important role: the fact that the community
containing n should not be in Rk,l, and the fact that Rk,l can con-
tain any community from CS except for Ci and Cj . Taking this into
account, the final number of communities is: |M | − 1 − degCS

k (n).
Thus, the probability of choosing a set Rk,l satisfying our condition
Nk(v) ∩ T k 	= ∅ is exactly:

(|M|−1−degCS
k (n)

k

)
/
(|M|−2

k

)
.

Next, we show how to satisfy the condition that Nk(v)∩Xl 	= ∅.

6 In some work the definition of νkD(C) also counts the nodes from C [35].
However, in this paper we follow the convention that the influence of C
affects only nodes from outside C.

To this end, from the set (Ci∪Cj)\{v, u} we need to exclude those
nodes that are in the scope of n. There are |Ci∩Cj |−2−degi,jk (n)
such nodes. However, taking into account that v, u ∈ N i,j

k (n), the
probability of choosing a set Rk,l satisfying the condition Nk(v) ∩
Xl 	= ∅ is exactly:

(|Ci|+|Cj |−deg
i,j
k

(n)

l

)
/
(|Ci|+|Cj |−2

l

)
.

In order to compute the negative contribution, we consider the
complementary event: P− = 1 − P [(Nk(v)) ∩ Rk,l = ∅]. Using
the same combinatorial argument as the one used to compute P+,
we get:

P− = 1−
(|M|−1−degCS

k (v)
k

)(|Ci|+|Cj |−1−deg
i,j
k

(v)

l

)
(|M|−2

k

)(|Ci|+|Cj |−2

l

) , (12)

The formula combining equations (8) and (9) and its analytic form
given in equations (11) and (12) is:

E[S(Rk,l, u, v)] = E[B−
k,l,v] + E[B−

k,l,u]−
∑

n∈Nk(v)∩Nk(u)

E[B+
k,l,v,u,n]

= −
∑

n∈(Nk(v)∩Nk(u))\(Ci∪Cj)

((|M|−1−degCS
k (n)

k

)(|Ci|+|Cj |−deg
i,j
k

(n)

l

)
(|M|−2

k

)(|Ci|+|Cj |−2

l

) )

−
∑

n∈(Nk(v)∩Nk(u))∩(Ci∪Cj)

((|M|−1−degCS
k (n)

k

)(|Ci|+|Cj |−1−deg
i,j
k

(n)

l

)
(|M|−2

k

)(|Ci|+|Cj |−2

l

) )

+
∑

n∈({v}∩Nk(u))∪({u}∩Nk(v))

(
1−

(|M|−1−degCS
k (n)

k

)(|Ci|+|Cj |−1−deg
i,j
k

(n)

l

)
(|M|−2

k

)(|Ci|+|Cj |−2

l

) )

(13)

Notice that the sets NCS
k (u), N i,j

k (u) and Nk(u) are easily com-
putable in polynomial time. Based on this, the closed-form formula
(13) together with Equation (7) prove that CSDEGREEII is solvable
in polynomial time, i.e., it belongs to the class P.

Finally, note that in our proof we omitted the case when u and v
belong to the same community. Although, in this case, the reasoning
slightly differs from the above, it results in almost the same formula.
Nevertheless, such a case is not interesting from the perspective of
inter-links recommendation. �

Now, let us denote by OVDEGREEII the problem of calculat-
ing IOV

u,v (V,CS , ν
k
D, ) where CS is a community structure, νk

D is
the k-steps degree centrality, and u, v ∈ V . Then, the following
corollary immediately follows from Theorem 1:

Corollary 1 OVDEGREEII is in P.

Building upon the above theoretical results, we will propose in the
next section two algorithms; one solves CSDEGREEII in O(|V |3)
time; the other solves OVDEGREEII in just O(|V |) time, after some
preprocessing stage that requires O(|V |2) time.

5 ALGORITHMS

In this section, we use Equation (13) to develop a polynomial time al-
gorithm for computing the k-steps Coalitional-Semivalue interaction
index. In particular, Algorithm 1 computes the k-steps Coalitional-
Semivalue interaction index for a given pair of nodes u, v ∈ V
in the graph G. This algorithm is basically an implementation of
Equation (7), whereby the expected value operator E[S(Rk,l, u, v)]
is computed using Equation (13).
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Algorithm 1: Computing the k-steps Coalitional-Semivalue in-
teraction index

Input: Graph G(V,E), functions β and α, community structure
CS , nodes v, u ∈ V where v ∈ Ci ∈ CS , u ∈ Cj ∈ CS

Data: for u ∈ V :
Nk(u)—the set of k-neighbors
NCS

k (u)—the set of adjacent communities
N i,j

k (u)—the set of adjacent nodes within Ci ∪ Cj

Output: ICSEMI
u,v k-steps coalitional-Semivalue interaction index

1 ICSEMI
u,v ← 0;

2 for k ← 0 to |M | − 2 do

3 for l ← 0 to |Ci ∪ Cj | − 2 do

4 S ← 0;
5 foreach n ∈ (

Nk(v) ∩Nk(u)
) \ (Ci ∪ Cj

)
do

6 S ← S − (|M|−1−degCS
k (n)

k )(|Ci|+|Cj |−deg
i,j
k

(n)

l
)

(|M|−2
k )(|Ci|+|Cj |−2

l
)

7 foreach n ∈ (
Nk(v) ∩Nk(u)

) ∩ (
Ci ∪ Cj

)
do

8 S ← S − (|M|−1−degCS
k (n)

k )(|Ci|+|Cj |−1−deg
i,j
k

(n)

l
)

(|M|−2
k )(|Ci|+|Cj |−2

l
)

9 if v ∈ Nk(u) then

10 S ←

S + 1− (|M|−1−degCS
k (v)

k )(|Ci|+|Cj |−1−deg
i,j
k

(v)

l
)

(|M|−2
k )(|Ci|+|Cj |−2

l
)

S ←
S + 1− (|M|−1−degCS

k (u)

k )(|Ci|+|Cj |−1−deg
i,j
k

(u)

l
)

(|M|−2
k )(|Ci|+|Cj |−2

l
)

11 ICSEMI
u,v ← ICSEMI

u,v + β(k)α(l)S

It is easy to see that Algorithm 1 runs in O(|V |3) time. Note
that the algorithm requires a preprocessing stage in which the sets
NCS

k (u), N i,j
k (u) and Nk(u) are computed. Let us analyze the time

required to perform this preprocessing stage. For each node n ∈ V ,
the sets NCS

k (u) and Nk(u) can be computed using breadth-first
search in O(|V |(|V | + |E|)) time. Furthermore, we can store all
coalition values, i.e., store ν(C), ∀C ⊆ N , using O(|V |2) space.
Next, for the pair of communities Ci and Cj we can compute the
set N i,j

k (n) in O(|V |2) time. As can be seen, compared to the time
required to run Algorithm 1, the preprocessing stage takes negligible
time.

Although O(V 3)—the time required to run Algorithm 1—is very
fast compared to a naive (exponential-time) algorithm, it is still
not fast enough to be applied for link prediction in large networks.
With this in mind, we now present an even faster algorithm to com-
pute k-steps Owen-value interaction index; see Algorithm 2. Specifi-
cally, this algorithm runs in O(|V |) time, and requires the aforemen-
tioned preprocessing stage to compute the sets NCS

k (u), N i,j
k (u) and

Nk(u). This improvement allows us to compute the similarity be-
tween each pair of nodes (not just a single pair) in O(|V |3) time.
Thus, the entire procedure of link prediction also requires O(|V |3)
time.

6 Emiprical Evaluation

In this section, we empirically demonstrate the effectiveness of
our node-similarity measure in detecting links across communities.
Specifically, in our experiments we use the Owen value-based variant

Algorithm 2: Computing the k-steps Owen-value interaction in-
dex

Input: Graph G(V,E), community structure CS , nodes
v, u ∈ V where v ∈ Ci ∈ CS , u ∈ Cj ∈ CS

Data: for u ∈ V :
Nk(u)—the set of k-neighbors
NCS

k (u)—the set of adjacent communities
N i,j

k (u)—the set of adjacent nodes within Ci ∪ Cj

Output: IOV
u,v k-steps coalitional-Semivalue interaction index

1 IOV
u,v ← 0;

2 foreach n ∈ (
Nk(v) ∩Nk(u)

) \ (Ci ∪ Cj

)
do

3 IOV
u,v ← IOV

u,v − 1

(degCS
k

(n))(deg
i,j
k

(n))

4 foreach n ∈ (
Nk(v) ∩Nk(u)

) ∩ (
Ci ∪ Cj

)
do

5 IOV
u,v ← IOV

u,v − 1

(degCS
k

(n))(deg
i,j
k

(n)−1)

6 if v ∈ Nk(u) then

7 IOV
u,v ← IOV

u,v + 1− 1

(degCS
k

(v))(deg
i,j
k

(v)−1)

8 IOV
u,v ← IOV

u,v + 1− 1

(degCS
k

(u))(deg
i,j
k

(u)−1)

of our measure, as it can be computed efficiently using Algorithm 2.
We compare our measure against six local similarities measures out-
lined in Table 3; these are arguably the most efficient solutions to the
local link-prediction problem in the literature [32, 45].

Similarity Name Measure

Common Neighbors
(CN)

SCN
u,v = Nk(u) ∩Nk(v)

Salton Index (SI) SSI
u,v =

Nk(u)∩Nk(v)√
Nk(u)×Nk(v)

Jaccard Index (JI) SJI
u,v =

Nk(u)∩Nk(v)
Nk(u)∪Nk(v)

Adamic-Adar Index
(AA)

SAA
u,v =

∑
n∈Nk(u)∩Nk(v)

1
logNk(n)

Resource Allocation
(RA)

SRA
u,v =

∑
n∈Nk(u)∩Nk(v)

1
Nk(n)

Shapley-value
interaction index (SV)

SSV
u,v = ISVi,j (V, νkD)

Table 3. The six local node-similarity measures used in our experiments.

We evaluate the effectiveness of each node-similarity measure us-
ing a standard procedure from the literature on link-prediction. In
particular, we compute the similarity of each pair of disconnected
nodes, v, u ∈ V : (v, u) /∈ V , belonging to two different commu-
nities, Ci, Cj ∈ CS where v ∈ Ci, u ∈ Cj . After that, links are
proposed between the most similar such pairs of nodes. Since in this
paper we focus on finding the most accurate predictions based only
on local information, we set k = 1 in all our experiments. Each such
experiment is conducted as follows: given a graph G = (V,E) with
a community structure CS , we create a new graph G′ = (V,E′),
which is similar to G and with the same CS but where 10% or 20%
of inter-edges are removed at random.7 Then, we compute the simi-
larity of each disconnected pair of nodes from different communities

7 We also conducted experiments in which 30% and 40% of inter-edges were
removed. The effectiveness of all measures was reduced proportionally.
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in G′. In order to evaluate the results, we use the Area Under the
Curve (AUC) measure [32]. The whole process is repeated 100 times
and the average AUC is taken.

In more detail, the AUC is computed using the Mann-Whitney
U test [22]. To this end, let R be the set of all disconnected pairs
of nodes from different communities in G′. This set can be divided
into two disjoint sets: the set of “missing” links, denoted by M (i.e.,
M = E \ E′), and the set of “non-existing” links, denoted by N
(i.e., N = (V × V ) \ E). Let n = |M ||N | be the number of all
comparisons between the missing links and the non-existing links.
Furthermore, let n′ be the number of such comparisons in which the
missing link is ranked higher than the non-existing link. Finally, let
n′′ be the number of such comparisons in which both links are ranked
the same. Then, the AUC is computed as follows:

AUC =
n′ + n′′

2

n
.

With this forumla, if AUC equals 1 then all missing links are ranked
higher than the non-existing links; this is the best possible ranking,
where n′ = n and n′′ = 0. On the other extreme, if AUC equals 0
then none of the missing links is ranked higher than, or even the same
as, any of the non-existing links; this is the worst possible ranking,
where n′ = 0 and n′′ = 0. A completely random ranking falls
between the two extremes, with an expected AUC of 0.5.

We study 8 widely-used real-life networks: Tribes [12], Taro [21],
Zachary [54], Terrorists [24], Surfers [30], Polbooks [1], Football
[15] and Jazz [16]. Table 4 specifies the sizes of these eight networks,
as well as the sizes of the community structures therein.8. For each
of them, we report the results for the community structure identi-
fied by the multilevel community-detection algorithm [51]. We also
experimented with other community-detection algorithms, such as
Walktrap [40], Fastgreedy [9], and Girvan-Newman [15]; they pro-
duced almost the same community structures as the multilevel algo-
rithm. As such, the choice of the community-detection algorithm had
a negligible impact on our results.

Network |V | |E| |CS | Network |V | |E| |CS |
Tribes 16 58 3 Surfers 43 336 2
Taro 22 39 5 Polbooks 105 441 4
Zachary 34 78 4 Football 115 613 10
Terrorists 64 243 5 Jazz 198 2742 4

Table 4. The sizes of the networks and their community structures used in
the experiments.

Tables 5 and 6 present the results for our Owen value-based mea-
sure, as well the other local link-prediction measures from Table 3.
As can be seen, in the experiments where 10% of inter-links were
removed (i.e., Table 5), our measure outperforms all the other mea-
sures. As for the experiments where 20% of inter-links were removed
(i.e., Table 6), our measure also outperforms the other alternatives for
all networks except for the Football network.

The results in Tables 5 and 6 demonstrate how detecting inter-
links locally can be a rather challenging task. For instance, given
the Football network, all local node-similarity measures are biased;
they produce results that are worse than even a completely random
classifier whose AUC is expected to be 0.5. Likewise, given the Taro
network, all measures are either worse, or slightly better than, the

8 The datasets for the eight networks were downloaded from the link:
http://www-personal.umich.edu/˜mejn/netdata/ as well as the
link: http://konect.uni-koblenz.de/networks/.

Network OV SV RA CN AA JI SI

Tribes 0.754 0.438 0.579 0.502 0.581 0.633 0.658
Taro 0.573 0.483 0.394 0.516 0.550 0.571 0.483
Zachary 0.703 0.628 0.684 0.533 0.657 0.573 0.617
Terrorists 0.834 0.774 0.778 0.744 0.795 0.782 0.748
Surfers 0.881 0.731 0.770 0.746 0.765 0.797 0.791
Polbooks 0.806 0.783 0.789 0.743 0.785 0.755 0.772
Football 0.403 0.346 0.365 0.314 0.336 0.373 0.388
Jazz 0.962 0.918 0.928 0.927 0.902 0.919 0.918

Table 5. The area under curve (AUC) for our measure (OV) as well as the
six measures from Table 3, given 8 real-life networks in which 10% of

inter-links were removed.

Network OV SV RA CN AA JI SI

Tribes 0.729 0.421 0.584 0.493 0.569 0.622 0.641
Taro 0.525 0.431 0.439 0.358 0.441 0.505 0.510
Zachary 0.644 0.584 0.622 0.519 0.616 0.511 0.548
Terrorists 0.819 0.771 0.782 0.746 0.785 0.759 0.715
Surfers 0.867 0.735 0.766 0.730 0.762 0.766 0.778
Polbooks 0.780 0.739 0.748 0.746 0.747 0.752 0.748
Football 0.351 0.313 0.334 0.300 0.331 0.353 0.365

Jazz 0.966 0.919 0.928 0.905 0.918 0.921 0.924

Table 6. The area under curve (AUC) for our measure (OV) as well as the
six measures from Table 3, given 8 real-life networks in which 20% of

inter-links were removed.

random one. Nevertheless, for the remaining networks, all measures
outperform the random one with very few exceptions.

Finally, we show in Figure 2 how the runtime of our Algorithm 2
grows with the size of the network. Specifically, the dotted line rep-
resents the time needed for the preprocessing stage, whereas the
solid line represents the time needed for computing the 1-step Owen
Value-based interaction index between each pair of nodes in the net-
work. As can be seen, even for 5000 nodes, our algorithm takes less
than one minute.
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Figure 2. The performance of 1-step Owen value interaction index.

We conclude this section with some negative results. Specifically,
when using our measure for quasi-local (rather than local) link pre-
diction (i.e., when k > 1) the performance of our algorithm drops
considerably in terms of AUC for all the networks in our exper-
iments. We believe this comes from the expression degCS

k (n). In
particular, even for a small k, every node in the network can reach
many different communities, which can negatively influence the per-
formance. This is because in such a case the differences between the
nodes diminish, and nodes become indistinguishable by our measure.
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7 RELATED WORK

Our contribution falls at the intersection of (i) positive computational
results in cooperative game theory and (ii) efficient link prediction
in graph theory. In this section, we briefly discuss both areas of re-
search.

Starting with cooperative game theory, most solution concepts are
NP-hard [7]. However, for cooperative games described over net-
works there is a growing body of literature with various positive re-
sults. In particular, when either group degree centrality, group close-
ness centrailty, or group betweenness centrality [13] is used as a
characteristic function, it was shown that the Shapley value can be
computed in time polynomial in the network size [35, 46]. More-
over, it was proven that the problem of computing any Semivalues—
parametrized by any polynomial time computable discrete probabil-
ity distribution—belongs to the class P for degree and closeness cen-
tralities [44], as well as betweenness centrality [46].

Regarding games with a coalition structure, there are positive re-
sults about degree and closeness centralities. In more detail, for both
of them we can compute the Owen value and the Coalitional Semi-
value in polynomial time [47, 48]. However, it is still an open ques-
tion whether the same holds of r betweenness.

Other positive results can be found on the computation of the in-
teraction index on graphs. More specifically, it was shown that we
can compute efficiently the Shapley-value and Semivalue interaction
indices with degree centrality [45].

The results that are most closely related to our work are presented
in Table 7. The abbreviations SVDEGREE, SDEGREE, OVDE-
GREE and CSDEGREE stand for computing the Shapley value-, the
Semivalue-, the Owen value- and the Coalitional value-based degree
centrality, respectively. Furthermore, SVDEGREEII, SDEGREEII,
OVDEGREEII and CSDEGREEII are analogous problems related to
computing the interaction indices.

Computational result Algorithm complexity

SVDEGREE is in P O(|V |+ |E|) [35]
SDEGREE is in P O(|V |2) [44]
OVDEGREE is in P O(|V |+ |E|) [47]
CSDEGREE is in P O(|V |3)| [47]
SVDEGREEII is in P O(|V |)∗ [45]
SDEGREEII is in P O(|V |2) [45]
OVDEGREEII is in P O(|V |)∗ [this paper]

CSDEGREEII is in P O(|V |3) [this paper]

(∗) some precomputation is required.

Table 7. Computational complexity results for degree centrality and
coalitional games played on graphs.

The second body of literature that is strongly related to our work
is that on link prediction. Here, we focus on methods based on node-
similarity measures [32]. Generally, one can distinguish distinguish
between three groups of link prediction algorithm: local, quasi-local
and global. In more detail, global algorithms consider the entire net-
work, which is prohibitive in for large networks. To date, the most
efficient algorithm in this group is Random Walk with Restart [49],
which is based on PageRank [4]. In contrast, quasi-local algorithms
try to strike a balance between prediction runtime and efficiency. The
most effective algorithms here are Local Random Walk and Super-
posed Random Walk [31]. Finally, local algorithms predict a link be-
tween any pair of nodes based solely on the direct neighborhood of
those nodes (see Table 3). In practice, these are the only algorithms
that can be applied to large networks, e.g., with millions of nodes.

To the best of our knowledge, the two best approaches in this group
are: (i) the Resource Allocation approach [55], which is inspired by
the resource allocation dynamics on complex networks; and (ii) the
Shapley-value interaction index [45] approach, which is rooted in
cooperative game theory.

Some authors have already tried to increase the accuracy of link
prediction by taking advantage of the community structure of a net-
work [43, 50]. While they managed to enhance the prediction perfor-
mance by adding an extra score to nodes from the same community,
such an approach method seems to have little value in our application
as we are only interested in predicting connections between different
communities.

In addition to the methods that are based on node similarity, link
prediction can also be carried out based on maximizing likelihood
[8, 20], or based on probabilistic models [26, 25]. These methods are
computationally complex and are out of scope of this paper.

8 SUMMARY AND FUTURE WORK

In this paper, we proposed a new local node-similarity measure for
networks with a community structure. We empirically demonstrated
its effectiveness as a solution to the problem of detecting links be-
tween (rather that within) communities. Our measure outperforms
other local node-similarity measure from the literature, since it is the
first one designed specifically to detect links between heterogeneous
nodes, rather than homogeneous ones as is the case with the other
measures. Importantly, the Owen value-based variant of our measure
can be computed very efficiently; it requires O(|V |) time, after a pre-
processing stage that requires O(|V ||E|) time. Interestingly, despite
the inherent complexity of our measure (which comes from the com-
plexity of the Owen value), link prediction using our algorithm takes
the same time as the fastest alternative from the literature.

There are several directions for future work. Firstly, while we
showed in this paper that the problem OVDEGREEII is in P, it would
be interesting to verify whether the problems OVCLOSENESSII and
OVBETWEENNESSII are also in P. It would also be interesting to
study the similarity measures that correspond to the aforementioned
problems, and to evaluate their effectiveness as node-similarity mea-
sures for inter-link prediction.

Secondly, since our measure is only restricted to non-overlapping
communities, another interesting direction would be to extend our
measure to graphs with overlapping communities [27]. Recently, an
approach to measure the power of individual nodes in such net-
works was proposed [48]. In more detail, the authors defined a co-
operative game with overlapping coalitions on a graph, and used a
game-theoretic concept called the Configuration value to compute
the power of an individual node. It is an open question whether
CVDEGREE and CVDEGREEII are in P, where CVDEGREE stands
for Configuration value-based degree centrality, and CVDEGREEII
for Configuration-value interaction index.

Finally, it would be worthwhile to introduce a graph-related ax-
iomatization of our similarity measure, following a similar approach
to that with which the interaction indices was axiomatized based on
concepts from cooperative games.

ACKNOWLEDGEMENTS
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