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Abstract.

In this paper we tackle the problem of semantic heterogeneity in
multi-agent communication, i.e., when agents in a multi-agent sys-
tem use different vocabularies for message passing, or might in-
terpret shared vocabulary in varying ways. The problem of achiev-
ing meaningful communication in such semantically heterogeneous
multi-agent interactions has been mainly tackled either by using on-
tology alignments to translate vocabularies, or by using methods that
learn an alignment by observing how the utterance of particular terms
affects the unfolding of an interaction. We propose solutions that
combine these approaches and study how agents can use external
alignments with possibly incomplete or erroneous mappings when
communicating with each other in the context of a multi-agent in-
teraction. We further show experimentally that with the experience
gained through repeated interactions and by using simple learning
techniques agents can find and repair those mappings of an ontology
alignment that lead to unsuccessful interactions, thus improving the
success rate of their future interactions.

1 INTRODUCTION

An important problem in the design and implementation of dis-
tributed systems is to guarantee a sufficiently good level of interop-
erability between separately engineered software components as for
the whole system to function adequately with respect to the expected
functionality it is supposed to deliver. A particularly critical prob-
lem is that of semantic heterogeneity, i.e., when the terms used in
the exchange of information between system components are inter-
preted differently by each of them [14]. This problem has triggered
a significant amount of research in the fields of databases, the se-
mantic web, or multi-agent systems [9, 11, 8]. In this paper we will
focus on the problem of semantic heterogeneity in multi-agent com-
munication, having in mind open multi-agent systems for which an
interaction model or protocol is specified, but whose agents might
have differences in the vocabulary they use for message passing, or
might interpret shared vocabulary in varying ways.

When faced with multi-agent systems whose agents use different
vocabularies in their communicative acts, the immediate and most
common solution is to resort to some semantic alignment technique,
maybe supplemented with some process of vocabulary or alignment
negotiation, so as for agents to determine how foreign vocabulary
needs to be interpreted using the local one [11, 16, 22, 17]. The suc-
cess of this solution is obviously very dependent on the quality of the
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alignments that can be computed, which in turn is very much condi-
tioned by the detail in which vocabularies are specified and to the ex-
ternal semantic resources that might be available. For ontologies with
a rich taxonomic structure and with detailed axiomatic specifications
of the intended meaning of entities and relations, one can take ad-
vantage of state-of-the-art ontology matching tools that exploit many
different kind of techniques, going from simple syntactic matching
all the way to formal logical reasoning [11]. But when faced with
underspecified vocabularies, the alignments obtained may prove to
be insufficient for achieving the semantic interoperability required
for a multi-agent interaction to be successful.

An alternative approach that does not depend on any ontology, se-
mantic alignment tool or external semantic resource, was described
in [3], in which agents gradually learn from the experience of re-
peated interactions those mappings of their vocabularies that lead to
successful multi-agent communication. In that approach, meaning is
assumed to be only determined by the interaction context, and it is
never explicitly communicated. Unfortunately, the convergence to a
common vocabulary using this approach can be very slow, i.e. many
repetitions of the same interaction need to be enacted to get reason-
able expectations of success, since no other source of meaning be-
sides the interaction is taken into account.

Consequently, it seems reasonable to attempt to improve upon
these two complementary approaches by combining them, develop-
ing novel semantic alignment techniques for multi-agent communi-
cation that can take advantage from the strengths of both approaches.
Such techniques would exploit the availability of the ontological
knowledge associated to a vocabulary and the powerful ontology
matching techniques that make use of it, but would also take into
account the experience that agents accumulated of the actual use of
their vocabulary in the concrete contexts of particular interactions
and the outcomes of these.

In this paper we set out to show how agents that are to perform
a task together as specified in an interaction model or protocol can
learn dynamically a translation that is useful for their interaction,
with the help of semantic alignments computed by some external on-
tology matcher. While relying on these semantic alignments can pro-
vide valuable information that eases the convergence to a meaningful
translation, external alignments can also contain errors or be inade-
quate for the particular interaction context in which the agents are
using them, something that could hinder successful communication.

We first propose a straightforward way of combining a previously
computed, external ontology alignment between separate vocabular-
ies with the alignment technique that learns the semantic relation-
ship between vocabularies from the experience gained by repeated
multi-agent interaction. We than move on to describe a more pow-
erful technique that uses reinforcement learning techniques to han-
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dle low quality mappings of the external ontology alignment in the
context of the interaction, and thus to improve the ratio of success
in repeated interactions, by taking into account previous experience
with these low quality mappings.

We compare experimentally the proposed techniques, showing
that they both solve the drawbacks of using only one source of mean-
ing (only ontology alignment or only interaction experience) and im-
prove the success rate of multi-agent interactions. Our methods are
independent of the how vocabularies are ontologically structured and
of the internal structure of each agent. In addition, each agent com-
putes its own alignment based on its own interaction experience, so
that no shared framework for meaning negotiation is required.

2 ALIGNMENTS VS. INTERACTION
EXPERIENCE

In this paper we focus on interactions between two agents a1 and a2,
who might use words from different vocabularies to communicate.
A vocabulary is the finite set of words an agent is allowed to use in
its messages, and we will write V1 and V2 for the vocabularies of
our two agents. Each agent can organise its vocabulary in its own
way, with additional structure that makes it a taxonomy of words,
or even a fully fledged ontology specifying the intended meaning of
the words of the vocabulary. In our work, however, we only need to
assume that a vocabulary V is provided with some similarity measure
sim : V × V → [0, 1] between its words.3

We have mentioned two main approaches to tackling semantic het-
erogeneity in agent communication: those that rely on external align-
ments and those that learn from repeated interaction. In this section
we will explain both of these techniques, formulating them as so-
lutions to the problem of choosing how to interpret a foreign word
in a received message. We focus on the situation in which agent a1

receives a message with a word v2 sent by agent a2 when it was ac-
tually waiting for one from some known set U of expected words
to receive. The agent therefore needs to choose a word v1 ∈ U that
matches with the received one v2, in such a way that the interaction
proceeds correctly. We will explain each of the two approaches as
a technique to compute a probability distribution for each v1 ∈ U
according to which agent a1 can choose a possible match for v2.

2.1 Using External Vocabulary Alignments

One approach to achieving mutual understanding between agents
that use different vocabularies is to use an external alignment, tak-
ing advantage of the multiple matching techniques that have been
developed in the last decades. These techniques vary from sophis-
ticated OWL ontologies matchers to syntactic similarity measures,
and the choice between these possibilities will depend on the addi-
tional structure in the vocabularies of agents, the availability of the
matching tools, and the access to the vocabulary and structure of the
agents’s interlocutors.

Definition 1 An alignment A between two vocabularies V1 and V2

is a finite set of mappings between words in V1 and V2. A mapping
is defined as a quadruple 〈v1, v2, n, r〉, where v1 ∈ V1, v2 ∈ V2,
n ∈ (0, 1] is the degree of confidence on the mapping, and r is the
kind of relation that holds between words. An alignment contains at
most one tuple for each pair of words 〈v1, v2〉. [5]

3 Adequate similarity measures will depend on the additional structure given
to the vocabulary. For taxonomies, for instance, a choice could be the Wu-
Palmer measure [24]. Even if no similarity measure is provided, we can
always resort to the trivial one that assigns 1 to the identity and 0 otherwise.

In this work, we will consider alignments with only equivalence
(≡) as the relation holding between words in the mappings. Given an
alignment A, if a mapping 〈v1, v2, n,≡〉 belongs to A we will write
v1 ≡ v2 and denote its confidence with conf (v1 ≡ v2).

The quality of vocabulary alignments is typically measured in
comparison with a reference alignment, for which values of preci-
sion and recall are computed. As it is commonly done, we do not
take into account the confidence degrees in these measures.

Definition 2 Given an alignment A, let A′ denote the set of map-
pings of A for which we have removed the confidence degree, i.e.,
A′ = {〈v1, v2, r〉 | 〈v1, v2, n, r〉 ∈ A for some n}. The precision
of an alignment A with respect to a reference alignment B is the
fraction of the mappings in A′ that are also in B′:

precision(A,B) = | A′ ∩ B′ |
| A′ |

while its recall is the fraction of the mappings in B that were found
by A:

recall(A,B) = | A′ ∩ B′ |
| B′ |

The most straightforward approach to use an alignment to tackle
the problem of semantic heterogeneity in agent communication is to
use it directly for translating words in messages. If an agent receives
the word v2 while waiting for words in U , it will choose the word that
matches with v2 with highest confidence in the alignment; if there is
no such word, it chooses one randomly. This approach will work
well if the alignment is adequate for the task the agents are perform-
ing; however, low recall will mean more random choices, which can
cause unsuccessful interaction, while low precision implies a higher
probability of choosing incorrect matches, which can also cause an
interaction to fail.

One way of mitigating the effect of low recall is to consider not
only the mappings that are explicitly present in the alignment, but
to take into account the additional structure vocabularies may have.
This can be achieved by using the similarity measure between words
of one vocabulary in order to choose a word that is close to a match.
Consider a similarity threshold θ ∈ [0, 1]. For each v1 ∈ U , let
V≡v2(v1) be the set of words that match with v2 in the alignment
and that are closer than θ to v1:

V≡v2(v1) = {v′1 ∈ V1 | v′1 ≡ v2 and sim(v1, v
′
1) ≥ θ}

To compute a probability distribution over the interpretations, we
first assign a value to each possibility. In this case, the value of inter-
preting v2 as v1 is given by

Valg(v1, v2) =

{
maxv′

1
conf (v′1 ≡ v2)sim(v1, v′1) if V≡v2 (v1) �= ∅

0 otherwise

where v′1 ∈ V≡v2(v1).
To reduce the effects of low precision, a solution is to not trust the

alignment completely, including an exploration parameter ξ1 in the
definition of a probability distribution over words in U .

Alignment Criterion (alg).

Let V̂alg(v1, v2) be the normalised value of Valg(v1, v2) for each
v1 ∈ U . Choose v1 ∈ U with probability:

palg(v1) = ξ1 × V̂alg(v1, v2) + (1− ξ1)
1

| U |
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The exploration parameter ξ1 introduces a well known dilemma.
Setting it to large values result in a very weak method when there are
wrong mappings in the alignment, while with low values we can be
losing useful information. Ideally, the parameter should depend on
the precision of the alignment A, but this is something agents are not
expected to know in advance.

2.1.1 The Alignment Criterion in Action: A Running
Example

In what follows we introduce an illustrative example using a simple
travel agency scenario adapted from [2]. The complete vocabularies
and specifications of the ontologies used by the agents can be found
in [2]; we do not need them explicitly here.

Consider a Travel Agent (TA) offering two services: to book a
flight for a given date and destination, or to provide information
about the available hotels in a city. TA uses its own vocabulary, which
is not necessarily shared by its clients; we consider a particular Cus-
tomer (C) who uses a different language. To be able to interact with
C, agent TA may use an ontology alignment provided by some ex-
ternal source. Table 1 shows a relevant fragment of the alignment
provided by the matcher Falcon-AO [15] as reported in [2]. Con-
sider a situation in which TA is waiting for agent C to specify if it
wants a return flight or not, so U = {OneWay,RoundTrip} at
this state. Using the alignment criteria and the simple 0 − 1 similar-
ity measure, if C sends {Single}, the travel agent will interpret it as
{RoundTrip}.

v1 ∈ V1 v2 ∈ V2 Confidence
Return Package 0.41
Single RoundTrip 0.19
UnregCustomer OneWay 0.03
Flight Customer 0.01
destination airlineCompany 0.99
carrier to 0.99
departing leavingDate 0.99
origin from 0.99
returning returnDate 0.76
hotelBookingsIn city 0.30

Table 1: Extract of the alignment provided by Falcon-AO as reported
by Atencia in [2]

2.2 Learning from Interaction Experience

A second approach to communicating with linguistically heteroge-
neous partners does not use any external resource, but instead con-
siders meaning to be determined by the specification of interactions.
Agents that perform the same task repeatedly interacting with the
same partners can learn the meaning of words by simply observing
the outcomes for different possibilities and choosing again the ones
that gave good results. This technique was developed in [3], and in
this section we reformulate it as a solution to a learning problem,
which will be useful to introduce, in Section 3, the novel methods we
propose.

In this approach, each agent has its own specification of the inter-
action it takes part in. In the last decades, the multi-agent commu-
nity has discussed thoroughly the question of how to model agent
interactions and communication languages, and many different tech-
niques have been proposed [23]. In this work we will abstract these
techniques to consider only a very simple message exchange mecha-
nism, modelled as a finite-state automaton in which state transitions

are triggered by messages. To represent different outcomes of the in-
teraction that all agents can recognise, we define a set of predicates
called state properties to characterise final states.

Definition 3 Given two agents a1 and a2, a vocabulary V and a set
of state properties SP , an interaction model IM is defined as a tuple
〈Q, q0, δ, F, ρ, speaks〉 where Q is a finite set of states, q0 ∈ Q is
the initial state, F ⊆ Q is the set of final states, ρ : F → P(SP ) is
a function assigning a subset of state properties to each final state,
and speaks : Q → {a1, a2} is a function assigning to each state its
sender agent, and δ : Q × V → Q is a partial function called the
transition function.

Note that while we do not specify any particular turn-taking pat-
tern, we do require that, for each state, all messages labelling transi-
tions from this state share the same sender agent, who is determined
with the speaks function.

While we assume that the language to specify state properties in
SP is shared, agents may use different vocabularies for the messages
they send to each other. Consequently we will denote with IM1 the
interaction model followed by agent a1 using vocabulary V1, and
with IM2 the one followed by agent a2 using vocabulary V2.

When the interaction is in a state q ∈ Q for which speaks(q) =
a1, agent a1 chooses a word from V1 to utter according to IM1.
If instead speaks(q) = a2, a1 will wait to receive a message
from a2. Since the received word is from V2, it will need to in-
terpret it in the context of that particular interaction state, follow-
ing a transition according to IM1. That is, it will choose a word
from the set of expected words for state q, given by U (q) = {v ∈
V1 | δ(q, v) is defined}. Since a2 does the same, an interaction be-
tween two agents can be defined as a sequence of uttered messages
along with how they were interpreted. A successful interaction is one
that leads both agents to final states with the same state properties.

For the following definitions it will be useful to restrict interaction
models to deterministic ones, and to recall that in this case an ac-
cepted string can be associated with only one sequence of states that
are visited to produce it.

Definition 4 A successful interaction between interaction models
IM1, IM2 is a finite sequence of pairs of words 〈v1, v2〉 with v1 ∈
V1 and v2 ∈ V2 such that the projection of its first coordinates is a
string accepted by IM1, the projection of its second coordinates is a
string accepted by IM2, and both projections visit, in their respec-
tive interaction model, sequences of states with the same senders,
reaching final states with the same state properties.

Successful interactions lead to an intuitive notion of alignment
between two interaction models, which is composed of all tuples
〈v1, v2〉 that belong to successful interactions. However, this align-
ment could have different interpretations for the same word, corre-
sponding to different states. Agents will be interested, more specifi-
cally, in finding which interpretation they need to choose according
to each state in order to interact successfully:

Definition 5 Let int be a successful interaction between IM1 and
IM2, and let states be the sequence of states visited in IM1 de-
termined by the projection of the first coordinates of int . Then all
tuples 〈q, v1, v2〉 obtained by adding the ordered items of states to
the pairs in int belong to the pragmatic alignment from interaction
model IM1 to interaction model IM2.

Notice, first, that pragmatic alignments are defined from one inter-
action model to another one, and second, that unlike those in Defini-
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Figure 1: Interaction Model IMTA for the Travel Agent
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Figure 2: Interaction Model IMC for the Customer

tion 1, mappings are parametrised by states. We will write v1 
q v2
if 〈q, v1, v2〉 belongs to the pragmatic alignment from IM1 to IM2.

Definition 6 Two interaction models IM1 and IM2 are structurally
equivalent if all strings accepted by them separately are projections
of a successful interaction between them.

Interaction models are structurally equivalent if they are equiva-
lent modulo interpretation of words in messages, or in other words,
interactions can always finish successfully if the correct mappings
are chosen. In this work we will assume that IM1 and IM2 are
structurally equivalent. While the methods we propose can be eas-
ily adapted to interaction models that have minor differences, they
will not perform well when such differences are substantial; how to
adapt heterogeneous protocols is a difficult problem that is out of the
scope of this paper.

To interact successfully with each other, agents need to dis-
cover the pragmatic alignment between their interaction models. The
method proposed in [3] that we explain in this section, as well as
the novel ones presented in the next one, are techniques to let agents
learn these pragmatic mappings automatically from repeated interac-
tion. We will formulate these solutions using standard concepts and
notation from Reinforcement Learning (see, e.g., [20]). As usual, we
start by defining the learning model.

Since a1 needs to learn which interpretation is good for a received
word in a specific state, the states of the learning model will be pairs
〈q, v2〉, where q ∈ Q, speaks(q) = a2, and v2 is a word received.
In that situation, a1 can choose how to interpret v2 from a the set of
expected messages, therefore the set of actions for a state {q, v2} of
the learning model are the words in U (q). Let us make two remarks.
First, we are abstracting the interaction states in which a1 speaks,
because it does not need to learn any interpretation in those, and the
pragmatic alignment will be independent of the messages it utters.
Second, the agents do not know the learning model a priori, since
they ignore which messages their interlocutor can utter. We will use
methods that do not require agents to know the model. Our objective
is to estimate action values V(v1 
q v2), which represent the confi-
dence in that v2 should be interpreted as v1 in q. In this section we
present a simple solution: values for all mappings in an interaction
are updated when the interaction ends, adding 1 if it succeeded, or 0
if it failed.

In each interaction they take part in, agents will keep a record of
the mapped pairs as a sequence (q0, v10, v20), . . . , (qn, v1n, v2n).

When the interaction ends, the values of mapped pairs are updated in
the following way.

Vexp(v1 
q v2) =

{Vexp(v1 
q v2) + 1 if the interaction succeeded
Vexp(v1 
q v2) if the interaction failed

Let #exp(q, v2) =
∑

v1′∈U (q) Vexp(v
′
1 
q v2), and consider an

exploration parameter ξ2 close to 1. The interpretation can be chosen
according to the following criterion:

Experience Criterion (exp).

Let e(q, v1, v2) =
Vexp(v1 
q v2)

#exp(q, v2)
. Choose v ∈ U (q) with

probability:

pexp(v1 �q v2) =

⎧⎨
⎩
ξ2 e(q, v1, v2) + (1− ξ2)

1
|U (q)| if #exp(q, v2) > 0

1

| U (q) | if #exp(q, v2) = 0

This method divides the matching decisions in two phases. While
there is not enough information from the experience, the agent maps
randomly; once interactions start to be successful, it repeats good
choices.

Let us make two remarks. First, the exploration parameter ξ2 is
included to consider situations in which the configuration of the in-
teraction protocols can make two mappings be correct in one state.
Second, since the outcome of the interaction is only known once it
finished, this mechanism is affected by the credit assignment prob-
lem: learning from unsuccessful interactions is difficult, because it is
not known which of the mappings was wrong.

2.2.1 The Experience Criterion in Action

Consider again the Travel Agency example introduced in Section
2.1.1, but now suppose Travel Agent TA has specified the tasks it
can perform with the interaction model IMTA in Figure 1. The
letter in each state represent its speaker agent, while transitions
are only labeled with the content of messages. Consider SP =
{success, failure, book, info} and the following state property
function: ρ(7) = {success, book}, ρ(8) = {failure, book},
ρ(11) = {success, info}.
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The Customer Agent C, from its side, follows in-
teraction model IMC which is structurally equivalent
to IMTA. An example of a successful interaction be-
tween these interaction models is given by the sequence
〈Hotel, Accommodation〉, 〈hotelBookIn, city〉, 〈show, show〉.
This implies, for example, that in the pragmatic alignment from
IMTA to IMC , city 
9 hotelBookIn.

Using criterion exp, the TA will first go through a learning phase,
in which the interactions will be mostly unsuccessful since it is
choosing mappings randomly. However, since the interaction has few
interpretations choices and each of them with few options, it should
not take long to find correct mappings.

3 COMBINING ALIGNMENTS WITH
INTERACTION EXPERIENCE

In this section we propose methods than combine an external source
of meaning with the interaction context. We consider again a1 in-
teracting repeatedly with a2; now, in addition, a1 has access to an
external alignment A between V1 and V2.

A central concern when using A is that, since it was produced by
an external resource, it does not necessarily agree with the pragmatic
alignment between IM1 and IM2. This raises the question of how
vocabulary alignments relate to pragmatic ones; taking into account
that the last ones are parametrised by states. A straightforward def-
inition of the precision and recall measures when compared to two
interaction models considers as reference alignment all pairs in all
successful interactions, considering correct all the mappings that are
useful when interacting.

There is a situation in which a mapping in an external alignment
results particularly harmful for the interaction. The problem arises
when a mapping v1 ≡ v2 belongs to A and v1 ∈ U (q), but v′1 
q v2
does not belong to the pragmatic alignment between the interaction
models of both agents. In the travel agency example, this happens in
state 5, because RoundTrip ≡ Single and RoundTrip ∈ U (5),
but RoundTrip �
5 Single because it does not lead to any success-
ful interaction. When the alignment is followed, most of the times
RoundTrip will be chosen as an interpretation for Single, causing
the interaction to fail. We will refer to this kind of mappings as mis-
leading. A misleading mapping can be repaired by making its value
lower than other possibilities, so that it is not chosen anymore.

The following is a very straightforward combination of the align-
ment with the interaction experience:

Alignment and Experience Criterion (alg-exp).

Choose v1 ∈ U (q) with probability:

palg−exp(v1 
q v2) =

{
pexp(v1 
q v2) if #exp(q, v2) > 0

palg(v1 
q v2) if #exp(q, v2) = 0
4

This method affects only the exploratory part of the learning in the
exp criterion; successful interactions are taken into account in the
same way. This is because mappings that lead to successful experi-
ences belong to the pragmatic alignment by definition. This straight-
forward combination has two drawbacks. First, it still considers only
the successful matches and discards all the information in the ones
4 It would be reasonable to use palg(v1 �q v2) in the exploration of exp

instead of choosing randomly, we do not add it for clarity. The same holds
for the next criterion.

that failed. Second, the dilemma of when to choose randomly instead
of following the alignment that we explained in the Alignment Cri-
terion alg is not solved.

3.1 Learning from Unsuccessful Experiences

We now present a more elaborate method that is able to repair mis-
leading mappings and to find missing ones more efficiently. This is
achieved by updating the original confidences in the alignment with
the experience of unsuccessful interactions, combining the following
two ideas to deal with low quality alignments. First, to mitigate low
precision, mappings involved in unsuccessful interactions are pun-
ished. Second, to mitigate low recall, the confidence in a mapping is
updated taking into account the quality of the alignment possibilities
that were found subsequenty. The intuition behind this second idea
is that, if good mappings were found after a particular choice of in-
terpretation, it is likely that it was correct. Consider a simple analogy
with human conversations: if someone is not sure of having under-
stood a message, but the dialogue continues as expected, she will
assume her understanding was correct, whereas if stranger messages
arrive, her confidence will decrease.

Our method, again, divides the learning in two phases. The dif-
ference with the already presented criteria is that, in the first phase,
agents also compute a distribution over the possible interpretations,
representing their confidence in a mapping belonging to the prag-
matic alignment. This value depends depend on the original confi-
dence (given by the external alignment) and on the observations of
what happened when the mapping was chosen.

In this first phase, we use a method that resembles classical tempo-
ral difference reinforcement learning techniques, but instead of com-
puting an expected reward, we will update a value representing the
confidence in that a mapping belongs to the pragmatic alignment.
This confidence starts being the value given in the alignment, and it
evolves with the experience. Agents will try to minimize the punish-
ment, which is assigned to the last mapping when an interaction fails;
in this way they explore different possibilities.

Let α ∈ (0, 1] be a forgetting parameter, and C ∈ (0, 1] a punish-
ment. As initial values, we use the confidences in the alignment:

Vev(v1 
q v2) = conf(v1 ≡ v2)

When an interaction finishes in failure, agents will have a sequence
of the states in which they made mapping decisions like in the exp
method. For each of these states, each agent will update Vev(v1 
q

v2) as follows:

- If i = n, a punishment of −C is assigned for having failed:

Vev(v1n 
qn v2n) = (1− α)Vev(v1n 
qn v2n) + α(−C)

- For i < n, each agent takes into account the mapping possibilities
in future states:

Vev(v1i �qi v2i) =(1− α)Vev(v1i �qi v2i)+

αmax
v

Vev(v1i+1 �qi+1 v2i+1)

where v ∈ U (qi+1).

We do not need to allow explicitly for exploration, since the back-
propagation of the punishment already has that effect.

Evolving Alignment and Experience Criterion (ev-alg-exp).
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Let max = argmaxv′
1∈U (q)(Vev(v

′
1 
q v2)). Choose v1 ∈

U (q) with probability:

pev(v1 �q v2) =

⎧⎪⎨
⎪⎩
pexp(v1 �q v2) if #exp(q, v2) > 0

1
|max| if #exp(q, v2) = 0, v1 ∈ max

0 if n = 0, v1 �∈ max

Note that, since values are updated when the interaction is over, the
new maximum value for future states can be used. This will back-
propagate the punishment to all mappings already in the first un-
successful interaction, repairing misleading mappings in less inter-
actions, although it is less stable. This is the approach we use in the
experimentation.

Analysis of ev-alg-exp: repairing misleading mappings. As
we will show, the ev-alg-exp technique succeeds to find mislead-
ing mappings for most configurations; however, there is one particu-
lar case in which it does not work well. The pathological case arises
when, for an interaction model IM and an alignment A, the follow-
ing conditions hold: 1. Two strings s and s′ accepted by IM have
the same word v in the j-th position, 2. A has a misleading mapping
for a word in s before j, and 3. If q is the state for v in s′, A has
a correct mapping v 
q w, but it also has a misleading mapping
v′ 
q w 5. In this case, the technique the v 
q w mapping the first
time s′ is successful, thus always choosing it from there on, and not
being able to decrease the value of v′ 
q w. There are possible fixes
to this problem, but since it is a rare case, we choose to resort in the
exploration from exp to repair it.

If the case above does not hold, and all messages in the proto-
col have some probability of being uttered, ev-alg-exp always
repairs misleading mappings. This is simple to see if we consider a
misleading mapping v1 ≡ v2 in q and all mappings made after that
one in an interaction. If there are no positive mappings, the value
of Vev(v1 
q v2) will decrease. This may not be enough to make
it lower than other options, but since the values of subsequent map-
pings will never increase, Vev(v1 
q v2) will continue to decrease,
and by a greater factor in future interactions. If, on the other hand,
there are positive mappings, they need to be misleading, so they will
also be repaired eventually, getting to the first situation. It can be the
case that this mappings are correct for other strings, but since correct
mappings do not modify the values they will not damage the process,
unless the case above occurs, preventing one mapping of being cho-
sen. Since this is true for any experience including v1 
q v2, it will
eventually be repaired.

3.2 The Combination Methods in Action

Let us analyse the performance of the two criteria presented in this
section in the travel agency scenario. As we already mentioned, there
is a misleading mapping between Single and RoundTrip; as con-
sequence, the exp-alg method will fail many times, until the agent
chooses to explore. This is solved in few interactions when using the
ev-alg-exp criterion. Since the interaction fails right after Single

5 An example is the following IM if the sender is always the same agent
and b �0 b′, a �0 a′, but ≡ a′ (it is misleading), d �1 d′, d ≡ d′ and
e ≡ d′
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5
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b

d
e

d

is mapped with RoundTrip, the fourth criterion will find this error
in just one unsuccessful interaction. Also the first time after choos-
ing it, the agent can confirm the 〈Flight, F light〉 mapping, since its
confidence will be increased with the 〈leavingDate, departing〉
and 〈from, origin〉 mappings.

To evaluate our predictions, we studied experimentally the perfor-
mance of the four criteria in the travel agency scenario, letting agents
interact for 60 times. We measured the proportion of successful expe-
riences, as well as after how many interactions they converged, i.e.,
always understood each other. The results, which are as expected, are
shown in Table 2.

Criterion alg exp alg-exp ev-alg-exp
successes (%) 30 92 81 96
convergence - 7.1 20.1 3.9

Table 2: Results for the travel agency scenario

4 EXPERIMENTAL EVALUATION

To evaluate the methods we propose, we studied how they perform
experimentally when used by agents with different vocabularies. In
this section we present the results, after discussing the generation of
data for experimentation.

4.1 Data Generation

Designing experimentation with interaction protocols raises the im-
mediate question of how to obtain test cases. While it is simple to
build random finite state automata, it is not clear that all possible
protocols model a realistic interaction, and the literature does not of-
fer a useful characterisation of interaction or conversation protocols.
We chose to generate deterministic automata parametrised by the size
(given by the number of states) and to only restrict their shape by us-
ing a reasonably uniform distribution of the outgoing arrows among
the states.

On the other side, we created vocabularies V1 and V2 randomly
and defined a translation A between them. Since these are simple
sets of words, the trivial similarity measure was used (1 for the same
word, 0 for different ones). We labeled an interaction protocol IM1

with words in V1 and a structurally equivalent one IM2 with its trans-
lations to V2. Finally, we explored alignments between V1 and V2

of different quality with parametrised values of precision and recall
with respect to A. We used confidences of 1 for all the relations in
the alignment.

4.2 Experiments

The performance of the methods we propose can be analysed in at
least three different dimensions:

1. The complexity of the interaction models: we decided not to
focus on this dimension for two reasons. First, it is already inves-
tigated in [3], and second, preliminary experiments did not show
interesting variations of the performance. We used protocols with
a fixed size of 90 states for all experiments.

2. The parameters used: For ev-alg-exp, we experimented with
different values of α and C, concluding that low (between 0.2 and
0.4) values of α gave the best results. The results for the punish-
ment were less clear, but values between 0.7 and 0.9 seemed to be
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Figure 3: Results for Experiment 1, with size=90 and different alignment qualities

better. An hypothesis that should be confirmed is that this depends
on the average of the mapping confidences in the alignment. We
used α = 0.3, C = 1, and ξ1,2 = 0.1 for the exploration parame-
ters in the alignment and experience criteria.

3. The quality of the alignments: this dimension turned out to be
the most interesting one, and we develop it in detail in this section.

4.2.1 Experiment 1: General Performance

The first experiment we performed provides a general comparison
of the four methods. One test in this experiment is composed of
two aligner agents that use the same matching criterion, one follow-
ing IM1 and the other IM2, each of them with an alignment with
given values of precision and recall. For each learning criterion, we
let agents go through a learning phase in which they interacted n
times, performing the experiment for n = i2 and i ∈ [2, 20]. After
this training phase, we let agents interact again 100 times, without
knowledge update, and measured the proportion of successful inter-
actions. We performed 50 repetitions of each experiment, each time
with a different alignment, but maintaining the same values of preci-
sion and recall.

We considered three quality classes for the precision and recall
values: low: 0.2, medium: 0.5, high: 0.8, and evaluated the crite-
ria that uses alignment with the nine combinations. Figure 3 presents
the ontained results, showing the proportion of successful interac-
tions for different lengths of the training phase. For space reasons,
we only show six of the nine cases, but the remaining ones follow the
same trend. Repeated interactions have no effect on the alg align-
ment; we plot the result of one experiment as a constant. The same
happens for exp with different alignment qualities.

The two methods that combine the alignment and the learning
from the experience perform better in the general case. Between
them, ev-alg-exp is always the best one, performing better than

all other methods. Results are in general very good, achieving 90%
of correct matches after only ∼ 60 interactions. The method that
only uses the learning also reaches values of success close to 1, but
more slowly. Using only the alignment is the worst option, except
when very short training periods are allowed. A more detailed anal-
ysis provides interesting observations about precision and recall:

• Recall affects performance more drastically than precision. This
becomes clear when comparing the success rate for alg; while it
increases significantly with higher values of recall, there is much
less variation with different precision values. The two combining
methods are also much better with high recall. This shows that
errors in a contextualised environment are less dramatic, because
it is more rare to find one in the expected messages.

• With low levels of precision, ev-alg-exp is significantly better
than alg-exp after longer learning phases. This can be seen in
the plots for low precision, particularly for high or medium recall,
where the evolutionary technique reaches values close to 1 while
alg-exp does not, being even worse than the technique without
the alignment. This is explained because low precision implies
higher possibility of misleading matches, which are only solved
by making the alignment evolve.

• With low levels of recall, ev-alg-exp grows faster after short
training periods. This is because it takes into account future good
mappings, using the available information more efficiently.

4.2.2 Experiment 2: Focus on Precision and Recall

In Experiment 1, the effects of using alignments of different quali-
ties are only suggested. To analyse in depth how the performance of
our techniques changes with different values of precision and recall,
we developed a second experiment. In Experiment 2, we let agents
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Figure 4: Results for Experiment 2

interact a large number of times (fixed in 200) and measured after
how many interactions they converged when using the techniques
alg-exp and ev-alg-exp. In this case, we considered conver-
gence to be having 90% of successful interactions. The results are
shown in Figure 4. The colour degrade represents the number of in-
teractions before convergence, which increases with darkness. For
the alg-exp technique, both low precision and low recall affect the
performance, only converging fast when both values are high. As we
already pointed out, low recall is more harmful than low precision.
In the results for ev-alg-exp it can be seen that the precision has
less influence; with high levels of recall, low values of convergence
are achieved even with very low precision. This shows again how
making the alignment evolve repairs misleading mappings, solving
low quality in this dimension.

5 RELATED WORK

Although it is considered one of the main applications of ontology
matching, the integration of vocabulary alignments in multi-agent
interactions, and particularly the problem of how to use and repair
them online, has not been deeply studied yet. Most of the work on
using alignments in multi-agent systems tackles the problem of how
communities of agents can achieve one common alignment from a set
of herogeneous ones. This is the approach followed by Laera et al.,
where argumentation techniques are used to decide between different
alignments [16], and by Silva et al., who propose a method for agents
to negotiate semantic bridges based on their confidence on each map-
ping rule. To the best of our knowledge, all existent methods consider
an offline negotiation, that results in a common alignment that agents
can use to communicate [18].

A well known formulation of the problem of learning meaning
automatically from communication is the work of Steels [19]. In ad-
dition to the work we presented in Section 2, there exist other ap-
proaches, for example the one by Goldman et al. [12], in which the
authors investigate how agents can learn to communicate in a way
that maximises rewards in an environment that can be modelled as
a Markov Decision Process. Our approach differs from this work in
the inclusion of alignments and the modelling of an interaction con-
text. In [4], the authors study a version of the multiagent, multiarmed
bandit problem in which agents can communicate between each other
with a common language, but message interpretations are not know.

A related problem not yet tackled by our approach is the one
of aligning structural aspects of interaction protocols. Chopra and
Singh have worked extensively on developing alignment techniques
for protocols based on commitments [6, 7]. A different approach con-
sists in developing dynamic protocols, that can be modified by agents
while interacting according to the situation they are in [1, 13]. Simi-
lar approaches have been developed in the Web Services community,
with the objective of making dynamic discovery and coordination of
services possible [21].

6 CONCLUSIONS AND FUTURE WORK

We proposed methods that combine ontology alignments and lan-
guage learning techniques, showing that they improve significantly
the understanding between agents that interact in a given context.
Our second method, in particular, shows how with simple techniques
low quality of alignments can be mitigated.

Interesting conclusions about the quality of the alignments can be
drawn from the experimentation. First, the level of recall seems to
have more impact than the precision when the alignment is used for
agent communication. This is worth exploring further, particularly
given the current trend of favouring precision over recall in ontology
alignment techniques [10].

Other directions of future research are found both from the ontolo-
gies and the agents side. The ability to estimate alignment quality
measures would be useful for agents, because it would provide them
with resources to choose between techniques or to fix parameters. On
the other hand, while the ev-alg-exp criterion helps finding and
avoiding possible errors in the alignment, this is only useful for one
particular interaction. A method to repair ontology alignments au-
tomatically from the interaction experience could be extracted from
these ideas. More generally, the development of matching techniques
that create alignments to be used in agent interactions is an unex-
plored area, and needs both theoretical and practical development.
To conclude, in our approach all the reasoning about the alignment
is done locally; we think the performance of our methods would im-
prove with a framework of negotiation in which interlocutors could
discuss the situation of the alignment.
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