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Student- Process Regression with Dependent
Student-¢ Noise

Qingtao Tang'and Yisen Wang and Shu-Tao Xia

Abstract.  Gaussian Process Regression (GPR) is a powerful
non-parametric method. However, GPR may perform poorly if
the data are contaminated by outliers. To address the issue,
we replace the Gaussian process with a Student-t process and
introduce dependent Student-¢ noise in this paper, leading to a
Student-¢ Process Regression with Dependent Student-¢ noise model
(TPRD). Closed form expressions for the marginal likelihood and
predictive distribution of TPRD are derived. Besides, TPRD gives a
probabilistic interpretation to the Student-¢ Process Regression with
the noise incorporated into its Kernel (TPRK), which is a common
approach for the Student-¢ process regression. Moreover, we analyze
the influence of different kernels. If the kernel meets a condition,
called B-property here, the maximum marginal likelihood estimation
of TPRD’s hyperparameters is independent of the degrees of freedom
v of the Student-t process, which implies that GPR, TPRD and
TPRK have exactly the same predictive mean. Empirically, the
degrees of freedom v could be regarded as a convergence accelerator,
indicating that TPRD with a suitable v performs faster than GPR.
If the kernel does not have the (-property, TPRD has better
performances than GPR, without additional computational cost. On
benchmark datasets, the proposed results are verified.

1 INTRODUCTION

Gaussian processes are powerful Bayesian nonparametric methods
with good interpretability and non-parametric flexibility. In addition,
Gaussian processes have simple learning, exact inference and
impressive empirical performances without manual parameter tuning
[12].

In a regression problem, the basic model is y = f(X) + e,
where y is the target vector, X is the feature matrix and € is
the noise. Gaussian Process Regression (GPR) assumes the latent
function f is a Gaussian process and € is independent and identically
distributed (i.i.d.) Gaussian noise. Based on these assumptions, exact
inference can be performed by the Bayes’ theorem [12]. However,
GPR performs poorly on data sets contaminated by outliers because
of the thin-tailed property of Gaussian distribution. To address the
issue, heavy-tailed distributions, e.g., the Student-¢ distribution, have
been introduced into GPR. Generally speaking, there are two ways.
The first way assumes that the noise is from an i.i.d Student-t
distribution. Then a Gaussian process with the i.i.d Student-¢ noise is
obtained. Exact inference, however, is analytically intractable. Then
one has to turn to approximate inference methods, such as MCMC
(Markov Chain Monte Carlo, [10]), variational approximation [6]
and Laplace approximation [16]. However, these methods require
additional computational cost.
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The second way assumes that the latent function f is a Student-
t process, which leads to the Student-¢ Process Regression model
(TPR) [12, 14]. The problem of this way is that the sum of two
independent Student-¢ distributions or the sum of a Student-¢ and
a Gaussian distribution is analytically intractable. In other words, the
Student-t process regression with independent Gaussian or Student-¢
noise is analytically intractable. Thus, Rasmussen and Williams [12]
said “Allowing for independent noise contributions removes analytic
tractability, which may reduce the usefulness of the ¢ process . Later
in [14, 15, 19], in order to increase the usefulness of TPR, the noise
is incorporated to the kernel function, which leads to the Student-
t process regression with the noise incorporated into its Kernel
(TPRK). By this method, good empirical performances are achieved,
however, probabilistic properties of the noise remain unknown.

In this paper, to obtain a model with robustness, reasonable
computational cost and probabilistic interpretation, we propose a
Student-t Process Regression with Dependent Student-t noise model
(TPRD), which replaces the Gaussian process in GPR with a Student-
t process and introduces dependent Student-¢{ noise. The variance
of the noise is dependent on how well the noise-free model fits
the data. Owing to the novel noise, TPRD owns all the advantages
of GPR, such as good interpretation, exact inference and simple
hyperparameter learning. Besides, the marginal likelihood of TPRD
is equivalent to that of TPRK, which indicates that TPRD gives
a probabilistic interpretation to TPRK. Moreover, if the kernel
has the [-property (defined later), we prove that the maximum
marginal likelihood (ML) estimation of TPRD’s hyperparameters
is independent of the degrees of freedom v, resulting in that
TPRD, TPRK and GPR have the same predictive mean. And TPRD
outperforms GPR without additional computational cost if the kernel
does not have the 3-property. Various experiments are conducted to
evaluate the properties mentioned above.

In summary, the main contributions of this paper are as follows:

e We prove that GPR is a special case of TPRD. And closed form
expressions for the marginal likelihood and predictive distribution
of TPRD are derived.

e TPRD gives a probabilistic interpretation to the way of
incorporating the noise into the kernel function, adopted by
TPRK.

o If the kernel has the S-property, we prove that the ML estimation
of TPRD’s hyperparameters is independent of the degrees of
freedom v, and GPR, TPRD, TPRK have exactly the same
predictive mean. But experiments show that TPRD with a suitable
v is faster than GPR.

o If the kernel does not have the S-property, empirically, TPRD
obtains better performances at no additional computational cost
over GPR .
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The rest of the paper is organized as follows: Section 2 describes
GPR and proposes TPRD. Section 3 analyzes the theoretical
properties of TPRD and TPRK. Section 4 presents the experimental
results. Section 5 concludes the work.

2 TPR WITH DEPENDENT STUDENT-T NOISE

In this section, we will give a brief review to GPR and propose
TPRD. Besides, we also discuss the relationships between TPRD,
GPR and TPRK.

2.1 Review of GPR

In a regression problem, we have a training set D of n instances,
D ={X,y}, where X = {x;}j—; is the n x D design matrix with
D being the dimension of attributes, and y = {y;};_, denotes the
output or target vector of dimension n. In GPR, the basic model is

yi=f(xi)+e, i=12..n, ey
where ¢; is the i.i.d Gaussian noise. The latent function f is given a
Gaussian process prior. In practice, as n is finite, f = {f(x;)}i2,
has a multivariate Gaussian distribution as

p(f‘X7 KQ) = N (ﬂﬂg,Kg) ’ (2)

where p, is the mean. The subscript g indicates that the
hyperparameters are of GPR. Usually, for notational simplicity, we
assume p, = 0. And K| is the covariance matrix. (Kg);; =
cov(f(x:), f(x5)) = k(xi,x;;60), where k is a kernel function,
0 = (01,02,...,0)) is the parameters of the kernel and [ is the
number of parameters. As ¢; is i.i.d Gaussian, the likelihood is

p(yIf,og) =N (ylf,051), 3)

where crg is the variance of the noise and I denotes the identity

matrix. By the Bayes’ theorem and integrating out f, we can get the
marginal likelihood

p(y‘Xvo'ng) :N(y‘0729)7 (4)

where ¥, = K, +O’3[ . Then, to learn the hyperparameters o4 and 6,
the maximum marginal likelihood can be used, which is equivalent
to minimizing the negative logarithm marginal likelihood denoted by

1 _ 1
—Inp (y|X, 04, Ky) = §yTEg 1y—|— 5 In|Xq] + gln27r. 5)

The three terms of the negative marginal likelihood in Eq. (5) are
explained in [12]: the only term involving the observed targets
is the data-fit term %yTEg’ly; In |X,4]| is the complexity penalty
depending only on the kernel function and the inputs; and 3 In 27
is a normalization constant.

After learning the hyperparameters o4 and 6, for a known input
x. € RP, the predictive distribution is given as follows [12]

pyly) = N(y«lps,04), (6)
we = kIn;ly, (N
0l = k(xex:0) — kIS, ke, ®)
k. = {k(xi,x:;0)}",. )

Clearly, the predictive mean of GPR is a linear combination of y; (i =
1,2,...,n) and the predictive variance does not depend on y.

2.2 Derivation of TPRD

The definition of a multivariate Student-¢ distribution is as follows.

Definition 1. An n-dimensional random vector x =
(x1,...,2,)7 is said to have the n-variate Student-t distribution
with degrees of freedom v, mean vector u, and correlation matrix R
if its joint probability density function (PDF) is given by

Ll(v +n)/2]
F(V/Q)V"/ZW”/2|R‘1/2

St(x|v,p, R) =

1 T —(v+n)/2
L (x—p) R (x—p) -(10)

We adopt the most common definition of Student-t distribution here,
which could be found in [5, 8].

Now we introduce the Student-¢ process regression with
dependent Student-¢ noise. In the regression problem Eq. (1), the
latent function f is given a Student-t process prior, i.e., f =
{f(x;)}i=; has the PDF

p(f|X,0)) =St(f|v,0, K;)

—(v+n)/2
N (0T {1 . 1fTKt,1f}
T(v/2)vn/2mm/2 | K| Y v
(11)
Just as in GPR,
(Kt)ij = k(xi,%5;0), (12)

and we also assume the mean vector is O for simplicity.
Assume the noise € is an n-dimensional Student-¢ distribution
dependent on p(f| X, 8) with the following form

p(elB) = St (e’l/ +1,0, <1 + %fTK{1f> %1) NCE
For a given v, %fTKt_ f is the data-fit term without considering
noise by Eq. (1) and the explanation of the first term of Eq. (5). The
variance of the noise depends on how well the noise-free model fits
the data. To be specific, if the noise-free model fits the data well, the
negative logarithm marginal likelihood is small, which implies the
variance in the Eq. (13) is small. Otherwise, if the noise-free model
does not fit the model well, the variance in the Eq. (13) is relatively
large. And the degrees of freedom of € is n + v, larger than the
degrees of freedom of f by n. As in practice, the number of instances
n is relatively large, € approximates to a multivariate Gaussian
distribution with a diagonal covariance matrix, which implies that the
noise €;(¢ = 1,2, ...,n) approximate to i.i.d Gaussian distributions.
In summary, TPRD is in effect a Student-¢ process with approximate
i.i.d Gaussian noise whose variance is adjusted to the data-fit term
of noise-free model. Since the Student-¢ process is more robust than
the Gaussian process, it is expected that TPRD performs better than
GPR in some cases.
With the assumptions of Eq. (11) and Eq. (13), exact inference is
achieved as follows,

p (ylf, B) =5t (y'u +n,f, (1 + %fTKflf) %]>
(v +2n)/2]5"/
Ll(v+n)/2|(v+ n)"/27rn/2(1 + %fTthlf)"/Q

—(v+2n)/2
. B -D'y-0 .
(v4+n) 1+ 1fTK,'F

(14)
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Multiplying Eq. (11) by Eq. (14), the joint distribution of y and f is

p(v.£1X.0,8) oc |1+ 167K, '8
6 - —(v+2n)/2
—f —f
=07 D)
[ B T B 41
1+ — I— A
. L + 1/+ny v+n Y
. _ —(v+2n)/2
+(f—1f)" A(f — f)] ,
(15)
where
A=ltg oy P I,
v v+n
~ 3 ) (16)
f= A y.
v+n y

By integrating out f in Eq. (15), we get the marginal likelihood

—(v+n)/2
B LA”) y} , (17

ply) o {1 +——y" <I

v+n 7u+n

Tl(v +n)/2|
(v)2)vn/ 27/ 2|5, |V

’

L re —(v+n)/2
= 14 = -
p(y) r { +oy B y}

(18)

where ¥, is the correlation matrix of y and ¥;' = V”fn I -

8_ A=1). 1t’s not difficult to show that &, = K, + £ sl ie.,

v+n v

s v+MN l

Si=Kitoil, of = : (19)
v B
The negative logarithm marginal likelihood of TPRD is
1 _ 1
—Inp(y) _vtn In {1 + ;yTEt 1y} + §In|Et\
(20)

(Y,

(l//2)1/n/27l'”/2

Similar to the three terms of GPR’s negative logarithm marginal
likelihood in Eq. (5), the three terms in Eq. (20) has readily
interpretable roles: the second term %1n\2t| is the complexity
penalty depending only on the kernel function and the inputs; the

last term ln(%) is for normalization; the first term is

related to the data-fit term y” ¥, ~'y. Comparing the first term in
Eq. (20) with the one in Eq. (5), the main difference is that the first
term in Eq. (20) is a logarithm function of y73; 'y while the one
in Eq. (5) is a linear function of y” ¥, ~'y. That implies if there are
outliers in y, the negative logarithm marginal likelihood of TPRD
would be much less disturbed than that of GPR. So, from the view
of the negative logarithm marginal likelihood, TPRD should be more
robust than GPR.

After deriving the negative logarithm marginal likelihood of
TPRD Egq. (20), we need to estimate the hyperparameters o, 8 and
v. It’s not difficult to derive the partial derivatives of the marginal
likelihood of TPRD for each hyperparameter, which implies that
the hyperparameters o, @ and v can be learned by gradient-based
optimization methods.

After learning the hyperparameters, we can make predictions by
the following result [14].

Lemma 1 Suppose y ~ St(v,u,K). y1 € R™ andy» € R™
represent the first n1 and remaining na entries of y respectively.
Then yily2 ~ St(yi|pypo, Kij2,v + n1), where py, =
K12K5' (y2 — ps) + py, Kij2 = Ziii (K22 — K21K ' K12),
a1 = (y1—p1) Kii'(y1 — pa).

For a known input z. € RP, we need to give the prediction ..
As {y, y.} is a multivariate Student-¢ distribution, by Lemma 1,

mmw=&@*

k. = {k(xi7 X 0)}?:17

Tw-1, V+ o .oy _ . Ty—1
k. Et Y, vtn (k(x*am*70) k. Et k*))
o=y Sy

2D

Comparing Eq. (21) with Eq. (6), we see that the form of the
predictive mean of TPRD is identical to that of GPR, which implies if
the kernel function and hyperparameters are the same, the predictive
mean of TPRD is also the same to that of GPR. As mentioned in
Section 2.1, the predictive covariance of GPR does not depend on the
target vector. In contrast, from Eq. (21), we see that the predictive
covariance of TPRD explicitly depends on the target vector, which
implies the uncertainties are better accounted for.

2.3 Relation to GPR
Theorem 1 7TPRD — GPR when v — +00.

As v— + o0, it’s well known that a Student-t distribution converges
to a Gaussian distribution (refer to, e.g., [9]), hence,

z/,O,K) — N (£]0, K),

1 _ 1
p(e) = St (e‘u +n,0, (1 + ;fTK 1f> Bl> (22)

- N <e'07 %I) ,

i.e., TPRD — GPR when v — 400, which implies that if we choose
v by cross-validation, we can guarantee the performances of TPRD,
if not better, are at least as good as that of GPR. Of course, cross-
validation for hyperparameter selection requires more computational
cost. But gradient-based optimization methods can roughly achieve
the same performances, as showed in the experiments of Section 4.

p(£]X) = St (f

2.4 Relation to TPRK

The Student-t process has been studied for a long time [11].
However, as the sum of two independent student-¢ distributions or
the sum of a student-¢ distribution and a Gaussian distribution is
analytically intractable, it is difficult to use Student-¢ process with
noise.

In [14, 15, 19], the noise is incorporated into the kernel function,
specifically, by adding a diagonal matrix to the kernel matrix. In
this way, the covariance matrix of marginal likelihood equals the
kernel matrix plus a diagonal matrix. In practice, this way achieved
good performances. However, probabilistic properties of the noise
are unknown. In [14], the negative marginal likelihood of TPRK has
the form

—Inp(ylv,00,0) = L1 2 log (1 + LyTE;ly>

2 v—2
s Tl +n)/2]
+ 21 g('EaD 1 (I‘(y/z)(y—Z)"/27T"/2) )
(23)
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where X, = K, + ng R JZ denotes the noise incorporated to the
kernel . Comparing Eq. (23) with Eq. (20), it is easy to see that if
Yo = ”7*22,5, Eq. (23) and Eq. (20) would have exactly the same
form. The slight difference is caused by the fact that [14] adopts
a slightly different definition of Student-¢ distribution, where the

definition is
L(“5?)
T(%)(v — 2)" v /2| R|'/?

St(v,p, R) =

1 %_Q(y —w)" RNy —p)

It is not difficult to prove that if we applied this definition of Student-
t distribution to Eq. (11) and Eq. (13), the marginal likelihood of
TPRD would have the same form as that of TPRK. Besides, X; is
equivalent to 3,. So, TPRD is equivalent to TPRK. In fact, TPRD
gives a probabilistic interpretation to TPRK. By incorporating the
noise into the kernel, in fact, the noise approximates to the i.i.d
Gaussian noise with variance adjusted to the data-fit term.

3 THEORETICAL ANALYSIS

GPR, TPRD and TPRK are all kernel methods. With different
kernels, their performances change a lot. In this section, we will
give the definition of the S-property. Then we will prove that if the
kernel has the S-property, the predictive mean of TPRD has the same
predictive mean as GPR does. Moreover, TPRK also has identical
predictive mean as GPR does.

3.1 Maximum likelihood estimation of
hyperparameters independent of »

In this section, we will prove the maximum marginal likelihood
estimation of hyperparameters 6 and o is independent of v if the
kernel function has the S-property, which is defined as follows.

Definition 2. For a kernel function k(x1,x2;01,02,...,0;),
where 01,02,...,0, is the parameters of the kernel, if
k(x1,%2;601,02,...,0)) = g(01)k(x1,%x2;1,05,...,0;), where
0;(i = 2,3,...,1) corresponds to &; one to one for given 6, and
g(61) is an injective function of §; with the range (0, +00), then the
kernel k(x1,x2; 61,62, ...,0;) is called to have the 3-property.

There are several common kernels with the [S-property, e.g., a
diagonal squared exponential kernel [13] has the form

1
k(x1,x2;05,0) = a? exp (——Xfxz)

202 (25)
= U?k(x1,x2; 1,0), oy >0,
and a linear with diagonal weighting kernel [13]
k(x1,%x2; A) =xTA %%y, A= diag(A1,A2,...,AD)
T AT—2
XA X, A2 Ap
e ,A-dzag(l,)\l,...,)\l> (26)
1 A2 AD
==k H e A
)\% <X17X2’ ’)\1’ ) )\1>7 1>07

where A = ()\1, )\2, ceay )\D).
There are also common kernels without the [S-property, e.g., a
squared exponential kernel [13] has the form
k(x1,x9;0) =e Ly 27
1,X2;4) = exp %2)(1 2 |-

By Eq. (19), o+ seems to be dependent on v, however, we have the
following surprising results.

Theorem 2 [f the kernel in TPRD has the [-property, then the
maximum likelihood estimation of hyperparameters @ and oy is
independent of v. Furthermore, the predictive mean of TPRD is the
same as that of GPR.

Proof. The marginal likelihood of TPRD has the form

(vtn)
F[(V—‘rn)/Q} |: 1 T —1 :| -
p(yl6,0:) = I+ -y %y ;
¥16,) D(v/2uni2mniz|s, 2|0 v?
(28)
where ¥; = K; + o21. As the kernel has the 3-property, we have
Y = Ketoil, (K= k(xi,%x;;01,02,...,0)
= o/%, (29
where
0
SL=AK{+1, A= g(gt;), (30)

and 0;(i = 2,3,...,1) depends on 67 and 6;.

As g(61) is an injective function, it is not difficult to show that
o1, A, 05, ..., 0] have one-to-one mapping to oy, 01,02,...,0;. By
Eq. (28), for a given v, we have

max p(ylot, )
o¢,0
& max  plylon A 0,...,00)

o4,7,05,...,0]

) (31)

< min  (p(ylo, 05, . ..

o't,)\,9’2,.4.,9{

< min ,h(y|at,)\,9/2,...,01/),
l

t,0,05,...,0
where

h(yloe, \, 05, ..

—2
v+n 5Fn
1 Lrg 1) 2 |7

1 1 _
‘Zt|u+n(1+;yth 1y)

-.0r)

2n_ 1 1 _
o TS (1 + T‘QyTE; 1y). (32)
t

Recall that o and A have one-to-one mapping to o; and 6. Then
deriving h(y|o:, A, 05, . . ., 0;) with respect to o+,

2n__ g3
20 ty+n |E; | ﬁ

v+n

oh 2 2n- g 1
8(Y) L ) YA
ot v+n

7 —1

y'Sy
(33)

Letting Eq. (33) be zero, we get the maximum marginal likelihood

estimation of o
—1
PR G e S (34)
n

From Eq. (34) and Eq. (30), we can see that &, is determined by
training data D and hyperparameters X, 65, 05, . . . , 0, which implies
that & is independent of v. From Eq. (34) and Eq. (32), we obtain

Ty —1 U-r%—iLn
(Y= ok (142 35
h(y)( - ) i (1+2). G9)
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Leth'(y) =
(31) we have

n

Tsr—1 n
(w) |~i]and ¢ = X, 03, ..., 0], similar to Eq.

in h
min h(y)

Txv—1 ﬁ
© min <m> 5| (36)
2} n

& m(gn R (y).

Since h'(y) is independent of v, the solution of Oh'(y)/0¢ = 0 is
independent of v.

Now, we have proved that the maximum likelihood estimation
of o4, \,05,...,0] is independent of v. As there is a one-to-
one mapping between 6,0; and o, \,05,...,0], the maximum
likelihood estimation of 6, o; is independent of v.

From Lemma 1 in Section 2.2, we know the predictive mean of
TPRD has no relationship with v, it is only determined by the training
data D and hyperparameters 8, o;. If the kernel has the S-property,
the hyperparameters 6, o; are shown to be independent of v, which
implies that the predictive mean of TPRD is independent of v. In
other words, no matter what v is, the prediction of TPRD does not
change. As GPR is a special case of TPRD with v — 400, the
predictive mean of TPRD is the same as that of GPR. O

This result might be interesting. Since in Section 2.2, we state
TPRD should be more robust than GPR since the difference of
their negative logarithm marginal likelihoods. Now, we prove that
they have the same predictive mean with the S-property kernel. The
underlying reason is that the S-property kernel has a free factor
g(61), which compromises their difference between the negative
logarithm marginal likelihoods.

As the degrees of freedom v does not affect the predictive mean,
we can choose a suitable v for speedup.

3.2 Predictive mean comparison

In TPRK, the marginal likelihood is different from the marginal
likelihood of GPR. So, Shah, Wilson and Zoubin [14] expect that the
predictive mean of TPRK would differ from that of GPR. However,
we prove that when we use the maximum marginal likelihood
to estimate the hyperparameters, the predictive mean of TPRK is
identical to that of GPR if the kernel has the 3-property.

Theorem 3 [f the maximum marginal likelihood is used to estimate
the hyperparameters and the kernel has the B-property, for a given
v, the predictive mean of TPRK is the same as that of TPRD.

Proof. Firstly, as the kernel has the 5-property, we have

k(x17x2;917927 .. '791) = g(ol)k(xl,XQ; 17957 .. '792)7 (37)

where the range of g(61) is (0,4+00). We assume the maximum
marginal likelihood estimation solution of TPRD’s hyperparameters
is (09,09,09,...,0°). As g(61) is an injective function with the
range (0,4o00) and in TPRK v > 2, there is a 07" satisfying that
=24(07") = g(6?). Then at ( L0y, 07,05, .., 0{0), we have
b (x1, %25 070,05, .., 01°) = —L—k (x1,%2; 00,05, ..., 0}°)
v—2
(38)

Se=Kotoil=-—" K+ -2 o1 = S, (39)

]/ J—
v—2 v—2 v—2

which implies the marginal likelihood value of TPRK equals that
of TPRD. In fact, at ( L0y, 07,05, .. .,0{0), the marginal
likelihood value of TPRK reaches the maximum. Otherwise, if
there is another set of hyperparameters at which the marginal
likelihood value of TPRK is larger, there is a corresponding set of
hyperparameters at which the marginal likelihood of TPRD is larger,
contradictory to the fact that the maximum marginal likelihood
solution of TPRD is (a?, 69,62, ...,6.°).
For a given known x.. € R”, the predictive mean of TPRK is

ke, X; 010,65, 05y
, -2
= - k($*7X;0(1)79,207"'aelo)TVizt 1y (40)
v—2 v
= k(z., X;07,05,...,0°)"'s; y.
The RHS is the predictive mean of TPRD. O

Corollary 1 If the maximum marginal likelihood is used to estimate
the hyperparameters and the kernel has the [3-property, the predictive
mean of TPRK is the same as the prediction of GPR.

Proof. By Theorem 3, we know that if the maximum marginal
likelihood is used to estimate the hyperparameters and the kernel has
the 3-property, the predictive mean of TPRK has the same predictive
mean as that of TPRD. And in that case, by Theorem 2, TPRD and
GRP also have the same predictive mean. We conclude that in that
case, TPRK has the same predictive mean as that of GPR. O

This result is interesting. As the negative logarithm marginal
likelihood of TPRK is different from the one of GPR. The predictive
mean of TPRK is expected to be different from that of GPR after
learning the hyperparameters in [14]. However, by Corollary 1,
TPRK and GPR have identical predictive mean if the maximum
marginal likelihood is used and the kernel has the S-property. The
underlying reason is that the kernel with the [S-property has a
free factor g(01), which compromises the difference between their
marginal likelihood.

4 EXPERIMENTS

Our experiments are designed to verify the following three
propositions:

o If the kernel has the S-property, the ML estimation of TPRD’s
hyperparameters is independent of v and the predictive mean of
TPRD is the same as that of GPR. v influences the convergence
rate.

e If the kernel has the 3-property and ML estimation is used, TPRK,
TPRD and GPR have the same predictive mean.

e If the kernel does not have the 3-property, TPRD performs better
than GPR.

4.1 Data sets

We use the following seven data sets to carry out the experiments.
All data are from the UCI data sets [7].

o Servo Data. This data set contains 4 attributes and 167 instances
from a simulation of a servo system. The attributes include motor,
screw, pgain and vgain. The output variable is class from 0.13 to
7.10.



Q. Tang et al. / Student-t Process Regression with Dependent Student-t Noise 87

e Stock Data. This data set includes returns of Istanbul Stock
Exchange with seven other international index. There are 536
instances and 8 attributes. We randomly choose a subset of 400
instances for the experiments.

e Wine Data [2]. This data set contains 12 attributes and 1599
instances associated with red wine. The attributes include acidity,
residual sugar, pH and so on. The output variable is quality (score
between 0 and 10). We randomly choose a subset of 400 instances
for the experiments.

o Airfoil Data. Airfoil data comprises different size NACA 0012
airfoils at various wind tunnel speeds and angles of attack. It
contains 1503 instances and 6 attributes. We randomly select a
subset of 400 instances for the experiments.

e Yacht Data. This data set is used to predict the hydodynamic
performances of sailing yachts from dimensions and velocity. It
contains 308 instances and 7 attributes.

e Space Data. This data set is to predict the number of O-rings that
will experience thermal distress for a given flight when the launch
temperature is below freezing point. It contains 23 instances and
4 attributes.

e Concrete Data [18]. This data set is about the slump flow of
concrete. It contains 1030 instances and 9 attributes. We randomly
choose a subset of 400 instances for the experiments.

4.2 Experimental setup

We use the gradient descent algorithm [1] to get the minimum of
the negative logarithm marginal likelihood. The maximum iteration
number is 5000 and the stop criterion is that the absolute value of
each hyperparameter’s derivative is less than 10~%. The initial value
for step length is 0.001. And the initial value for the hyperparameters
cand 0;(: = 1,2,--- 1) are 1. All the data are standardized.

4.3 v independent of the 3-property kernel

We verify the v independent property on two kernels and two data
sets. The kernels are the diagonal squared exponential kernel Eq. (25)
and the linear kernel with isotropic weighting [13], which has the
form k(x1,x2;£) = xizxz . As shown in Eq. (25) and Eq. (26), both
of the kernels have the -property. The data sets are the Servo and
Stock data. We compare TPRD(v = 3, 10, 1000, 100000) with GPR.

Table 1. The ML estimation results on the Servo data set with the linear

kernel
Model Inl Ino MSE iteration
GPR 0.4830 -0.3706  0.7947 486
TPRD(v=3) 0.4830 -0.3706  0.7947 581
TPRD(r=10) 0.4830 -0.3706  0.7947 339
TPRD(r=1000) 0.4880 -0.3706  0.7947 384
TPRD(v=100000) 0.4880 -0.3706  0.7947 418

Table 2. The ML estimation results on the Servo data set with the diagonal
squared exponential kernel

Model In/ Inoy Ino MSE iteration
GPR 0.5588 0.6278 -1.2413  0.3041 1500
TPRD(v=3) 0.5588 0.6278 -1.2413  0.3041 767
TPRD(v=10) 0.5588 0.6278 -1.2413  0.3041 598
TPRD(~=1000) 0.5588 0.6278 -1.2413  0.3041 2265
TPRD(v=100000) 0.5588  0.6278 -1.2413  0.3041 2004

Table 3. The ML estimation results on the Stock data set with the linear

kernel
Model Inl Ino MSE iteration
GPR 1.1757  -0.7758  0.1954 1406
TPRD(v=3) 1.1757  -0.7758  0.1954 496
TPRD(r=10) 1.1757  -0.7758  0.1954 322
TPRD(r=1000) 1.1757  -0.7758  0.1954 2484
TPRD(v=100000) 1.1757 -0.7758  0.1954 3386

Table 4. The ML estimation results on the Stock data set with the diagonal
squared exponential kernel

Model In?l Inoy Ino MSE iteration
GPR 27766  1.7299  -0.7949  0.1377 5000
TPRD(v=3) 27767  1.7300 -0.7949  0.1377 1002
TPRD(v=10) 27767  1.7300 -0.7949  0.1377 887
TPRD(v=1000) 27752 1.7282  -0.7949  0.1377 5000
TPRD(»=100000) 2.7659 1.7170 -0.7953  0.1378 5000

From Table 1-4, we can see that the ML estimation of
hyperparameters of TPRD is indeed the same as that of GPR. The
slight difference in Table 4 is caused by that fact the maximum
iteration is reached before the optimization point is reached. And the
MSE of TPRD and GPR is identical, which implies that they have
the same predictive mean.

Another interesting phenomenon is that the convergence rate is
indeed influenced by v. On most data sets, when v is set to 10, TPRD
has the smallest number of iteration, faster than GPR. Empirically,
we recommend that v is set around 10. The underlying reason may
be that the tail thickness is appropriate for most data when v is around
10, considering that v controls the thickness of the tail.

The result may be remarkable, since the computational cost is an
important problem of GPR. As the main computational cost lies on
solving the inverse of the covariance matrix, most efforts are focused
on the covariance matrix, e.g., from the sparsity [4], distributed
method [3], and exploiting the structure of covariance matrix [17].
Our model provides an iteration-less way, which may be able to
combine with the covariance matrix way.

4.4 Predictive mean of GPR, TPRD and TPRK
with the S-property kernel

Now, we use the experiments to verify the Theorem 3 and Corollary
1 that the predictive mean of TPRK is identical to that of GPR and
TPRD with the S-property kernel and ML estimation.

We compare TPRK(v = 3,10,1000,100000) with GPR and
TPRD(r = 10) on the Servo data set. The following are the
experimental results.

From Table 5 and 6, we see that on each [-property kernel,
whatever v is, the MSE of TPRK is the same as that of GPR and
TPRD, which implies these three models have the same predictive
mean.

Besides, different from TPRD, v influences the ML estimation of
hyperparameters of TPRK. Next, we exploit how the v influences
them. From Section 3.2, we know that if the ML estimation of
TPRD’s hyperparameters is (a7, 62,0%, . .., 0;°), the ML estimation
of TPRK’s hyperparameters is (¢, 01, 0%, ..., 0;°), where

o) = | —=0o?, (41)

g(07) = g(6?). 42)
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Table 5. The ML estimation results on the Servo data set with the linear

kernel
Model Inl Ino MSE
GPR 0.5866 -0.3603  0.6628
TPRD(v=10) 0.5866 -0.3603  0.6628
TPRK(v=3) 0.03733  0.1890  0.6628
TPRK(v=10) 0.4751 -0.2487  0.6628
TPRK(r=1000) 0.5856 -0.3593  0.6628
TPRK(r=100000) 0.5866 -0.3603  0.6628

Table 6. The ML estimation results on the Servo data set with the diagonal
squared exponential kernel

Model In? Inoy Ino MSE
GPR 0.5977 0.5297 -1.1933  0.1397
TPRD(v=10) 0.5977 0.5297 -1.1933  0.1397
TPRK(v=3) 0.5977 1.079  -0.6440 0.1397
TPRK(v=10) 0.5977 0.6413 -1.082  0.1397
TPRK(»=1000) 0.5977 0.5307  -1.192  0.1397
TPRK(»=100000) 0.5977 0.5297  -1.193 0.1397

Taking TPRK(»=3) for example, we check whether the experimental
results are consistent with the relationship above.
For the hyperparameters 69 and 67", from Table 6, we know

v—2 0 v—2

07) = 2
g(01) v (or)
= Y22 exp(20y)
3—-2
= 2 x 1.079
5 ol ) 43)
= 2.8846
g(6?) = (67)°
= exp(2 x 0.5297)
= 2.8846,
which verifies the Eq. (42).
For 09 and o2, we have
14 0 3
=4/ — —-1.1
50 Q/3_2exp( 933)
= 0.5252
44)

oo = exp(Inol)
= exp(—0.6440)
—0.5252,

which is consistent with the Eq. (41).

As the ML estimation of TPRD’s hyperparameters is not
influenced by v, from the relationship, we know that v does not affect
the ML estimation of hyperparameters of TPRK, except o and 67 .
From Table 6, it is clear that v indeed does not affect the estimation
of /.

4.5 Robustness of TPRD with non-3-property
kernel

Now, we evaluate the robustness of TPRD on all the data sets
(Section 4.1) with the squared exponential kernel, which does not
have the [S-property. Table 7 reports the MSE of TPRD and GPR.
The MSE of data sets on which TRPD is significantly better than
GPR is in boldface. We see that on the data set Airfoil, Concrete,
Servo and Stock, TPRD has similar performances with GPR. Then

in each training dataset, 5% of the instances are chosen randomly
and each value of the target variable in these instances is randomly
added or subtracted by 3 standard derivations of the target variable.
It’s clear that TPRD performs more robustly than GPR when the
data are contaminated by the outliers. And on the data sets Space,
Yacht, Wine, TPRD outperfoms GPR. Just as we state in Section
2.2, the negative logarithm marginal likelihood of TPRD is a
logarithm function of the data-fit term, while that of GPR is a linear
function. Therefore, TPRD is more robust than GPR theoretically
and empirically, with the non-S-property kernel.

Table 7. The MSE of GPR and TPRD

Data Set GPR MSE TPRD MSE
Airfoil 0.3153 0.3108
Airfoil with outliers 0.5524 0.3557
Concrete 0.1545 0.1665
Concret with outliers 0.5503 0.2706
Servo 0.1541 0.1550
Servo with outliers 0.8616 0.2451
Stock 0.2744 0.2756
Stock with outliers 0.7833 0.2928
Space 0.4258 0.3386
Yacht 0.0544 0.0458
Wine 0.8362 0.6580

S CONCLUSION

We have proposed a Student-t Process Regression with Dependent
Student-¢ noise model (TPRD) in this paper, which is proved to be
a generalization of GPR. In addition, TPRD gives a probabilistic
interpretation to the Student-t Process Regression with noise
incorporated into the Kernel (TPRK). In fact, by incorporating the
noise into the kernel, the noise approximates to the Gassian noise
with the variance adjusted to the data-fit term. More importantly,
we analyze the influence of different kernels on TPRD and TPRK.
Specifically, if the kernel has the [3-property, the ML estimation of
TPRD’s hyperparameters is independent of v and we also discuss
how v influences the ML estimation of the TPRK’s hyperparameters.
Besides, the predictive mean of TPRD, TPRK and GPR is identical,
which is not expected by [14]. In that case, empirically, v is a
convergence accelerator and TPRD can be faster than GPR. On the
other hand, if the kernel does not have the [-property, owing to
the dependent noise, experimental results show that TPRD achieves
significantly better performances than GPR.

ACKNOWLEDGMENTS

This research is supported in part by the Major State Basic Research
Development Program of China (973 Program, 2012CB315803), the
National Natural Science Foundation of China (61371078), and the
Research Fund for the Doctoral Program of Higher Education of
China (20130002110051).



Q. Tang et al. / Student-t Process Regression with Dependent Student-t Noise 89

REFERENCES

(1]

(2]

(3]

(4]

(5]
(6]

(7]
(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(7]

(18]

[19]

Stephen Boyd and Lieven Vandenberghe, Convex optimization,
Cambridge university press, 2004.

Paulo Cortez, Antnio Cerdeira, Fernando Almeida, Telmo
Matos, and Jos Reis, ‘Modeling wine preferences by data
mining from physicochemical properties’, Decision Support
Systems, 47(4), 547 — 553, (2009). Smart Business Networks:
Concepts and Empirical Evidence.

Marc Deisenroth and Jun Wei Ng, ‘Distributed gaussian pro-
cesses’, in Proceedings of The 32nd International Conference
on Machine Learning (ICML-15), pp. 1481-1490, (2015).
Yarin Gal and Richard Turner, ‘Improving the gaussian process
sparse spectrum approximation by representing uncertainty in
frequency inputs’, in Proceedings of the 32nd International
Conference on Machine Learning (ICML-15), pp. 655-664,
(2015).

Somesh Das Gupta and Jun Shao. Mathematical statistics,
2000.

Malte Kuss, Gaussian process models for robust regression,
classification, and reinforcement learning, Ph.D. dissertation,
TU Darmstadt, 2006.

M. Lichman. UCI machine learning repository, 2013.
Alexander J McNeil, ‘Multivariate t distributions and their
applications’, Journal of the American Statistical Association,
101(473), 390-391, (2006).

Saralees Nadarajah and Samuel Kotz, ‘Mathematical properties
of the multivariate t distribution’, Acta Applicandae Mathemat-
ica, 89(1-3), 53-84, (2005).

Radford M Neal, ‘Monte carlo implementation of gaussian
process models for bayesian regression and classification’,
Technical report, Dept. of statistics and Dept. of Computer
Science, University of Toronto, (1997).

Anthony O’Hagan, ‘Bayes—hermite quadrature’, Journal of
statistical planning and inference, 29(3), 245-260, (1991).
Carl Edward Rasmussen, ‘Gaussian processes for machine
learning’, (2006).

Carl Edward Rasmussen and Hannes Nickisch, ‘The gpml
toolbox version 3.5, (2015).

Amar Shah, Andrew Wilson, and Zoubin Ghahramani,
‘Student-t processes as alternatives to gaussian processes’, in
Proceedings of the Seventeenth International Conference on
Artificial Intelligence and Statistics (AISTATS-14), pp. 877-
885, (2014).

Arno Solin and Simo Sirkkd, ‘State space methods for efficient
inference in student-t process regression’, in Proceedings of the
Eighteenth International Conference on Artificial Intelligence
and Statistics (AISTATS-15), pp. 885-893, (2015).

Jarno Vanhatalo, Pasi Jyldnki, and Aki Vehtari, ‘Gaussian
process regression with student-t likelihood’, in Advances in
Neural Information Processing Systems (NIPS-09), pp. 1910—
1918, (2009).

Andrew Wilson and Hannes Nickisch, ‘Kernel interpolation
for scalable structured gaussian processes (kiss-gp)’, in
Proceedings of The 32nd International Conference on Machine
Learning (ICML-15), pp. 1775-1784, (2015).

I-Cheng Yeh, ‘Modeling slump flow of concrete using second-
order regressions and artificial neural networks’, Cement and
Concrete Composites, 29(6), 474-480, (2007).

Yu Zhang and Dit-Yan Yeung, ‘Multi-task learning using gener-
alized t process’, in Proceedings of the Thirteenth International

Conference on Artificial Intelligence and Statistics (AISTATS-
10), volume 9, p. 964, (2010).



