
A Dynamic Logic of Norm Change

Max Knobbout and Mehdi Dastani and John-Jules Meyer 1

Abstract. Norms are effective and flexible means to control and
regulate the behaviour of autonomous systems. Adding norms to a
system changes its specification which may in turn ensure desirable
system properties. As of yet, there is no generally agreed formal
methodology to represent and reason about the dynamics of norms
and their impacts on system specifications. In this paper, we intro-
duce various types of norms, such as state-based or action-based
norms, and gradually develop a dynamic modal logic to character-
ize the dynamics of such norms in a formal way. The logic can be
used to prove various properties of norm dynamics and their impacts
on system specification. Moreover, we show that this logic is sound
and complete.

1 Introduction

Norms are widely proposed as an effective and flexible means to
control and regulate the behaviour of autonomous systems. Gener-
ally, norms specify the standards of behaviours such as which ac-
tions or states should be achieved or avoided. Adding norms to a sys-
tem changes its specification which may in turn incentivize/inhibit
specific behaviours and thereby ensure some desirable system level
properties. For example, consider the norm “individuals entering a
train station should have valid tickets” being introduced in a train
station. The addition of this norm incentivize having a valid ticket be-
fore entering the train station and ensures that the train station is not
getting unnecessarily crowded. We assume that the addition of norms
incentivizes/inhibits behaviours by various enforcement means such
as regimentation (e.g. by placing ports at the entrance gates of the
train station) or by means of sanctions (e.g. by random inspection of
individuals at the train station and issuing fines for those who has no
valid ticket). In this paper, we ignore the issue of norm enforcement
and focus on how norms update system specifications, i.e., which
system states or actions are considered as good/bad after the system
is updated with norms. A system to which a set of norms is added,
i.e., a system that is governed by a set of norms, is referred to as a
normative system [15, 14, 1].

A lot of research has focused on deciding (or proving) correct-
ness of a normative system. A normative system, i.e., a system with
a set of norms, is correct if the objectives of the system designer are
satisfied after the norms have been added to the system [15, 2, 12].
As of yet, there is no generally agreed formal methodology to repre-
sent and reason about the norm change in normative systems. Such a
methodology allows us to formally investigate the dynamics of var-
ious types of norms, such as state-based or action-based norms, in
normative systems and their impact on the system specification. For
example, the methodology enables us to reason about the introduc-
tion of the above-mentioned norm in a train station before and after

1 Utrecht University, The Netherlands, email:
{M.Knobbout,M.M.Dastani,J.J.C.Meyer}@uu.nl

an individual has entered the train station, either with or without a
valid ticket. It also enables us to reason about the impact of different
order of norm change on system specifications, and the interaction
between norm change and agents’ behaviours.

One may identify two possible methodological approaches when
dealing with norm change. On the one hand we can identify the syn-
tactic approach [7], where norm change is considered as an operation
on the underlying “code” that constitutes the system. On the other
hand we can identify the semantic approach [4, 13] which aims to
look at norm change as an update of the model. This work falls in
the second category, but is novel because (1) instead of providing
just a semantic analysis we provide a new dynamic logic to represent
and reason about norm change, and (2) we provide an accompanying
(sound and complete) proof system for the logic.

The view we adopt is that normative systems can be modelled by
pointed labelled transition systems, which show which facts become
true under execution of which actions. Moreover, we assume that up-
dating a system with a norm modifies the system specification and
thereby its behaviour. The specific problem we address in this pa-
per is how to represent and reason about these norm updates. We
introduce new types of norms that are expressive enough to model
existing norm types. We propose a new dynamic norm logic with
norm update operations and an accompanying proof system to rea-
son about norm updates in normative systems. Inspired by dynamic
logic [11, 16], the effect of a norm update operation is an update of
the normative system. The kind of updates (norms applied to nor-
mative systems) and its effects (normative systems that are aligned
with the norm) are completely novel. The contribution of this work
is significant because it paves the way for the development of formal
tools that can be used to prove correctness of a normative system.
From a practical point of view such tools are essential to investigate
the interaction between norm change and the system behaviour, in
particular, whether or when the addition of some norms satisfy some
desired system properties.

In this paper, we first introduce a formal framework to model nor-
mative systems and various types of norms. We then explore norms
of the ‘to-be’ variant, which may forbid (or permit) certain states to
occur. We devise a dynamic logic with update operation for ‘to-be’
norms. We then move to norms of the ‘to-do’ variant, which may
forbid (or permit) certain actions to occur. For this norm type, we de-
vise a dynamic logic with update operation for ‘to-do’ norms. For the
proposed dynamic logics we provide accompanying proof systems.

2 Framework

This section defines the models we use for normative systems, and
presents the syntax and semantics of the logic we use to express prop-
erties of these systems. We consider a normative system as a labelled
transition system that gives us for each possible execution of actions
the facts which become true. This is a standard way to model the be-

ECAI 2016
G.A. Kaminka et al. (Eds.)

© 2016 The Authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/978-1-61499-672-9-886

886

haviour of a system, except that we additionally assume the existence
of a set of violation atoms in order to model what is forbidden and
permitted. This idea comes from Anderson’s reduction [5], where
bad state of affairs can be labelled by a violation atom. A state with a
violation atom assigned to it is then interpreted as a forbidden state.
We note that a violation atom can represent a fine, but it can also
simply mean that something bad has happened. In this paper, we do
not wish to model whether an action is produced by a single agent or
a group of agents (e.g. Concurrent Game Structures). Because of this
simplification, we do not have to represent the agents explicitly, and
can just assume the existence of some action alphabet. In the remain-
der of this paper we use the term normative system to refer to such a
structure.

Definition 1 A normative system N is a tuple (Q,Act,→,Π, V, μ)
such that:

• Q is a non-empty finite set of states from the system.
• Act is a finite set of (domain) actions.
• →⊆ Q×Act×Q is a relation between states with actions, such

that for all q ∈ Q and α ∈ Act there exists exactly one q′ ∈ Q
such that (q, α, q′) ∈→. Whenever (q, α, q′) ∈→, we write q(α)
to denote q′

• Π is a finite set of atomic propositions.
• V ⊆ Π is a finite set of atomic violation propositions.
• μ is a valuation function mapping a state q ∈ Q to an element

from P(Π).

A pointed normative system is a pair (N, q) such that N is a nor-
mative system, and q ∈ Q a state from N . Given such a structure,
we say that a state q is forbidden whenever there exists a violation
v ∈ V such that v ∈ μ(q). Similarly, we say that an action α is for-
bidden in state q whenever there exists a violation v ∈ V such that
v ∈ μ(q(α)). Note that this model assumes that actions are deter-
ministic (e.g. each action leads to a unique next state) and are always
enabled. To model that an action α has no effect on a state q, we can
simply model it by assuming that q(α) = q, i.e. action α leads to the
same state.

The language of propositional logic with action modality, written
in this paper as L0, consists of formulas ϕ built by the following
grammar, where p ∈ Π and α ∈ Act:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | Do(α)ϕ

Along a pointed normative system (N, q), we can evaluate formulas
of L0 in the following way:

• N, q |= p iff p ∈ μ(q)
• N, q |= ¬ϕ iff N, q �|= ϕ
• N, q |= ϕ1 ∨ ϕ2 iff N, q |= ϕ1 or N, q |= ϕ2.
• N, q |= Do(α)ϕ iff N, q(α) |= ϕ

Given a pointed normative system (N, q), we say that a sequence
of actions α1 . . . αn brings about ϕ if and only if N, q |=
Do(α1) . . . Do(αn)ϕ. As is standard, we say that N |= ϕ holds
whenever for all q ∈ Q it holds that N, q |= ϕ, and that |= ϕ holds
(alternatively, “ϕ is valid”) whenever for all normative systems N
we have N |= ϕ. We have the following result from modal logic [9].

Theorem 1 (Sound and complete axiomatization of L0) The
logic L0 is soundly and completely axiomatized by modal system K

(i.e. the system consisting of all propositional tautologies together
with the necessitation rule and the distributive axiom) with the
following ‘Function’ axiom scheme:

Do(α)¬ϕ ↔ ¬Do(α)ϕ

We refer to system K with this additional axiom scheme as system
L0, and write �L0 ϕ whenever ϕ is provable in L0. For all ϕ ∈ L0

we thus have:
|= ϕ ⇔ �L0 ϕ

This axiom represents that the arrows of a normative system are func-
tional, i.e. a state and an action completely and uniquely define the
next state. We will now introduce an example of a normative system.
This example concerns a train station where individuals can enter
and leave. Throughout this paper we use this example as a running
example to demonstrate how various norms can alter the behaviour
of the system.

2.1 Running Example

Consider the normative system Nstation in Figure 1. This simple

{}
q0

{station}
q1

enter

leave

Figure 1. System Nstation.

system models a train station where an individual/traveller can en-
ter and leave. In particular, the system can either be in state q0 or
state q1, and depending on the performed action by the individual
can switch between these states. Here ‘station’ denotes the fact that
the individual is in the station. The reflexive arrows denote that the
performance of all the remaining actions that can occur will result
in the same state (e.g. action ‘enter’ in state q1 will result in q1). An
example of a formula that holds in this system is:

Nstation, q1 |= Do(leave)¬station

Observe that there are no violations in this system yet. Later on we
will add norms to this system and see how the system can show more
interesting and complex behaviour.

2.2 Norm Types

Before we formally introduce the language of norms and norm up-
date, it is worthwhile to reflect on the kinds of norms we want to
express and model. Broadly speaking, we consider the following two
classes:

1. State-based norms A state-based norm refers to certain states
that should be achieved or avoided. These kinds of norms are of
the ‘to-be’ variant. To extend the expressiveness of these kinds of
norms even further, we also optionally allow the addition of a re-
pair action. For example, the station may add a norm which states
that being at the station is forbidden until a valid subscription is
bought. These state-based norms are thus conditional on a repair
action. This class of norms is, to our knowledge, new and allows
for expressive norms that are required to model practical scenar-
ios.

2. Action-based norms An action-based norm refers to certain ac-
tions that should be performed or avoided. These kinds of norms
are of the ‘to-do’ variant. Again, we optionally allow the perfor-
mance of a repair actions, which allows for expressive norms.

M. Knobbout et al. / A Dynamic Logic of Norm Change 887

More elaborate norms pertaining to complex behaviours of the sys-
tem can be acquired by combining norms in various ways. It is impor-
tant to note that the addition of these norms are not ‘physical’ actions
of the system. They come from outside the system (i.e. a designer)
and are not triggered by the actions of the system.

3 Language for Norms and Norm Updates

In this section we begin our first step into developing our language
for norms and norm updates. The kinds of norms we consider in this
section are of the ‘to-be’ variant.

3.1 Language and Update

Given a normative system, we construct the norm language N1 in the
following way, where ϕ ∈ L0, v ∈ V and ActR ⊆ Act:

n ::= (ϕ,+v,ActR)|(ϕ,−v,ActR)

Whenever we have a norm (ϕ,±v,ActR) (where ±v can either be
+v or −v), we refer to ϕ as the norm condition, ±v as the norm
effect and ActR as the set of actions from the system that will count
as repair actions. These constructs relate to the kinds of norms we
described earlier. Adding a norm (ϕ,+v,ActR) implies that for ev-
ery ϕ-state the violation v will hold, until a repair action from the
set ActR occurs, at which point the behaviour of the system will re-
vert back to what it was before the norm was added to the system.
Whenever such a repair action occurs, we say that the norm effect is
repaired. Note that we use the notion of repair in a rather liberal way,
since a repair action may very well occur before a ϕ-state is ever
encountered. In this case, we still say that a norm effect is repaired,
even though it was never the case that we were in a state in which
the norm effect ±v was realized. We note that the set ActR can be
empty, which implies that the norm is permanent. For example, the
norm (ϕ,+v, ∅) states that all ϕ-states are now permanently forbid-
den. In this way, we acquire the ‘classical’ interpretation of a state-
based norm. The norm (ϕ,−v,ActR) behaves in a similar fashion,
except in this case the proposition v will stop to hold until this norm
effect is repaired. Both norms can be used to update pointed norma-
tive systems. That is, they transform a pointed normative system to
a new pointed normative system. In this paper we want to give clear
semantics to how a pointed normative system should behave when
a norm from our language is added to the system. This is why we
introduce the notion of norm-aligned. We say that an updated system
is norm-aligned if the system implements the new restrictions of the
added norm.

Definition 2 (Norm-Aligned (N1)) Let (N, q) be a pointed norma-
tive system, n = (ϕ,+v,ActR) ∈ N1 be a norm, and (N, q)′ be
a possible update of (N, q) with n. We say that (N, q)′ is norm-
aligned with n if for every proposition p ∈ Π and every (possi-
bly empty) sequence of actions α1 . . . αn ∈ Act∗, we have that
(N, q)′ |= Do(α1) . . . Do(αn)p if and only if

1. N, q |= Do(α1) . . . Do(αn)p , or
2. p = v, N, q |= Do(α1) . . . Do(αn)ϕ, and, α1, . . . , αn �∈ ActR.

In words, a system updated with a norm (ϕ,+v,ActR) is norm-
aligned with the norm if (1) all propositions that were true before re-
main true, plus if (2) the norm condition ϕ is true and no repair action
from ActR has been performed, then v should be true as well. This
notion captures both a property of success and a property of minimal
change. On the one hand, it states that the norm effect should hold

under the right conditions (property of success; the norm condition
is true and no repair action has been performed yet), and on the other
hand it states that everything else should remain unchanged (property
of minimal change). We can in a similar manner define the notion of
norm-aligned for an update of the form (ϕ,−v,ActR), which should
reflect that such an update removes v. This leads us to the following
postulate.

Postulate 1 (Norm-Aligned (N1)) Any normative system updated
with a norm n ∈ N1 should be norm-aligned.

This is inspired by the kind of postulates we can find in the AGM
framework, which state how updates should behave [3]. A natural
question that arises is how we can define updates that are norm-
aligned. That is, given a pointed system (N, q) and norm n ∈ N1,
how can we define (N, q)′ such that it is norm-aligned? The next
section aims to answer this question.

3.1.1 Defining Norm-Aligned Updates

We will now show how we can update a pointed normative system
to a new pointed normative system which is norm-aligned. Given a
pointed normative system (N, q) and a norm n, we write (N, q)[n]
to denote the updated system, and we define this update as follows.

Definition 3 Given N = (Q,Act,→,Π, V, μ), q ∈ Q and n =
(ϕ,+v,ActR) ∈ N1, we let (N, q)[n] = (N [n], q[n]) such that:

• System N [n] = (Q′, Act,→′,Π, V, μ′), where:

– Q′ = {qr, qa | q ∈ Q}

–

→′= {(qai , α, qaj) | qi(α) = qj and α �∈ ActR}⋃
{(qai , α, qrj) | qi(α) = qj and α ∈ ActR}⋃
{(qri , α, qrj) | qi(α) = qj}

– For every state q ∈ Q:
μ′(qr) = μ(q) and

μ′(qa) =

{
μ(q) ∪ {v} if N, q |= ϕ

μ(q) otherwise

• State q[n] = qa

That is, for every state q ∈ Q we create two copies in the updated
system; one in which the norm effect is active (qa) and one in which
it is repaired (qr). Thus, for each update the states of the system
are duplicated. The transitions between active and repaired states are
analogous to the transitions of the original system, except whenever
we are in an active state and a repair action occurs, in which case we
go to a repaired state. Note that we have written qi and qj in this def-
inition to simply denote that these states might possibly be different;
we attach no further meaning to this indexing. Alternatively, for an
update with −v, the updated valuation function μ′ becomes:

μ′(qr) = μ(q) and μ′(qa) =

{
μ(q)\{v} if N, q |= ϕ

μ(q) otherwise

The definition of this update reflects the fact that if no repair action
has been performed yet (meaning we are in an active state) and ϕ is
true at this state, then v should also be true for +v and false for −v.
This leads us to the following result.

Proposition 1 Given an arbitrary N , q ∈ Q and n ∈ N1, the
pointed system (N, q)[n] is norm-aligned with n.

With our running example, we can visualize how this update changes
the behaviour of a normative system.

M. Knobbout et al. / A Dynamic Logic of Norm Change888

3.1.2 Running Example

We will return to the station system found in Figure 1. Assume that
the station wants to impose a policy such that each traveller needs
to have a valid travel subscription to be in the station, otherwise
he is in violation. Formally, the system is updated with the norm
n0 = (station, +v, {buy sub}), where buy sub reflects the action of
buying a subscription (which was not explicitly drawn in Figure 1):
to be in a ‘station’-state causes violation v, unless this effect is re-
paired by buying a subscription. In Figure 2 we see how we update
the normative system Nstation to system Nstation[n0], and states q0
and q1 to qa0 and qa1 respectively. It is important to note that the update

{}q0 {station} q1

{}qa0 {station, v} qa1

{}qr0 {station} qr1

Nstation

Nstation[(station,+v, {buy sub})]

enter

leave

buy sub

enter

leave
buy sub

enter

leave

Figure 2. Above system Nstation, and below the updated system. The
dotted transitions denote the state-updates.

can affect the current state; if we would be in state q1 in the original
system, it could be that an update causes us to be in a violation-state,
particularly we have:

(N0, q1)[n0] |= v

If the ‘enter’ action is performed before the ‘buy sub’ action in the
updated system, we would also be in a violation-state. We thus have
that:

(Nstation, q0)[n0] |= Do(enter)v

Otherwise this would not be the case. We have:

(Nstation, q0)[n0] |= Do(buy sub)Do(enter)¬v

Thus, we see that this relatively simple norm already makes the be-
haviour of the system more interesting and complex. In the next sec-
tion we will extend our language to reason about these dynamic up-
dates.

3.2 Logic and Axiomatization

We can now extend modal language L0 to dynamic modal language
L1 by adding norm update operation [n] to L0, where p ∈ Π, α ∈
Act, and n ∈ N1:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | Do(α)ϕ | [n]ϕ

Formulas of L1 are evaluated along pointed normative systems. This
is done by adding the following rule to the satisfaction relation of
L0:

N, q |= [n]ϕ iff (N, q)[n] |= ϕ

We reiterate that although this follows the definition of an update we
can find in dynamic logic, the difference here is that we update with
a norm consisting of a condition, effect and repair actions. A formula
[n]ϕ should be read as: “after adding norm n to the normative system
it is the case that ϕ holds”.

3.2.1 Examples

Before we go to an axiomatization of this logic, let us look at some
specific (non-)validities of this dynamic logic. First and foremost, if
ϕ holds at a specific state, and we update with (ϕ,+v,ActR), we
expect that the violation v holds. This is reflected by the following
validity:

|= ϕ → [(ϕ,+v,ActR)]v

We expect that the other way around is not necessarily the case (the
right side implying the left side), since it might be that v was al-
ready the case in a state. Again, this is reflected by the following
non-validity:

�|= ([(ϕ,+v,ActR)]v) → ϕ

However, if we know that ¬v is the case and we know that after the
norm update operation v holds, it can only be the case that ϕ holds.
Thus:

|= ¬v ∧ ([(ϕ,+v,ActR)]v) → ϕ

For any action α ∈ Act such that α ∈ ActR, we have the following
expected validity:

|= ([(ϕ,±v,ActR)](Do(α)ψ)) ↔ Do(α)ψ

That is to say, whenever a norm effect is repaired, the truth of a for-
mula ψ depends merely on whether it was true before the update;
i.e. nothing changes. This follows from the fact that these updates
are norm-aligned. However, when the norm effect is not repaired, we
can infer the truth of ψ by first performing the action α and then
updating the system. Or in short, it does not matter at what moment
the update is performed. Thus, for any action α ∈ Act such that
α �∈ ActR we have:

|= [(ϕ,±v,ActR)](Do(α)ψ) ↔ (Do(α)[(ϕ,±v,ActR)]ψ)

We also have the important property that order matters. First updating
with norm n0 and then with n1 may have different results than first
updating with n1 and then with n0. For example, we have:

|= [(
,+v, ∅)]([(v,+v′, ∅)]v′) , and,

�|= [(v,+v′, ∅)]([(
,+v, ∅)]v′)
Lastly, we can also have updates without any effects, since for ex-
ample the update (⊥,+v,ActR) leaves the truth of any formula un-
changed:

|= ([(⊥,+v,ActR)]ψ) ↔ ψ

In the next section we will provide an axiomatization of our logic.

3.2.2 Axiomatization

We will now show how these properties lead to a non-trivial axiom-
atization of our logic. We have the following result.

Theorem 2 The logic L1 is (soundly and completely) axiomatized
by system L1, which consists of adding the following reduction ax-
iom schemes to system L0 together with the rule of replacement of
equivalent formulas, where n is (ϕ,±v,ActR):

M. Knobbout et al. / A Dynamic Logic of Norm Change 889

1. (a) ([(ϕ,+v,ActR)]v) ↔ (ϕ ∨ v)
(b) ([(ϕ,−v,ActR)]v) ↔ (¬ϕ ∧ v)

2. ([(ϕ,±v,ActR)]p) ↔ p (if v �= p)
3. ([n]¬ψ) ↔ (¬[n]ψ)
4. ([n](ψ1 ∨ ψ2)) ↔ (([n]ψ1) ∨ ([n]ψ2))
5. ([n]Do(α)ψ) ↔ (Do(α)ψ) (if α ∈ ActR)
6. ([n]Do(α)ψ) ↔ (Do(α)[n]ψ) (if α �∈ ActR)

Proof. (Soundness) Soundness can be proven by proving sound-
ness for every axiom independently. Soundness of each axiom can
be shown by following the definitions found in the paper except for
axiom 5, which requires the result that for every (N, q) we have
N [ϕ,±p,ActR], q

r |= ψ iff N, q |= ψ, which can be shown
by showing the existence of bi-simulation relation between the two
models and states. We show soundness of axiom 6 as example, and
omit the other ones due to space constraints:

N, q |= [n]Do(α)ψ ⇔
N [n], qr |= Do(α)ψ ⇔
N [n], qr(α) |= ψ ⇔

N [n], q(α)r |= ψ (if α �∈ ActT) ⇔
N, q(α) |= [n]ψ (if α �∈ ActT) ⇔

N, q |= Do(α)[n]ψ (if α �∈ ActT)

(Completeness) In order to show completeness, we define the fol-
lowing translation function τ1 : L1 → L0:

τ1(p) = p
τ1([(ϕ,+v,ActR)]v) = ϕ ∨ v
τ1([(ϕ,−v,ActR)]v) = ¬ϕ ∧ v

τ1(¬ψ) = ¬τ1(ψ)
τ1(ψ1 ∨ ψ2) = τ1(ψ1) ∨ τ1(ψ2)
τ1(Do(α)ψ) = Do(α)τ1(ψ)

τ1([n]¬ψ) = τ1(¬[n]ψ)
τ1([n](ψ1 ∨ ψ2)) = τ1(([n]ψ1) ∨ ([n]ψ2))
τ1([n]Do(α)ψ) = τ1(Do(α)ψ) (if α ∈ ActR)
τ1([n]Do(α)ψ) = τ1(Do(α)[n]ψ) (if α �∈ ActR)
τ1([n1]([n2]ψ)) = τ1([n1]τ1([n2]ψ))

The first observation we can make is that this function is well-
defined, i.e. for any formula ϕ ∈ L1 this function returns a formula
τ1(ϕ) ∈ L0. The reason that this function is well-defined (i.e. always
gives an answer) is that we can show under a suitable definition of
the complexity of formulas (see [16]) that this translation always re-
duces the complexity. Using this translation, we can show that for
any ϕ ∈ L1 we have �L1 ϕ ↔ τ1(ϕ) (where �L1 ϕ stands for “ϕ
is provably in system L1”), which due to space constraints we omit
in this paper. By soundness of L1, we have from �L1 ϕ ↔ τ1(ϕ)
that |= ϕ ↔ τ1(ϕ). Thus, from our assumption that |= ϕ, we have
|= τ1(ϕ). By the completeness of system L0 (Theorem 1), we have
�L0 τ1(ϕ). This implies that also �L1 τ1(ϕ), since L1 contains all the
rules and axioms of L0. Since we have shown that �L1 ϕ ↔ τ1(ϕ)
and since �L1 τ1(ϕ), we can apply modus ponens to acquire �L1 ϕ.

These axioms are inspired by the type of reduction axioms we
may find in [16]. Axiom 1a states that if we update every ϕ-state
with +v, in order for v to be true it either had to be true before the
update, or ϕ is the case. Axiom 1b states that if we update every ϕ-
state with −v, in order for v to be true it has to be both true before
the update and the state itself was not updated, i.e. ¬ϕ is the case.
Axiom 2 states that any other proposition for which the update does
not apply behave invariantly: i.e. the truth condition remains as what
it was before the update. Axiom 3 and 4 both state that the dynamic

update is a function: a normative system N together with an update n
uniquely defines an updated system N [n]. Axiom 5 states that when
a repair action is performed, the norm is no longer in effect. Finally,
axiom 6 states that if a certain action does not repair the norm effect,
it does not matter if we perform the update before or after this action
in order to determine the state of affairs caused by this action.

We can now show how we can derive the validity of assertions
from language L1. Previously in the paper, we already briefly men-
tioned without proof that the following assertion is valid:

|= [(
,+v, ∅)]([(v,+v′, ∅)]v′)

Below, we prove it formally by providing a derivation from system
L1. We use notation ‘RE(x,y)’ to denote that we replaced a sub-
formula from line x by using an acquired equivalence from line y,
which is short-hand notation for applying the rule of replacement of
equivalence formulas (RE) and then applying modus ponens (MP)
on the result. Moreover, we use the notation ‘MP(x,y)’ to denote that
we apply modus ponens (MP) with the implication from line x and
the precedent from line y. In the proof, we assume that v �= v′:

([(v,+v′, ∅)]v′) ↔ (v ∨ v′) Ax.1(a)
([(
,+v, ∅)](v ∨ v′)) ↔ ([(
,+v, ∅)]v ∨ [(
,+v, ∅)]v′) Ax.4
([(
,+v, ∅)]v) ↔ (
 ∨ v) Ax.1(a)
([(
,+v, ∅)]v′) ↔ v′ Ax.2
([(
,+v, ∅)](v ∨ v′)) ↔ ((
 ∨ v) ∨ [(
,+v, ∅)]v′) RE(2,3)
([(
,+v, ∅)](v ∨ v′)) ↔ ((
 ∨ v) ∨ v′) RE(5,4)
([(
,+v, ∅)]([(v,+v′, ∅)]v′)) ↔ ((
 ∨ v) ∨ v′) RE(6,1)
((
 ∨ v) ∨ v′) Taut.
[(
,+v, ∅)]([(v,+v′, ∅)]v′) MP(7,8)

Thus, we have:

�L1 [(
,+v, ∅)]([(v,+v′, ∅)]v′)

And by soundness of L1 we have:

|= [(
,+v, ∅)]([(v,+v′, ∅)]v′)

A natural question we may ask is whether logic L1 with correspond-
ing system L1 is decidable, i.e. whether there exists an effective pro-
cedure that tells us whether an arbitrary formula ϕ ∈ L1 is valid. We
have the following result.

Theorem 3 The logical language L1 with corresponding system L1

is decidable.

Proof. We use the translation function τ1 : L1 → L0 from our
completeness proof in Theorem 2 to establish the following corre-
spondence:

�L1 ϕ ⇔ �L1 τ1(ϕ) ⇔ �L0 τ1(ϕ)

Thus, in order to determine whether �L1 ϕ, it is both necessary and
sufficient to show that �L0 τ1(ϕ). However, since logic L0 with cor-
responding system L0 is decidable and since τ1 is well defined and
can be effectively computed, decidability immediately transfers to
our logic and system.

This concludes our work on the logical language L1 and L1 al-
lowing us to reason about normative update of the ‘to-be’ variant. In
the next section we take a look at normative update of the ‘to-do’
variant, leading to another dynamic logic which, as we will see later,
will extend this logic.

M. Knobbout et al. / A Dynamic Logic of Norm Change890

4 Extended Norm Language and Update

In the previous section, we developed a basic logical language of
normative update. In this section we consider a different kind of nor-
mative update, which corresponds to norms of the ‘to-do’ variant.

4.1 Language and Update

In the remainder of this section, we give a language to construct these
kinds of norms, we show how we can update a normative system
using these norms and finally we show how we can add these con-
structs to our logical language. We construct the norm language N2

in the following way, where ϕ ∈ L0, v ∈ V , ActT ⊆ Act and
ActR ⊆ Act:

n ::= (ActT , ϕ,+v,ActR) | (ActT , ϕ,−v,ActR)

We call the set ActT the set of trigger actions. Adding a norm
(ActT , ϕ,+v,ActR) implies that whenever a trigger action from
ActT occurs, from that point on for every ϕ-state the violation v
will start to hold until a repair action from the set ActR occurs.
An example norm might be that speeding will result in a violation
v which can be repaired by paying a fine, which can be modelled by
({speeding},
,+v, {pay}). Again, since we want to give a clear
semantic interpretation to how a pointed normative system should
behave when a norm is added to the system, we extend the notion of
norm-aligned to updates from this extended language.

Definition 4 (Norm-Aligned (N2)) Given a pointed normative sys-
tem (N, q), a norm n = (ActT , ϕ, +v, ActR) ∈ N2, we say that
(N, q)′ is norm-aligned with n if for every atomic proposition p and
every (possibly empty) sequence of actions α1 . . . αn ∈ Act∗, we
have that (N, q)′ |= Do(α1) . . . Do(αn)p if and only if

1. N, q |= Do(α1) . . . Do(αn)p, or;
2. p = v, N, q |= Do(α1) . . . Do(αn)ϕ, and

∃i : αi ∈ ActT , ∀j, i < j ≤ n : αj �∈ ActR.

In words, a system updated with a norm (ActT , ϕ,+v,ActR) is
norm-aligned the norm if (1) all propositions that were true before
remain true, plus (2) if the norm condition ϕ is true, a trigger action
from ActT has been performed and no repair action from ActR has
been performed yet, then v should be true as well. Again, this no-
tion captures both a property of success and a property of minimal
change. On the one hand, it states that the norm effect should hold
under the right conditions (property of success; a trigger action has
been performed, the norm condition is true and no repair action has
been performed yet), and on the other hand it states that everything
else should remain unchanged (property of minimal change). Notice
that by the above interpretation of norm-aligned, whenever we have a
norm (ActT , ϕ,±v,ActR) and an action α such that α ∈ ActT and
α ∈ ActR, it is always the case that action α triggers and not repairs
the norm effect, even though this action is both a trigger and a repair
action. In other words, the trigger actions take priority over the repair
actions. Again, more complex norms can be encoded by combining
a multitude of these simpler norms. We again have that every update
should be norm-aligned, as given by the following postulate.

Postulate 2 (Norm-Aligned (N2)) Any normative system updated
with a norm n ∈ N2 should be norm-aligned.

We will now show how we can perform a norm update which re-
sults in a norm-aligned normative system. This norm update is very

similar to the previous norm update we saw in this paper, the main
difference lying in the updated accessibility relation of the model.
Formally:

Definition 5 Given N = (Q,Act,→,Π, V, μ), q ∈ Q and n =
(ActT , ϕ,+v,ActR) ∈ N2, we let (N, q)[n] = (N [n], q[n]) such
that:

• System N [n] = (Q′, Act,→′,Π, V, μ′), where:

– Q′ = {qr, qa | q ∈ Q}
– →′ =

{(qri , α, qrj) | qi(α) = qj and α �∈ ActT }⋃
{(qri , α, qaj) | qi(α) = qj and α ∈ ActT }⋃
{(qai , α, qaj) | qi(α) = qj and α �∈ (ActR\ActT)}⋃
{(qai , α, qrj) | qi(α) = qj and α ∈ (ActR\ActT)}

– For every state q ∈ Q:
μ′(qr) = μ(q) and

μ′(qa) =

{
μ(q) ∪ {v} if N, q |= ϕ

μ(q) otherwise

• State q[n] = qr

The norm update with −v works analogously, except we remove this
atomic proposition from the norm updated valuation function μ′ for
every active state. Again, for every state q ∈ Q we create two copies
in the updated system; one in which the norm effect is active and one
in which it is repaired. There are two important differences in norm
updates from N2 in comparison with norm updates from N1. They
are the following:

1. The updated accessibility relation is different. It is still the case
that whenever we are in an active state and a repair action has
been performed (which is not also a trigger action), we go to a
repaired state. However, whenever we are in a repaired state and
a trigger action has been performed, we go to an active state. In
other words, with this norm update we are both able to go from
active states to repaired states and vice-versa. If no trigger or repair
action is performed, we remain in an active (or repaired) state.

2. With the update with norms from N2 the current state is updated
to a repaired state, while with updates with norms from N1 the
current state was updated to an active state.

The following proposition shows that these norm updates again
result in a norm-aligned system:

Proposition 2 Given an arbitrary N , q ∈ Q and n ∈ N2, the
pointed system (N, q)[n] is norm-aligned with n.

We return to our running example of the station to visualize how this
norm update works.

4.1.1 Running Example

Returning to the example from Figure 1, we now want to update this
system with the norm which states that if we do not check-in and
enter the station, we are in violation until we leave. We assume that
entering through this method is encoded by an action ‘unchecked’,
which encodes the action of not checking in. We can now encode
this norm by the norm n = ({unchecked}, station, +v, {leave}),
which states that there is a violation v if a traveller is not checked in,
and this violation remains as long as the traveller is in the station. By
following the rules of the norm update, we see in Figure 3 how we

M. Knobbout et al. / A Dynamic Logic of Norm Change 891

{}q0 {station} q1

{}qa0 {station, v} qa1

{}qr0 {station} qr1

Nstation

Nstation[({unchecked}, station,+v, {return})]]

enter

leave

unchecked leave

enter

leave
unchecked

enter

leave

Figure 3. Above system Nstation, and below the updated system. The
dotted transitions denote the state-updates.

go from system Nstation to Nstation[n], and states q0 and q1 to qr0
and qr1 respectively. We now have the validity that:

(Nstation, q0)[n] |= Do(unchecked)Do(enter)v

Or in words, not checking in and entering brings about a violation.
Note that in principle, norms from N1 and N2 can be combined in
arbitrary ways, even though in these examples we focussed on them
separately.

4.2 Logic and Axiomatization

We can now add these norm update operations to our language in the
same way we did to L1 to acquire L2, which contains formulas of
the form [n]ϕ where n ∈ N2.

4.2.1 Examples

Before we go to an axiomatization of this logic, let us look at some
specific (non-)validities of this extended dynamic logic. First, we ex-
pect that updating with (ActT , ϕ,+v,ActR) does not immediately
change the valuation of the current state. This is reflected by the fol-
lowing validity, which holds for any proposition p′:

|= ([(ActT , ϕ,+v,ActR)]p
′) ↔ p′

In other words, the truth of p′ in the current state after an update
depends merely on the truth of p′ before the update. Moreover, we
expect whenever a norm effect is not triggered by a certain action, it
does not matter whether this update is performed before or after this
action. That is, whenever α1, . . . , αn �∈ ActT , we have that:

|= ([(ActT , ϕ,+v,ActR)](Do(α1) . . . Do(αn)ψ)) ↔
(Do(α1) . . . Do(αn)[(ActT , ϕ,+v,ActR)]ψ)

Of course, a more interesting scenario happens when a trigger action
is performed. If we have that α ∈ ActT , we have the following
validity, which elegantly showcases the connection between updates
from N1 and N2:

|= ([(ActT , ϕ,+v,ActR)]Do(α)ψ) ↔
(Do(α)[ϕ,+v,ActT ∪ActR]([ActT , ϕ,+v,ActR]ψ))

The truth of this validity is not at all apparent. In words, updating
a system with (ActT , ϕ,+v,ActR) and then performing a trigger

action is equivalent to first performing the trigger action, then updat-
ing the system with (ϕ,+v,ActT ∪ActR) (note that this norm is in
N1, and that the repair actions are ActT ∪ActR instead of just ActR)
and finally updating again with (ActT , ϕ,+v,ActR). The reason the
norm (ActT , ϕ,+v,ActR) does not disappear on the right hand side
is because it remains in effect, i.e. it can be triggered by an action at
a later stage.

4.2.2 Axiomatization

In the previous section, we saw some example validities which we
can use in this section to provide an axiomatization of our logic. We
have the following result:

Theorem 4 The logic L2 is axiomatized by system L2, which con-
tains all the axioms and rules from L1, but with the following addi-
tional reduction axiom schemes together with the rule of replacement
of equivalent formulas, where n = (ActT , ϕ,±v,ActR):

1. ([n]p) ↔ p
2. ([n]¬ψ) ↔ (¬[n]ψ)
3. ([n](ψ1 ∨ ψ2)) ↔ (([n]ψ1) ∨ ([n]ψ2))
4. ([n]Do(α)ψ) ↔

(Do(α)[(ϕ,±v,ActR ∪ActT)]([n]ψ)) (if α ∈ ActT)
5. ([n]Do(α)ψ) ↔ (Do(α)[n]ψ) (if α �∈ ActT)

Proof. (Soundness) Soundness can again be proven by individual
soundness for each axiom. Special notice should be laid on axiom
4, which contains a norm from N1 with ActR ∪ ActT as the repair
actions. This is acquired from the result that for an arbitrary pointed
normative system (N, q), norm n = (ActT , ϕ,±v,ActR) ∈ N2

and formula ψ ∈ L2, we have N [n], qa |= ψ if and only if
(N [(ϕ,±v,ActR ∪ ActT)], q

a)[n] |= ψ. This result can be shown
by showing the existence of bi-simulation relation between the two
models and states. Intuitively, this axiom states that when a trigger
action has been performed, it would be equivalent to first performing
this action, then adding the norm in which the norm effect is immedi-
ately active, and finally adding the norm again. The intuitive reason
for using ActR ∪ ActT instead of ActR as the repair actions is to
avoid interference with n when at a later moment a trigger action oc-
curs again, i.e. if we would use ActR the axiom would not be sound.

(Completeness) In order to show completeness, we define the fol-
lowing translation function τ2 : L2 → L0, where below the function
τ1 : L1 → L0 is the function as defined in the proof of Theorem 2,
which we use to reduce formulas of the form [n]p (if n ∈ N1). More-
over, we define f : N2 → N1 as:

f((ActT , ϕ,±v,ActR)) := (ϕ,±v,ActR ∪ActT)

The reduction is defined as follows:

τ2(p) = p
τ2([n]p) = τ1([n]p) (n ∈ N1)
τ2([n]p) = p (n ∈ N2)
τ2(¬ψ) = ¬τ2(ψ)

τ2(ψ1 ∨ ψ2) = τ2(ψ1) ∨ τ2(ψ2)
τ2(Do(α)ψ) = Do(α)τ2(ψ)

τ2([n]¬ψ) = τ2(¬[n]ψ)
τ2([n](ψ1 ∨ ψ2)) = τ2(([n]ψ1) ∨ ([n]ψ2))
τ2([n]Do(α)ψ) = τ2(Do(α)ψ) (n ∈ N1 & α ∈ ActR)
τ2([n]Do(α)ψ) = τ2(Do(α)[n]ψ) (n ∈ N1 & α �∈ ActR)
τ2([n]Do(α)ψ) = τ2(Do(α)[f(n)]([n]ψ))(n ∈ N2 & α ∈ ActT)
τ2([n]Do(α)ψ) = τ2(Do(α)[n]ψ) (n ∈ N2 & α �∈ ActT)
τ2([n1]([n2]ψ)) = τ2([n1]τ2([n2]ψ))

M. Knobbout et al. / A Dynamic Logic of Norm Change892

This time around, it is slightly harder to show that τ2 is well-defined.
This is because τ2 on input [n]Do(α)ψ for which n ∈ N2 and
α ∈ ActT ‘generates’ an extra norm f(n), i.e., it can occur that
on a certain input, the number of dynamic operators increases. How-
ever, since the number of norms from the set N2 in the scope of a
norm from N1 never increases and always eventually decreases, we
know that the translation will eventually return a well-formed for-
mula from L0. It is possible to show that for any ϕ ∈ L2 we have
that �L2 ϕ ↔ τ2(ϕ) (where again �L2 ϕ stands for “ϕ is provably in
L2”), which we omit due to space constraints. We can now show that
from the assumption that |= ϕ we have �L2 ϕ. By soundness of L2,
we have from �L2 ϕ ↔ τ2(ϕ) that |= ϕ ↔ τ2(ϕ). Thus, from our
assumption that |= ϕ, we have |= τ2(ϕ). By the completeness of sys-
tem L0, we have �L0 τ2(ϕ). This implies that also �L2 τ2(ϕ), since
L2 contains all the rules and axioms of L0. Since we have shown
that �L2 ϕ ↔ τ2(ϕ) and since �L2 τ2(ϕ), we can apply rule modus
ponens to acquire �L2 ϕ.

In words, axiom 1 states that an update does not modify the state
of affairs of the current state. Axiom 2 and 3 both state that the dy-
namic update is a function: given a normative system and an update,
a new normative system is uniquely determined. Axiom 4 is espe-
cially noteworthy. This axiom states that when a trigger action has
been performed, it would be equivalent to first performing this ac-
tion, then adding the norm in which the norm effect is immediately
active, and finally adding the norm again. This axiom elegantly show-
cases the connection between our two types of norms, namely it both
contains constructs from language N1 and N2. Axiom 5 states the
property that if the norm is not triggered by a certain action, it does
not matter if we perform the update before or after this action. All
these axioms are only concerned with the trigger actions, while the
axioms of L1 are only concerned with the repair actions. Together
they form a complete axiomatization which considers both the trig-
ger and repair actions.

We again have a similar result about decidability.

Theorem 5 The logical language L2 with corresponding system L2

is decidable.

Proof. We use the translation function τ2 : L2 → L0 from our
completeness proof in Theorem 4 to establish the following corre-
spondence:

�L2 ϕ ⇔ �L2 τ2(ϕ) ⇔ �L0 τ2(ϕ)

Thus, in order to determine whether �L2 ϕ, it is both necessary and
sufficient to show that �L0 τ2(ϕ). However, since logic L0 with cor-
responding system L0 is decidable and since τ2 is well defined and
can be effectively computed, decidability again transfers to our logic
and system.

Note that this proof highlights an easier way to establish
the validity of a sentence. To show for example that �L2

[n](Do(α2)Do(α1)v), where n = ({1},
,+v, {2}), we can per-
form the following translation:

τ2([n](Do(α2)Do(α1)v)) =
τ2(Do(α2)[n](Do(α1)v)) =
Do(α2)τ2([n](Do(α1)v)) =

Do(α2)τ2(Do(α1)[f(n)]([n]v)) =
Do(α2)Do(α1)τ2([f(n)]([n]v)) =

Do(α2)Do(α1)τ2([f(n)]τ2([n]v)) =
Do(α2)Do(α1)τ2([f(n)]v) =

Do(α2)Do(α1)(
 ∨ v)

To easily establish that:

�L0 Do(α2)Do(α1)(
 ∨ v)

This concludes our work on the logical language L2 and L2, ex-
tending L1 and L1. We saw that even though our second logic ex-
tends the first, decidability is still guaranteed.

5 Related work and Conclusions

In this paper we introduced various expressive types of norms and
devised new dynamic modal logics that are able to characterize the
dynamics of such norms. We have shown that these logics are sound,
complete and decidable, which means that we can use automated the-
orem provers to prove properties of norm dynamics and their effects
on normative systems. The new forms of norms may have various
effects and non-effects on the behaviour of a system which might
initially be overlooked. With a formal and rigid framework like the
one provided in this paper, we can automatically verify these effects.

The updates we consider in this paper are inspired by the kind of
updates we may see in dynamic epistemic logic such as Public An-
nouncement Logic [16], but note that the argument (a norm, which is
not just a logical formula but a complex structure consisting of a con-
dition, effect and repair actions) and result (a norm-aligned system)
of our norm update is something completely different from what we
may find there. Another important difference is the fact that these
updates are performed on pointed Kripke structures, while updates
from [16] are performed on just Kripke structures. Lastly, as an im-
portant note, we want to express that although these norm update
operations may at first glance be related to Propositional Dynamic
Logic (PDL) [11], the updates we consider are performed on Kripke
structures with duplicated states and not just on valuations.

This research is related to a multitude of different papers con-
cerned with norm change. The work presented in [7] uses the syn-
tactic approach, where norm change is considered as an operation
on the underlying “code” that constitutes the normative system. The
work in [10] shows a way to program norm change, but not how
to reason about this. In [4], the authors show, given a conditional
norm, how a transition system can be unfolded to a tree in which the
norm is into effect. The work in [13] considers norm-updates per-
formed on normative systems, but does not consider an axiomatized
logic to reason about these updates. In [6], Aucher et al. give a log-
ical account of ought-to-be norm change via the notions of context
expansion and contraction. In our work, we perform norm updates
on pointed labelled transition systems to give a logical account of
a much more general form of norm change via updates of the whole
system at hand. To capture the dynamics of norms we have employed
ideas from Dynamic Epistemic Logic, [16], where they use dynamic
modal logic to characterise the dynamics of Kripke structures, albeit
in a totally different (viz. epistemic) setting.

For future research there are various directions. Firstly, we can ap-
ply this framework to other well known frameworks of normative
systems, such as the coloured systems considered in [14]. Secondly,
we can look at other types of norms, such as norms with deadlines,
and see how we can relate these to the current model. Lastly, the re-
lation between the current framework and other frameworks of (dy-
namic) normative theory (e.g., [4, 8, 2, 7]) needs to be explored fur-
ther.

M. Knobbout et al. / A Dynamic Logic of Norm Change 893

REFERENCES

[1] Thomas Ågotnes, Wiebe van der Hoek, Juan A. Rodrı́guez-Aguilar,
Carles Sierra, and Michael Wooldridge, ‘On the logic of normative sys-
tems’, in Proceedings of the twentieth International Joint Conference
on Artificial Intelligence (IJCAI 2007), pp. 1175–1180, (2007).

[2] Thomas Ågotnes, Wiebe van der Hoek, and Michael Wooldridge, ‘Nor-
mative system games’, in Proceedings of the 6th International Joint
Conference on Autonomous Agents and Multiagent Systems (AAMAS
2007), pp. 881–888, (2007).

[3] Carlos E. Alchourrón, Peter Gärdenfors, and David Makinson, ‘On the
logic of theory change: Partial meet contraction and revision functions’,
Journal of Symbolic Logic, 50(2), 510–530, (1985).

[4] Natasha Alechina, Mehdi Dastani, and Brian Logan, ‘Reasoning about
normative update’, in Proceedings of the Twenty-Third International
Joint Conference on Artificial Intelligence (IJCAI 2013), pp. 20–26,
(2013).

[5] Alan Ross Anderson, ‘A reduction of deontic logic to alethic modal
logic’, Mind, 67(265), 100–103, (1958).

[6] Guillaume Aucher, Davide Grossi, Andreas Herzig, and Emiliano
Lorini, ‘Dynamic context logic’, in Proceedings of Logic, Rationality
and Interaction (LORI 2009), pp. 15–26, (2009).

[7] Guido Boella, Gabriella Pigozzi, and Leendert van der Torre, ‘Norma-
tive framework for normative system change’, in Proceedings of the 8th
International Joint Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2009), pp. 169–176, (2009).

[8] Nils Bulling and Mehdi Dastani, ‘Verifying normative behaviour via
normative mechanism design’, in Proceedings of the Twenty-Second
International Joint Conference on Artificial Intelligence (IJCAI 2011),
pp. 103–108, (2011).

[9] Brian F. Chellas, Modal Logic: An Introduction, Cambridge University
Press, 1980.

[10] Mehdi Dastani, John-Jules Ch. Meyer, and Nick A. M. Tinnemeier,
‘Programming norm change’, Journal of Applied Non-Classical Log-
ics, 151–180, (2012).

[11] Michael J. Fischer and Richard E. Ladner, ‘Propositional modal logic
of programs’, in Proceedings of the Ninth Annual ACM Symposium on
Theory of Computing, pp. 286–294, (1977).

[12] Max Knobbout and Mehdi Dastani, ‘Reasoning under compliance as-
sumptions in normative multiagent systems’, in Proceedings of the 11th
International Joint Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2012), pp. 331–340, (2012).

[13] Max Knobbout, Mehdi Dastani, and John-Jules Ch. Meyer, ‘Reasoning
about dynamic normative systems’, in Logics in Artificial Intelligence -
14th European Conference (JELIA 2014), pp. 628–636, (2014).

[14] Marek J. Sergot, ‘Action and agency in norm-governed multi-agent sys-
tems’, in Proceedings of the Engineering Societies in the Agents World
VIII (ESAW 2007), pp. 1–54, (2007).

[15] Yoav Shoham and Moshe Tennenholtz, ‘On the synthesis of useful so-
cial laws for artificial agent societies’, in Proceedings of the Tenth Na-
tional Conference on Artificial Intelligence (AAAI 1992), pp. 276–281,
(1992).

[16] Hans van Ditmarsch, Wiebe van der Hoek, and Barteld Kooi, Dynamic
Epistemic Logic, volume 337 of Synthese Library Series, Springer,
2007.

M. Knobbout et al. / A Dynamic Logic of Norm Change894

