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Abstract. After decades of fruitful research, description
logics (DLs) have evolved into a de facto standard in logic-
based knowledge representation. In particular, they serve as
the formal basis of the standardized and very popular web
ontology language (OWL), which also comes with the advan-
tage of readily available user-friendly modeling tools and op-
timized reasoning engines. In the course of the wide-spread
adoption of OWL and DLs, situations have been observed
where logically less skilled practitioners are (ab)using these
formalisms as constraint languages adopting a closed-world
assumption, contrary to the open-world semantics imposed
by the classical definitions and the standards. To provide a
clear theoretical basis and inferencing support for this often
practically reasonable “off-label use” we propose an alterna-
tive formal semantics reflecting the intuitive understanding
of such scenarios. To that end, we introduce the fixed-domain
semantics and argue that this semantics gives rise to an inter-
esting new inferencing task: model enumeration. We describe
how the new semantics can be axiomatized in very expressive
DLs. We thoroughly investigate the complexities for standard
reasoning as well as query answering under the fixed-domain
semantics for a wide range of DLs. Further, we present an im-
plementation of a fixed-domain DL reasoner based on a trans-
lation into answer set programming (ASP) which is competi-
tive with alternative approaches for standard reasoning tasks
and provides the added functionality of model enumeration.

1 Introduction

IT practitioners facing the task of developing logic-based spec-
ifications tend to prefer knowledge representation formalisms
which are standardized, widely adopted and that come with
elaborate modeling tool support. A notable example for this
is the Web Ontology Language OWL [32]. Ontology editors
like Protégé [16] provide user-friendly interfaces and intuitive
access to a complex and involved formalism.

This leads to situations where OWL is chosen over other
formalisms, even if the application scenario does not match
the typical usage of this language. For example, problems of a
constraint-satisfaction type do not go well with OWL’s stan-
dard semantics allowing for models of arbitrary size. Con-
sider graph 3-coloring as a short but representative constraint-
satisfaction problem. It is easy to create some OWL axioms
specifying the conditions on valid colorings of a given graph.
Asking for colorability as such can then be cast into an OWL
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consistency problem, a natural task for OWL reasoners. Yet,
generating (all) concrete colorings already requires capabili-
ties that an OWL reasoner cannot provide out of the box,
namely that of extracting or enumerating models.

To overcome these shortcomings, we propose fixed-domain
reasoning for DLs – a family of logics providing the logical un-
derpinning of OWL and its sublanguages. This intuitive and
simple approach considers DLs under a non-standard model-
theoretic semantics, modifying the modelhood condition by
restricting the domain to an explicitly given, fixed finite set.
We investigate the combined complexity of reasoning in the
presence of a given fixed domain for a wide range of descrip-
tion logics, for which we establish tight bounds for standard
reasoning tasks as well as query answering for various query
notions. While satisfiability checking in OWL under the clas-
sical semantics is N2ExpTime-complete [15] and query an-
swering is not even known to be decidable, we show that these
problems under the fixed-domain semantics are merely NP-
complete and ΠP

2 -complete, respectively.
We note that the fixed-domain condition can be axioma-

tized in OWL. Still, employing the axiomatization and us-
ing available OWL reasoners would not allow for the non-
standard reasoning task of model enumeration. Therefore,
we propose a different approach and define a translation of
SROIQ knowledge bases (the logical counterparts to OWL
ontologies) into answer set programming (ASP, [4]), such
that there is a one-to-one correspondence between the fixed-
domain models of the considered knowledge base and the set
of answer-sets of the obtained program. This allows us to use
existing ASP solvers (see [5] for an overview) for fixed-domain
reasoning – including standard as well as non-standard tasks.
For the proposed translation, we provide an implementation
and present preliminary evaluations on typical constraint-
satisfaction-type problems. This not only demonstrates fea-
sibility, but also suggests significant improvement compared
to the axiomatized approach using highly optimized OWL
reasoners.

2 Preliminaries

In this section, we provide the necessary background of de-
scription logics, Datalog queries, and answer-set program-
ming. Despite obvious structural commonalities of Datalog
queries and ASP, we introduce and treat them separately,
since their purpose is different: the former is used as a query
formalism over DL knowledge bases while the latter serves as
the target formalism for a compilation process.
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Description Logics OWL 2 DL, the version of the Web
Ontology Language we focus on, is defined based on descrip-
tion logics (DLs, [2, 26]). We briefly recap the description logic
SROIQ (for details see [13]). Let NI , NC , and NR be finite,
disjoint sets called individual names, concept names and role
names respectively. These atomic entities can be used to form
complex ones as displayed in Table 1.

A SROIQ knowledge base K is a tuple (A, T ,R) where A
is a SROIQ ABox, T is a SROIQ TBox and R is a SROIQ
RBox. Table 2 presents the respective axiom types available
in the three parts.2 We use NI(K), NC(K), and NR(K) to
denote the sets of individual names, concept names, and role
names occurring in K, respectively.

Table 1. Syntax and semantics of role and concept constructors
in SROIQ, where a1, . . . an denote individual names, s a role
name, r a role expression and C and D concept expressions.

Name Syntax Semantics

inverse role s− {(x, y) ∈ ΔI ×ΔI | (y, x) ∈ sI}
universal role u ΔI ×ΔI

top � ΔI

bottom ⊥ ∅
negation ¬C ΔI \ CI

conjunction C �D CI ∩DI

disjunction C �D CI ∪DI

nominals {a1, . . . , an} {aI1 , . . . , aIn}
univ. restriction ∀r.C {x | ∀y.(x, y) ∈ rI → y ∈ CI}
exist. restriction ∃r.C {x | ∃y.(x, y) ∈ rI ∧ y ∈ CI}
Self concept ∃r.Self {x | (x, x) ∈ rI}
qualified number �n r.C {x | #{y ∈ CI | (x, y) ∈ rI} ≤ n}
restriction �n r.C {x | #{y ∈ CI | (x, y) ∈ rI} ≥ n}

Table 2. Syntax and semantics of SROIQ axioms.

Axiom α I |= α, if

r1 ◦ · · · ◦ rn � r rI1 ◦ · · · ◦ rIn ⊆ rI RBox R
Dis(s, r) sI ∩ rI = ∅
C � D CI ⊆ DI TBox T
C(a) aI ∈ CI ABox A
r(a, b) (aI , bI) ∈ rI

a
.
= b aI = bI

a � .= b aI �= bI

The semantics of SROIQ is defined via interpretations I =
(ΔI , ·I) composed of a non-empty set ΔI called the domain
of I and a function ·I mapping individual names to elements
of ΔI , concept names to subsets of ΔI , and role names to
subsets of ΔI × ΔI . This mapping is extended to complex
role and concept expressions (cf. Table 1) and finally used
to define satisfaction of axioms (see Table 2). We say that I
satisfies a knowledge base K = (A, T ,R) (or I is a model of
K, written: I |= K) if it satisfies all axioms of A, T , and R.
We say that a knowledge base K entails an axiom α (written
K |= α) if all models of K are models of α.

2 The original definition of SROIQ contained more RBox axioms
(expressing transitivity, (a)symmetry, (ir)reflexivity of roles), but
these can be shown to be syntactic sugar. Moreover, the definition
of SROIQ contains so-called global restrictions which prevents
certain axioms from occurring together. These complicated re-
strictions, while crucial for the decidability of classical reasoning
in SROIQ are not necessary for fixed-domain reasoning consid-
ered here, hence we omit them for the sake of brevity.

Boolean Datalog Queries Here we briefly introduce syn-
tax and semantics of Datalog queries over description logic
knowledge bases. A term can be a variable from a countably
infinite set V of variables, or an element of NI . An atom has
the form p(t1, . . . , tn) where t1, . . . , tn are terms and p is a
predicate of arity n from a set Π of predicates containing NC

(arity 1) and NR (arity 2) and containing a special predicate
goal of arity 0. A Boolean Datalog query is a set of first-order
logic Horn rules of the form ∀X.a1 ∧ . . . ∧ ak → a where
a1, . . . , an, a are atoms, but the predicate of a is not from NC

or NR. X ⊆ V denotes the set of variables occurring in the
atoms. Given a DL interpretation I, and a Boolean Data-
log query Q, an extended model for I and Q is a first-order
interpretation J over ΔI that coincides with I on the inter-
pretation of NI , NC , and NR and satisfies all the rules from
Q. We say that Q matches I and write I |= Q if J |= goal
for every extended model J for I and Q. For a DL knowl-
edge base K, we say K entails Q iff I |= Q for every model
I of K. Bounded arity Datalog queries are classes of queries
where the arity of the used predicates is bounded by some
constant. A Boolean conjunctive query is a Boolean Datalog
query with just one rule where a1, . . . , an use only predicates
from NC ∪NR and a = goal . In that case, such a query can be
equivalently written as the first-order formula ∃X.a1∧. . .∧ak.

Answer-Set Programming We review the basic notions
of answer set programming [22] under the stable model se-
mantics [11], for further details we refer to [4, 8].

We fix a countable set U of (domain) elements, also called
constants; and suppose a total order < over the domain el-
ements. An atom is an expression p(t1, . . . , tn), where p is a
predicate of arity n ≥ 0 and each ti is either a variable or an
element from U . An atom is ground if it is free of variables.
BU denotes the set of all ground atoms over U . A (normal)
rule ρ is of the form

a ← b1, . . . , bk, not bk+1, . . . , not bm.

with m ≥ k ≥ 0, where a, b1, . . . , bm are atoms, and “not ” de-
notes default negation. The head of ρ is the singleton set H(ρ)
= {a} and the body of ρ is B(ρ) = {b1, . . . , bk, not bk+1, . . . ,
not bm}. Furthermore, B+(ρ) = {b1, . . . , bk} and B−(ρ) =
{bk+1, . . . , bm}. A rule ρ is safe if each variable in ρ occurs
in B+(r). A rule ρ is ground if no variable occurs in ρ. A
fact is a ground rule with empty body. An (input) database
is a set of facts. A (normal) program is a finite set of normal
rules. For a program Π and an input database D, we often
write Π(D) instead of D ∪ Π. For any program Π, let UΠ be
the set of all constants appearing in Π. Gr(Π) is the set of
rules ρσ obtained by applying, to each rule ρ ∈ Π, all possible
substitutions σ from the variables in ρ to elements of UΠ.

An interpretation I ⊆ BU satisfies a ground rule ρ iff
H(ρ) ∩ I �= ∅ whenever B+(ρ) ⊆ I, B−(ρ) ∩ I = ∅. I sat-
isfies a ground program Π, if each ρ ∈ Π is satisfied by I. A
non-ground rule ρ (resp., a program Π) is satisfied by an in-
terpretation I iff I satisfies all groundings of ρ (resp., Gr(Π)).
I ⊆ BU is an answer set (also called stable model) of Π iff it is
the subset-minimal set satisfying the Gelfond-Lifschitz reduct
ΠI = {H(ρ) ← B+(ρ) | I ∩ B−(ρ) = ∅, ρ ∈ Gr(Π)}. For a
program Π, we denote the set of its answer sets by AS(Π).
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We make use of further syntactic extensions, namely in-
tegrity constraints and count expressions, which both can be
recast to ordinary normal rules as described in [8]. An in-
tegrity constraint is a rule ρ where H(ρ) = ∅, intuitively rep-
resenting an undesirable situation; i.e. it has to be avoided
that B(ρ) evaluates positively. Count expressions are of the
form #count{l : l1, . . . , li} �� u, where l is an atom and
lj = pj or lj = not pj , for pj an atom, 1 ≤ j ≤ i, u a non-
negative integer, and �� ∈ {≤, <,=, >,≥}. The expression
{l : l1, . . . , ln} denotes the set of all ground instantiations of
l, governed through {l1, . . . , ln}. We restrict the occurrence
of count expressions in a rule ρ to B+(ρ) only. Intuitively, an
interpretation satisfies a count expression, if N �� u holds,
where N is the cardinality of the set of ground instantiations
of l, N = |{l | l1, . . . , ln}|, for �� ∈ {≤, <,=, >,≥} and u a
non-negative integer.

3 Models over Fixed Domains

In DLs, models can be of arbitrary cardinality. In many ap-
plications, however, the domain of interest is known to be
finite. In fact, restricting reasoning to models of finite domain
size (called finite model reasoning, a natural assumption in
database theory), has already become the focus of intense
studies in DLs [17, 6, 25, 27]. As opposed to assuming the
domain to be merely finite (but of arbitrary, unknown size),
we consider the case where the domain has an a priori known
cardinality and use the term fixed domain. We refer to such
models as fixed-domain models and argue that in many appli-
cations, this modification of the standard DL semantics rep-
resents a more intuitive definition of what is considered and
expected as a model of some knowledge base.

Definition 1 (Fixed-Domain Semantics) Given a non-
empty finite set Δ ⊆ NI , called fixed domain, an interpre-
tation I=(ΔI , ·I) is said to be Δ-fixed (or just fixed, if Δ is
clear from the context), if ΔI = Δ and aI = a for all a ∈ Δ.
Accordingly, for a DL knowledge base K, we call an interpre-
tation I a Δ-model of K, if I is a Δ-fixed interpretation and
I |= K. A knowledge base K is called Δ-satisfiable if it has a
Δ-model. We say K Δ-entails an axiom α (K |=Δ α) if every
Δ-model of K is also a model of α.

We briefly demonstrate the effects of the fixed-domain seman-
tics as opposed to the finite-model semantics (with entailment
|=fin) and the classical semantics.

Example 2 Let K = (A, T ,R) and Δ = {a, b} with A =
{A(a), A(b), s(a, b)}, T = {� � ∃r.B,� � �1 r−.�},
and R = {Dis(s, r)}. First we note that K has a Δ-
model I representable as AI = {A(a), A(b), B(a), B(b),
s(a, b), r(a, a), r(b, b)}, thus K is satisfiable under all three se-
mantics. Then α = � � ∃r.∃r.B holds in all models of K,
therefore K |= α, K |=fin α, and K |=Δ α. Opposed to this,
β = � � B merely holds in all finite models, whence K |=fin β
and K |=Δ β, but K �|= β. Finally, γ = � � ∃r.Self only holds
in all Δ-models, thus K |=Δ γ, but K �|=fin γ and K �|= γ.

Extraction & Enumeration of Δ-Models When per-
forming knowledge base satisfiability checking in DLs (the pri-
mary reasoning task usually considered), a model constructed

by a reasoner merely serves as witness to claim satisfiability,
rather than as an accessible artifact. However, as mentioned
before, our approach aims at scenarios where a knowledge
base is a formal problem description for which each model
represents one solution; in particular the domain is part of the
problem description and hence fixed a-priori. Then, retrieval
of one, several, or all models is a natural task, as opposed to
merely checking model existence. With model extraction we
denote the task of materializing an identified model in order
to be able to work with it, i.e. to inspect it in full detail and
reuse it in downstream processes. The natural extension of
model extraction is to make all models explicit, performing
model enumeration. Most existing DL reasoning algorithms
attempt to successively construct a model representation of a
given knowledge base. However, most of the existing tableaux
reasoners do not reveal the constructed model, besides the fact
that models might end up being infinite such that an explicit
representation is impossible. Regarding enumeration, we state
that this task is not supported – not even implicitly – by any
state-of-the-art DL reasoner, also due to the reason that in
the standard case, the number of models is typically infinite
and often even uncountable. We will use the notions of model
extraction and enumeration in the way described above. Note
that a related task, called model expansion, is used in the gen-
eral first-order case, e.g. in the work of Mitchell and Ternovska
[18]. There, an initial (partial) interpretation representing a
problem instance is expanded to ultimately find a model of
the given theory.

Example 3 We consider the 3-coloring problem for an undi-
rected graph G = (V,E), encoded in K3col = (A, T ,R), with
T = {N � Nr � Ng � Nb, Nr � ∀edge.(Ng � Nb), Ng �
∀edge.(Nb � Nr), Nb � ∀edge.(Nr � Ng), Nr � ¬Ng, Nr �
¬Nb, Ng � ¬Nb}, A = {N(v) | v ∈ V } ∪ {edge(v, v′) |
∀{v, v′} ∈ E} ∪ {¬edge(v, v′) | {v, v′} ∈ 2V \ E}, and R = ∅.
Let Δ = V be the imposed fixed domain. It is not hard to
see that there is a one-to-one correspondence between the Δ-
models of K3col and the colorings of G.

Axiomatization of Δ-Models When introducing a new
semantics for some logic, it is worthwhile to ask if existing
reasoners can be used. Indeed, it is easy to see that, assuming
Δ = {a1, . . . , an}, adding the GCI � � {a1, . . . , an} as well as
the set of inequality axioms containing ai � .= aj with i < j to K
will (up to isomorphism) rule out all models of K, not having
Δ as their domain. Denoting these additional axioms with
FDΔ, we find that K is Δ-satisfiable iff K∪FDΔ is satisfiable
under the classical DL semantics and, likewise, K |=Δ α iff
K∪FDΔ |= α for any axiom α. Consequently, any off-the-shelf
SROIQ reasoner can be used for fixed-domain reasoning, at
least when it comes to the classical reasoning tasks.

However, the fact that the currently available DL reasoners
are not optimized towards reasoning with axioms of the pre-
scribed type (featuring disjunctions over potentially large sets
of individuals) and that available reasoners do not support
model extraction and model enumeration led us to develop
an alternative computational approach based on ASP.

4 Complexity Analysis

In this section we investigate complexities of classical reason-
ing tasks under the fixed-domain semantics. Note that, next
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to the size of the considered knowledge base (and - in the
case of query entailment - the size of the query) the size of
the domain |Δ| contributes to the input size of the reasoning
problems considered.

Standard Reasoning The combined complexity of stan-
dard reasoning in SROIQ is known to be N2ExpTime-
complete, both for arbitrary models and finite models [15].
Restricting to fixed domains leads to a drastic drop in com-
plexity. Contrarily, imposing fixed domains on (allegedly) in-
expressive fragments such as DL-Litecore, turns reasoning into
a harder problem.

Let DLmin be a minimalistic description logic that merely
allows TBox axioms of the form A � ¬B, with A,B ∈ NC .
Moreover, only atomic assertions of the form A(a) and r(a, b)
are admitted. We first demonstrate that satisfiability check-
ing in DLmin is NP-hard, allowing us to bequeath hardness
up to more expressive DLs such as SROIQ. Subsequently,
we demonstrate that fixed-domain satisfiability checking in
SROIQ is in NP, thus obtaining NP-completeness for all
languages between DLmin and SROIQ.

Lemma 4 The combined complexity of checking fixed-
domain satisfiability of a DLmin knowledge base K = (A, T )
is NP-hard.

Proof (Sketch) We obtain hardness by a reduction of the 3-
colorability problem. Let G=(V,E) be the input graph. Then,
for each node vi ∈ V = {v1, . . . , vn} we introduce a concept
name Vi, and encode the edges as disjointness axioms, such
that T = {Vi � ¬Vj | {vi, vj} ∈ E}. The ABox A consists
of the assertions Vi(ai) for each Vi ∈ {V1, . . . , Vn}. Now let
Δ = {r, g, b}, such that under any Δ-fixed interpretation I,
necessarily aIi ∈ {r, g, b}, 1 ≤ i ≤ n. Consequently, G has
a 3-coloring, iff K= (A, T ) is Δ-satisfiable. The reduction is
linear in the size of G. �

Lemma 5 The combined complexity of checking fixed-
domain satisfiability of SROIQ knowledge bases is in NP.

Proof (Sketch) Let K be a SROIQ knowledge base and Δ
be the fixed domain. To show membership, we note that af-
ter guessing a Δ-fixed interpretation I, modelhood can be
checked in polynomial time. For this we let C contain all
the concept expressions occurring in K (including subexpres-
sions). Furthermore, letR contain all role expressions and role
chains (including subchains) occurring in K. Obviously, C and
R are of polynomial size. Then, in a bottom-up fashion, we
can compute the extension CI of every element C of C and
the extension rI of every element r of R along the defined se-
mantics. Obviously, each such computation step requires only
polynomial time. Finally, based on the computed extensions,
every axiom of K can be checked – again in polynomial time.

�

Combining these propositions yields the following theorem.

Theorem 6 Fixed-domain satisfiability checking in any lan-
guage between DLmin and SROIQ is NP-complete.

Note that this finding contrasts with the observation
that fixed-domain reasoning in first-order logic is PSpace-
complete. We omit the full proof here, just noting that mem-
bership and hardness can be easily shown based on the fact
that checking modelhood in FOL is known to be PSpace-
complete [31] and, for the membership part, keeping in mind
that NPSpace = PSpace thanks to Savitch’s Theorem [28].
This emphasizes the fact that, while the fixed-domain restric-
tion turns reasoning in FOL decidable, restricting to SROIQ
still gives a further advantage in terms of complexity (assum-
ing NP �= PSpace).

Query Entailment We next consider the complexity of
query entailment for DLs. Again, we will notice a very uniform
behavior over a wide range of DLs and query types. We will
start by showing a hardness result for a very minimalistic
setting.

Lemma 7 The combined complexity of fixed-domain entail-
ment of conjunctive queries from a DLmin knowledge base is
ΠP

2 -hard.

Proof We show hardness by providing a polynomial reduc-
tion from evaluation of quantified Boolean formulae of the
form Φ = ∀p1, . . . , p�∃q1, . . . , qmϕ such that ϕ is a Boolean
formula where the propositional symbols are from the set
{p1, . . . , p�, q1, . . . , qm}. Note that w.l.o.g. we can assume
ϕ to be in conjunctive normal form, i.e. it has the shape∨

L1 ∧ . . . ∧
∨

Ln where the Li are sets of negated or un-
negated propositional symbols.

Given such a formula Φ, we now construct a DLmin knowl-
edge base K, a domain Δ, and a conjunctive query Q (all
of polynomial size) such that K ΔK-entails Q if and only if
Φ evaluates to true. We let Δ consist of elements dtruet and
dfalset for all t ∈ {p1, . . . , p�, q1, . . . , qm}, and K consist of the
axioms:

– InClauseL(d
true
t ) whenever t ∈ L and InClauseL(d

false
t )

whenever ¬t ∈ L

– compatible(dtruet , dtrueu ) and compatible(dfalset , dfalseu )
for all {t, u} ⊆ {p1, . . . , p�, q1, . . . , qm}

– compatible(dfalset , dtrueu ) and compatible(dtruet , dfalseu )
for all {t, u} ⊆ {p1, . . . , p�, q1, . . . , qm} with t �= u

– Select(dt), Ct(dt) for all t ∈ {p1, . . . , p�}
– Select(dtruet ) and Select(dfalset ) for all t ∈ {q1, . . . , qm}
– Ct(d

true
t ), Ct(d

false
t ) for all t ∈ {p1, . . . , p�, q1, . . . , qm}

– Ct � Cu � ⊥ for all {t, u} ∈ {p1, . . . , p�, q1, . . . , qm} with
t �= u

Finally, we let Q be the conjunctive query using
the variables xL1 , . . . , xLn and consisting of the atoms
InClauseL(xL), Select(xL) for all L ∈ {L1, . . . , Ln} as well
as compatible(xL, xL′) for all {L,L′} ∈ {L1, . . . , Ln}.

We now sketch the argument why the above claimed cor-
respondence holds. By construction, the minimal ΔK-models
I for every i ∈ {1, . . . ,m} are exactly those where (next to
the explicitly stated concept and role memberships) either
dtruepi ∈ SelectI or dfalsepi ∈ SelectI holds. Consequently Q is
entailed, iff for each of these models (representing all possible
truth assignments to p1, . . . , p�), one literal from every clause
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Li can be selected such that (a) this selection is consistent
(i.e., no contradicting literals are selected) and (b) whenever
a literal w.r.t. p1, . . . , p� is selected, it must be the one cor-
responding with the model’s predefined truth assignment for
these propositional symbols. However, this is the case exactly
if Φ is valid. �

We continue by showing that even for very expressive DLs
and query languages, query entailment under the fixed do-
main semantics is still in the second level of the polynomial
hierarchy.

Lemma 8 The combined complexity of the fixed-domain en-
tailment of bounded-arity Datalog queries from a SROIQ
knowledge base is in ΠP

2 .

Proof Satisfaction of a bounded-arity Datalog query in a
database (or finite interpretation) is in NP: there are only
polynomially many ground atoms that can be derived, hence,
whenever the query is entailed, there is a ground proof tree
of polynomial size which can be verified in polynomial time.
Consequently, fixed-domain non-entailment of such a query
Q from a SROIQ knowledge base K can be realized by (a)
guessing an interpretation I (b) verifying I |= K in polyno-
mial time (cf. the proof of Lemma 5) and (c) using an NP
oracle to verify I �|= Q. Consequently, checking fixed-domain

entailment is in coNPNP = ΠP
2 . �

Bounded-arity Datalog queries over DLs are rather expres-
sive, they subsume many of the prominent query classes in
knowledge representation and databases, including (unions
of) conjunctive queries, positive queries, (unions of) conjunc-
tive 2-way regular path queries [7], positive 2-way regular path
queries, (unions of) conjunctive nested 2-way regular path
queries [3] and regular queries as defined in [24]. Combining
the two propositions, we obtain the following theorem.

Theorem 9 For any class of queries subsuming conjunc-
tive queries and subsumed by bounded-arity Datalog queries
and any DL subsuming DLmin and subsumed by SROIQ, the
combined complexity of fixed-domain query entailment is ΠP

2 -
complete.

5 Practical Fixed-Domain Reasoning

In Section 3 we already claimed that available reasoners per-
form poorly on knowledge bases when axiomatizing the fixed-
domain semantics, and we support this statement with an
evaluation in the sequel (cf. Section 5.2). Thus, a more vi-
able approach is required when considering practical reason-
ing. To this end, we propose an encoding of arbitrary SROIQ
knowledge bases into answer set programs. This allows us to
use existing ASP machinery to perform both standard rea-
soning as well as the non-standard tasks model extraction &
enumeration and query entailment quite elegantly.

5.1 ASP Encoding of DL Knowledge Bases

We now describe how standard and non-standard reason-
ing tasks w.r.t. the fixed-domain semantics can be encoded
by ASP. Intuitively, the set of all Δ-interpretations defines

a search space, which can be traversed searching for Δ-
models, guided by appropriate constraints. We thus propose
a translation Π(K,Δ) for any SROIQ knowledge base K; i.e.
Π(K,Δ) = Πgen(Δ) ∪Πchk(K), consisting of a generating part
Πgen(Δ) that defines all potential candidate interpretations,
and a constraining part Πchk(K) that rules out interpretations
violating axioms in K.

Simplified Form of Knowledge Bases We first impose
a few additional assumptions regarding the knowledge base
K. To start with, we assume that the ABox only refers to
domain individuals from Δ and does not mention elements
from NI(K) \ Δ (except in nominal concepts). This can be
obtained by the following standard model-preserving trans-
formations (let a, b ∈ NI(K) \Δ while c, d ∈ Δ):

C(a) � {a} � C
r(a, b) � {a} � ∃r.{b}
r(c, b) � ∃r.{b}(c)
r(a, d) � ∃r−.{a}(d)

a
.
= b � {a} � {b}

a � .= b � {a} � ¬{b}
c
.
= b � {b}(c)

c � .= b � ¬{b}(c)

In the light of this, it is also clear that we can assume the
ABox to be free of (in)equality statements: between individu-
als from Δ they are either tautological (and can be removed)
or obviously contradictory (and could be replaced by � � ⊥).

Next, we make the common assumption that all concept
expressions and all roles occurring in the ABox are concept
and role names, respectively (which is easy to establish by the
use of auxiliary concepts). Further, we impose the assumption
that K does not contain any nominal concepts. This can be
realized by replacing every occurrence of a nominal concept
{a} in K with a fresh auxiliary atomic concept O{a}, adding
the axiom Sing(O{a}) (which we use as a shortcut for the
two axioms � � �1u.O{a} and � � �1u.O{a} in order
to enforce that O{a} must be interpreted by a singleton
set) to the TBox and, in case a ∈ Δ, adding the assertion
O{a}(a) to the ABox. Obviously, there is a one-to-one
correspondence between (Δ-)models I of the original and
(Δ-)models J of the transformed knowledge base via aI = δ
iff OJ{a} = {δ}, hence (Δ-)models of the original knowledge
base are straightforward to reconstruct.

Our last requirement is that the knowledge base is in nor-
malized form, obtained by a modified structural transforma-
tion Ω(K), akin to the one proposed in [21]. A TBox axiom
is normalized, if it is of the form � �

⊔n
i=1 Ci, where Ci is

of the form B, ∀r.B, ∃r.Self , ¬∃r.Self , ≥ n r.B, or ≤ n r.B,
for B a literal concept (i.e., a concept name or a negated
concept name), r a role, and n a positive integer. It can be
shown that the obtained normalized knowledge base Ω(K) is
a model-conservative extension of K, i.e. every (Δ-)model of
Ω(K) is a (Δ-)model of K and every (Δ-)model of K can
be turned into a (Δ-)model of Ω(K) by finding appropriate
interpretations for the concepts and roles introduced by Ω.
Thereby it is straightforward to extract a model for K, given
a model of Ω(K). Table 3 depicts the normalization rules in
detail. Thanks to the correspondences depicted here, we can
for the rest of our considerations assume that the considered
knowledge base is free of mentions of non-Δ individuals, free
of nominals, free of (in)equality statements, and normalized;
we call such a knowledge base simplified.
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Table 3. Ω-Normalization of knowledge base axioms.

Ω(K) =
⋃

α∈R∪A
Ω(α) ∪

⋃
C1�C2∈T

Ω(� � nnf(¬C1 � C2))

Ω(� � C � C′) = Ω(� � C � αC′) ∪
⋃

1≤i≤n

Ω(� � ¬̇αC′ � Ci)

for C′ of the form C′ = C1 � · · · � Cn and n ≥ 2

Ω(� � C � ∃r.D) = Ω(� � C � ≥ 1 r.D)
Ω(� � C � ∀r.D) = Ω(� � C � ∀r.αD) ∪ Ω(� � ¬̇αD �D)

Ω(� � C � ≥ n r.D) = Ω(� � C� ≥ n r.αD) ∪ Ω(� � ¬̇αD �D)
Ω(� � C � ≤ n r.D) = Ω(� � C� ≤ n r.¬̇α¬̇D) ∪ Ω(� � ¬̇α¬̇D � ¬̇D)

Ω(D(s)) = {αD(s)} ∪ Ω(� � ¬̇αD � nnf(D))
Ω(r−(s, t)) = {r(t, s)}

Ω(r1 ◦ . . . ◦ rn � r) = {r1 ◦ r2 � r(r1◦r2)} ∪ Ω(r(r1◦r2) ◦ r3 ◦ . . . ◦ rn � r)
for any RIA with n > 2

Ω(β) = {β} for any other axiom β

αC =

{
QC if pos(C) = true
¬QC if pos(C) = false

,where QC is a fresh concept name unique for C.

pos(�) = false
pos(A) = true

pos(∃r.Self) = true
pos(C1 � C2) = pos(C1) ∨ pos(C2)

pos(∀r.C1) = pos(C1)
pos(≥ n r.C1) = true

pos(⊥) = false
pos(¬A) = false

pos(¬∃r.Self) = false
pos(C1 � C2) = pos(C1) ∨ pos(C2)

pos(≤ n r.C1) =

{
pos(¬̇C1) if n = 0
true otherwise

Note: A is an atomic concept, C(i) are arbitrary concept expressions, C is a possibly
empty disjunction of concept expressions, D is not a literal concept. The function ¬̇
is defined as ¬̇(¬A) = A and ¬̇(A) = ¬A for some atomic concept A.

Candidate Generation Following the generate & test
paradigm, we let Πgen(Δ) be the program that generates (all)
possible interpretations over Δ; i.e. for each concept name A
and role name r all possible extensions over Δ are generated
(while the interpretation of the individual names is just the
identity, exploiting our assumption that K does not contain
non-Δ individual names). For each concept name A and role
name r occurring in K, Πgen(Δ) contains the following rules:

A(X) ← �(X),not Ā(X). (1)

Ā(X) ← �(X),not A(X). (2)

r(X,Y ) ← �(X),�(Y ),not r̄(X,Y ). (3)

r̄(X,Y ) ← �(X),�(Y ),not r(X,Y ). (4)

Thereby, slightly overloading notation, A and Ā are unary
predicates introduced for every concept name A in K and r
and r̄ are binary predicates introduced for every role name
r. Moreover, we use � as unary domain predicate and let
Πgen(Δ) contain the fact �(δ) for each domain element δ ∈ Δ.
Rules (1) and (2) guess a set of ground instances of A(X) for
any concept name A, while Rules (3) and (4) realize the same
for role names r. Further, we have to axiomatize the universal
role u as follows:

u(X,Y ) ← �(X),�(Y ). (5)

Like this, an answer set A of Πgen(Δ) directly corresponds
to an interpretation IA = (Δ, ·IA) of K over the fixed-domain

Δ as follows:

AIA = {δ | A(δ) ∈ A}, for all A ∈ NC(K),

rIA = {(δ, δ′) | r(δ, δ′) ∈ A}, for all r ∈ NR(K),

aIA = a.

Axiom Encoding Beginning with assertions in A, for each
A(a) and each role r(a, b) we add the identical fact to Πchk(K).

Further, we turn each axiom α ∈ T ∪ R into a constraint,
ultimately ruling out those candidate interpretations not sat-
isfying α, whence Πchk(K) = A ∪ Πchk(T ) ∪ Πchk(R). Since
each α ∈ T is of the form � �

⊔n
i=1 Ci, we simply turn it into

a negative constraint of the form
�n

i=1 ¬Ci � ⊥, and add its
direct translation to Πchk(T ). Thus, for each � �

⊔n
i=1 Ci a

constraint of the following form is obtained, where the individ-
ual translation trans(Ci) of concepts Ci is defined in Table 4:

← trans(C1), . . . , trans(Cn). (6)

Role assertions and role inclusion axioms are also turned
into constraints, and we add their direct translation to
Πchk(R). For each role inclusion r � s ∈ R, role disjointness
Dis(r, s) ∈ R and role chain s1 ◦ s2 � r ∈ R this yields

← r(X,Y ), not s(X,Y ). (7)

← s(X,Y ), r(X,Y ). (8)

← s1(X,Y ), s2(Y, Z), not r(X,Z). (9)

respectively, where we silently assume that an expressions of
the form r−(V1, V2) represents the atom r(V2, V1).
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Theorem 10 Let K be a simplified SROIQ knowledge base.
Then, I |=Δ K exactly if {A(δ) | δ ∈ AI , A ∈ NC(K)∪{�}}∪
{r(δ, δ′) | (δ, δ′) ∈ rI , r ∈ NR(K) ∪ {u}} is an answer set of
Π(K,Δ).

This theorem establishes a tight one-to-one correspondence
between Δ-models of a knowledge base and answer sets of its
ASP translation, and allows us to employ ASP solving tools
for fixed-domain DL reasoning. Most notably, in addition to
the standard DL reasoning tasks, model extraction and model
enumeration can be carried out without additional efforts,
since both are natural tasks for answer set solvers. Moreover,
all mentioned query formalisms can be straightforwardly ex-
pressed in a rule-based way, whence integration in our frame-
work is immediate.

Table 4. Translation of Concept Expressions.

C trans(C)
A not A(X)
¬A A(X)
∀r.A {not A(YA), r(X,YA)}
∀r.¬A {r(X,YA), A(YA)}
∃r.Self not r(X,X)
¬∃r.Self r(X,X)
≥ n r.A #count{r(X,YA) : A(YA)} < n
≥ n r.¬A #count{r(X,YA) : not A(YA)} < n
≤ n r.A #count{r(X,YA) : A(YA)} > n
≤ n r.¬A #count{r(X,YA) : not A(YA)} > n

5.2 Implementation and Experiments

We implemented our translation based approach as an open-
source tool – named Wolpertinger.3 The obtained logic pro-
grams can be evaluated with most modern ASP solvers.
However, the evaluation was conducted using Clingo [9] for
grounding and solving, since it is currently the most promi-
nent solver leading the latest competitions [5].

In fact, the tool is used for solving nontrivial real-world
configuration problems in an industry project with very good
results. Yet, for legal reasons we cannot disclose any details.

Hence, we present preliminary evaluation results based on
simple ontologies, encoding constraint-satisfaction-type com-
binatorial problems. Existing OWL ontologies typically used
for benchmarking, e.g. SNOMED or GALEN [29, 23], do not
fit our purpose, since they are modeled with the classical se-
mantics in mind and often have little or no ABox information.

Our tests provide runtimes compared to the popular HermiT
and Konclude reasoners [12, 30]. Both are full OWL 2 DL
reasoners and are leading the latest competitions. Whereas
a direct comparison would not be fair, the conducted tests
shall merely show the feasibility of our approach in compar-
ison to standard DL reasoners using the axiomatization. In
particular we focus on model enumeration, for which we can
not conduct any comparison with existing DL reasoners. The
evaluation itself is conducted on a standard desktop machine
(Unix operating system, 2.7 Ghz Intel Core i5 Processor, 8GB
memory and standard Java-VM settings).

3 https://github.com/wolpertinger-reasoner/Wolpertinger

Unsatisfiability We construct an unsatisfiable knowledge
base Kn = (An, Tn, ∅), with Tn = {A1 � ∃r.A2, . . . , An �
∃r.An+1, Ai � Aj � ⊥ | 1 ≤ i < j ≤ n + 1} and An =
{A1(a1),�(a1), . . . ,�(an)}, together with the fixed-domain
Δ = {a1, . . . , an}.

Inspired by common pigeonhole-type problems, we have Kn

enforce an r-chain of length n+1 without repeating elements,
yet, having fixed Δ to n elements such a model cannot exist.
Table 5 depicts the runtimes for detecting unsatisfiability of
Kn, for increasing n. The durations correspond to the pure
solving time as stated by the tools (including grounding in the
case of Clingo), and neglecting pre-processing time. As the
figures suggest, Kn is a potential worst-case scenario, where
any of the tools is doomed to test all combinations. Whereas
Wolpertinger is faster in claiming inconsistency in all cases
up to K10, HermiT is slightly faster up from K11b – both leav-
ing Konclude behind. As K11 causes already a massive in-
crease, in the runs 7–10 we restricted the search space for K11

by explicitly adding negative r-edges and thus allowing for a
more fine grained evaluation. However, K12 is already beyond
a feasible time bound for all reasoners.

Table 5. Runtimes: Detecting Unsatisfiability of Kn.

# Kn Wolpertinger HermiT Konclude
1 5 < 0.01 s 0.48 s 0.04 s
2 6 < 0.01 s 0.67 s 0.07 s
3 7 0.04 s 0.94 s 0.26 s
4 8 0.33 s 1.81 s 1.79 s
5 9 3.72 s 9.52 s 16.19 s
6 10 68.53 s 87.88 s 152.37 s
7 11a 111.43 s 203.67 s 342.90 s
8 11b 350.13 s 301.15 s 516.60 s
9 11c 438.70 s 403.69 s 669.47 s
10 11d 582.90 s 491.34 s 878.46 s
11 11 1 095.49 s 1 027.33 s 1 682.41 s

Table 6. Runtimes: Sudoku Satisfiability.

# Size Wolpertinger HermiT Konclude
1 6× 6 - 0 1.04 s 6.32 s 2.75 s
2 9× 9 - 46 5.68 s 0.93 s 11.37 s
3 9× 9 - 42 5.78 s 1.06 s 20.68 s
4 9× 9 - 38 6.96 s 1.47 s 60.17 s
5 9× 9 - 28 6.87 s 27.48 s > 30min
6 9× 9 - 0 6.73 s > 30min > 30min

Table 7. Runtimes: Enumerating 9×9-Sudoku Instances.

# Models Time(Total) Time(Solving)
1 100 6.73 s 0.11 s
2 1 000 7.16 s 0.33 s
3 10 000 9.06 s 2.39 s
4 100 000 29.27 s 22.53 s
5 1 000 000 225.40 s 218.56 s

Model Extraction and Enumeration With Table 6, we
next provide some figures for model extraction and partial
enumeration (retrieving a given number of Δ-models). To this
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end, we created a knowledge base modeling fully and correctly
filled Sudokus, beginning with a 6×6-instance, consisting of 64
individuals, 13 concept names and 1 role name. Then testing
on a 9×9-instance featuring 108 named individuals. Whereas
HermiT & Konclude are still able to claim satisfiability for the
6×6-instance, invoking a satisfiability test on the 9×9-instance
(axiomatized knowledge base), no answer was given within
30 minutes. In both cases Wolpertinger detects satisfiability
with reasonable runtimes. Therefore, we again restricted the
search space in run 2-5 by having 46 cells pre-filled, respec-
tively 42, 38 and 28.

For model enumeration, we used the knowledge base for
the 9×9-instance and turning the task into generating new
Sudoku instances. Table 7 depicts the figures, where it can be
observed that, besides a constant time of around 6 seconds
required for grounding, requesting 106 models is reasonably
efficient.

6 Conclusion and Future Work

For OWL ontologies which represent constraint-type prob-
lems, the fixed-domain semantics allows to confine modelhood
of interpretations to models of the right form. Although OWL
still imposes some restrictions regarding expressivity (e.g., by
restricting the arity of the used predicates to 1 and 2), we
argue that quite large and involved problem scenarios can
be modeled by OWL ontologies. Clearly, more comprehen-
sive evaluations of our system with respect to such ontologies
remain as imperative issue. Moreover, translations of fixed-
domain reasoning problems into other formalisms are con-
ceivable, including pure CSP languages or even SAT, which
would have to be implemented and compared against the ASP
approach.

Regarding our translation from DL to ASP, we want to
point out that there is related work on computing finite mod-
els for general FO theories using ASP [10], where an incre-
mental approach is implemented using iASP, in order to suc-
cessively increase the size of the domain over which a model
shall be constructed – ultimately proofing finite satisfiability.
Although different in its motivation, it should be possible to
compare both translations if we consider the FO translation
of some DL knowledge base and the cardinality of the given
fixed domain as initial domain size.

Another interesting strand of research would be to consider
extensions of the source formalism, e.g. by non-monotonic
features. As ASP itself is a non-monotonic logic program-
ming formalism, rule-based extensions of OWL – monotonic
[14, 20] or nonmonotonic [19, 1] – should be straightforward
to accommodate. On yet another note, we plan to incorpo-
rate typical ontology engineering tasks such as explanation
and axiom pinpointing into our ASP-based framework.
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