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Abstract. Consensus-finding plays a ubiquitous role in A.I. In this
paper, a consensus among agents is defined as a non-contradictory
fragment of all the information conveyed by the agents such that this
fragment does not logically conflict with any of the agents. This con-
cept is investigated in modal logic S5 in order to meet representation
needs that are put in light by this concept of consensus itself. Inter-
estingly, an optimization-based approach to compute maximal con-
sensuses is developed and shown experimentally efficient very often
for both the standard Boolean and S5 frameworks.

1 INTRODUCTION

Consensus-finding plays a ubiquitous role in A.I. For example, in-
teracting agents [4, 17] can need to target a consensual, shared, goal
whereas negotiation can amount to finding and settling on a con-
sensual agreement. More generally, a notion of consensus can prove
helpful for reconciling several information3 sources, hereafter often
simply called sources or agents. For example, cautious A.I. systems
might rely on uncontroversial, consensual, fragments of the global
information conveyed by several mutually conflicting belief sources
[10, 7].

However, consensus paradigms are rarely defined in a precise way,
especially in the context of several agents who are equipped with
inferential reasoning capabilities. In this paper, a consensus among
several sources is defined as a non-contradictory fragment of all the
information conveyed by the sources such that this fragment does not
logically conflict with any source. Interestingly, such a consensus as
proposed in [5], might not contain only the information shared by ev-
ery source; it can also contain some additional information that is in
some sense possibly acceptable from the point of view of each source
since it does not contradict it. Hence, each source might endorse the
information in the consensus as this information either also belongs
to the source or does not conflict with it.

First, we discuss this notion of consensus that has been defined in
a Boolean setting in [5]. Then, it is extended to modal logic S5 (see
for example [3, 2] for an introduction to modal logics) in order to
meet representation needs that are put in light by this concept of con-
sensus itself. The focus is on the practical computational extraction
of maximal consensuses. Noticeably, it is stressed that the computa-
tion of one maximal consensus diverges from the well-studied search
for maximal satisfiable subsets of all the information conveyed by
the sources. Interestingly, we provide an optimization schema that
proves experimentally efficient even for very large sources for both
the standard Boolean and S5 frameworks, extending also [5] in this
latter aspect.
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The paper is organized as follows. In the next section, we provide
the main logical preliminaries and notations used throughout the pa-
per. In section 3, we introduce several basic concepts of consensus
before we push the envelope in section 4 by investigating consen-
suses in modal logic S5. Section 5 presents a practical computational
approach for the extraction of one consensus whereas section 6 ex-
tends it to S5. Section 7 reports our experimental study. The paper
ends with a discussion and some promising perspectives for further
research.

2 LOGICAL PRELIMINARIES

We consider the standard (Boolean logic) language L of formulas,
based on a denumerable set of Boolean variables P , which are writ-
ten a, b, . . . and can be assigned either true or false. The conjunc-
tive, disjunctive, negation, material implication and equivalence con-
nectives are written ∧,∨,¬,→,≡, respectively. Formulas and sets
of formulas are denoted α, β, . . . and Φ,Γ, . . . , respectively. In the
following, we assume n agents Φi where i ∈ [1..n] and identify
each agent with her knowledge (actually, with the part of her knowl-
edge that is concerned by the search for one consensus). Without
loss of generality, we often assume that each Φi is under clausal
form (CNF): namely, is a conjunction of clauses, where a clause is
a disjunction of literals and a literal is a possibly negated Boolean
variable.
Φi is satisfiable iff there exists a truth value assignment of every

variable such that all formulas in Φi are true according to usual
compositional rules. Such an assignment is called a model of Φi.
Any Boolean formula can be rewritten in linear time in CNF that is
equivalent with respect to satisfiability. � denotes the deduction re-
lation: Φi � α iff α is true in all models of Φi. A tautology is true
under any assignment; in other words, we have that � α for every
tautology α. Logically equivalent formulas are considered indistin-
guishable: for example, we do not distinguish between a∨b and b∨a.
Th(Φi) represents the set of deductive consequences (also called the
deductive closure) of Φi, namely Th(Φi) = {α ∈ L s.t. Φi � α}.
Arrays of sets of formulas are called profiles and noted S, V, . . .
The cardinality of a set Φ is noted #Φ. We will use the concept of
prime implicate, defined as follows. A prime implicate of a finite set
Δ of formulas is any clause δ such that Δ � δ, and, at the same time,
� (δ′ ≡ δ) for every clause δ′ s.t. (Δ � δ′ and δ′ � δ). For readabil-
ity reason, we will present elements of modal logic when needed.

3 CONSENSUS: BASIC DEFINITIONS AND
PROPERTIES

Assume S = [Φ1, . . . ,Φn] represents n sources Φi where each Φi

is such that Φi ⊂ L and is satisfiable. In this paper, we consider
consensuses that are included within

⋃n
i=1 Φi, as defined in [5]:

ECAI 2016
G.A. Kaminka et al. (Eds.)
© 2016 The Authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/978-1-61499-672-9-795

795



Definition 1. A set Γ ⊂ L is a consensus for S iff
Γ ⊆

⋃n
i=1 Φi and ∀ Φi ∈ S : Γ ∪ Φi is satisfiable.

Accordingly, a consensus is always satisfiable since no set is satis-
fiable together with an unsatisfiable one. Since each Φi is satisfiable,
there exists always at least one consensus, which can be the empty
set. When

⋃n
i=1 Φi is satisfiable, it forms the only maximal consen-

sus. In the general case, a consensus need not be unique. No logical
consequence of a consensus contradicts any source: hence, a consen-
sus can be identified with its deductive closure. Notice that it would
be possible to require a consensus to be a subset of Th(

⋃n
i=1 Φi)

vs. a subset of
⋃n

i=1 Φi, however such an extended definition would
not allow for the practical computational approach that we develop
in this paper. Two natural definitions for maximal consensuses are
as follows [5], depending on whether maximality is considered with
respect to set-theoretic inclusion or set cardinality.

Definition 2. A consensus Γ for S is max⊆ iff ∀ Θ s.t. Γ ⊂ Θ ⊆⋃n
i=1 Φi, ∃ Φi ∈ S s.t. Θ ∪ Φi is unsatisfiable.

A consensus Γ for S is max# iff ∀ Θ s.t. Θ ⊆
⋃n

i=1 Φi and #Θ >
#Γ, ∃ Φi ∈ S s.t. Θ ∪ Φi is unsatisfiable.

Clearly, any max# consensus is a max⊆ consensus whereas the
converse does not hold. From now on, we consider max⊆ and max#
consensuses, only. We write consensus when there is no need to dif-
ferentiate between max⊆ and max#. Notice that consensuses and
maximal (w.r.t. ⊆ or #) satisfiable subsets of

⋃n
i=1 Φi (in short

MSSes) are closely related but different concepts. In the general case,
a consensus is not one MSS that is satisfiable with each Φi: although
every consensus is included in some MSSes, an MSS is not necessary
a consensus. Actually, the sets of MSSes and of consensuses can be
disjoint.

Example 1. Assume that three political groups are negotiating for
a possible coalition program while their individual political agen-
das are mutually conflicting. One maximal consensus is searched
within all elements of the programs such that it does not contra-
dict any of the agendas. Although a political group might find within
the consensus some elements that do not belong to its own agenda,
it might endorse the consensus since these elements do not contra-
dict its own objectives. Assume for example that {it, tss, ids} is a
set of Boolean variables standing for Increase Taxation, Trim So-
cial Security and Increase Defense Spendings, respectively. Let S
be the agendas of these three political groups: S = [Φ1,Φ2,Φ3]
with Φ1 = {it,¬tss,¬it → ¬ids}, Φ2 = {tss, it → ids} and
Φ3 = {¬ids}. It is easy to see that there are three max# consensuses
for S: Γ1 = {¬it → ¬ids, it → ids}, Γ2 = {¬ids,¬it → ¬ids}
and Γ3 = {it,¬it → ¬ids}. For example, Γ3 states “Increase
taxation and if we do not increase taxation then we do not in-
crease the defense spendings”. Remember that any consensus can
be identified with its deductive closure: hence Γ3 can be identified
with Th({ids}). Notice that none of the consensuses is an MSS of⋃3

i=1 Φi.

The consensus concept is easily extended by requiring forms of
integrity constraints to be obeyed. In the following, we assume that
a set of integrity constraints, noted Ψ, is included in

⋃n
i=1 Φi [5].

Ψ can need to be included in any consensus or, as in the next defi-
nition, be a deductive consequence of any consensus (definitions for
maximal consensuses are easily adapted, too). In a negotiation set-
ting, integrity constraints can express elements that must belong to
any consensus.

Definition 3. A set Γ ⊂ L is a consensus for S under the constraints
Ψ iff Γ ⊂ L is a consensus for S and Γ � Ψ.

Example 2. In the previous example, Γ = {it,¬it → ¬ids} is a
consensus for S under the constraint Ψ = {it}. For example, there
is no consensus for S under the constraint Ψ = {¬tss} since tss is
logically conflicting with Φ2.

Notice that the last definition could be easily extended in such a
way that a consensus includes or entails a set of integrity constraints
that is not included in

⋃n
i=1 Φi or even Th(

⋃n
i=1 Φi).

From a computational point of view, extracting one max⊆ consen-
sus amounts to computing one MSS under an additional constraint
of satisfiability with each Φi. Consequently, computing such con-
sensuses in this way is as hard as computing MSSes, which is known
to be intractable in the worst case. Indeed, the computation of one
MSS⊆ belongs to the FPNP [wit, log] class, i.e., the set of function
problems that can be computed in polynomial time by executing a
logarithmic number of calls to an NP oracle that returns a witness
for the positive outcome [13]. Even worse, computing one MSS#

belongs to the Opt-P class of problems [16], i.e., the class of func-
tions computable by taking the maximum of the output values over
all accepting paths of an NP machine.

It is also important to notice that the number of different consen-
suses is exponential in the number of clauses in [Φ1, . . . ,Φn] in the
worst case. However, in many difficult negotiation problems and ap-
plications where a consensus needs to be found, extracting one maxi-
mal consensus is often the actual and sufficient problem to be solved.
It can also be a useful starting point for further successful discus-
sions. Accordingly, the focus in the rest of the paper is on the search
for one maximal consensus; more precisely, we investigate the com-
putation of one max# consensus (remember that any max# consen-
sus is also a max⊆ consensus).

4 CONSENSUS IN A MODAL LOGIC OF
POSSIBILITY AND NECESSITY

4.1 Motivations

We claim that the possibility and necessity modalities (noted � and
�, respectively) of standard modal logics can be of specific inter-
est in situations where consensus-finding must take place. In this
section, we motivate the needs for the additional expressive power
provided by these modal logics; we take advantage of these moti-
vating examples to provide some early intuitive grasp about how
consensus-finding will be actually implemented by reduction to stan-
dard Boolean logic. To this end, the reader only needs to remember at
this stage that a formula �α is intended to assert that α is “possible”,
i.e., is true in some possible world.

Actually, the concept of consensus already allows an agent Φi to
express that a formula α should be “possible” with respect to any
consensus in the following sense. By definition, when α ∈ Φi (and
more generally when Φi � α), no consensus for S contradicts α or,
equivalently, for any consensus Γ, we have that Γ 
� ¬α. In the ex-
ample from the previous section, if one political agenda Φi contains
¬taxes-increase then taxes-increase does not belong to any consen-
sus Γ and is not inferable from Γ. Hence, any consensus conveys the
information that ¬taxes-increase remains possible. This feature will
be exploited to some extent to handle some occurrences of the modal-
ity operator � in the search for consensuses for S. However, this can-
not be extended in the general case. Indeed, inserting every formula
of a set Θ inside Φi to express that each formula Θ must be possi-
ble does not always yield the intended result. The simplest example
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of this is as follows. Assume Φi requires both a formula α and its
contrary ¬α to be true in some (possibly different) possible worlds.
Inserting both α and its contrary ¬α inside Φi will make Φi become
unsatisfiable and collapse: no consensus will exist. On the contrary,
both modal formulas �α and �¬α are not mutually contradictory
since they express that α and ¬α need to be true in some (different)
possible worlds. Interestingly, by means of additional Boolean vari-
ables, it will be possible to reduce S expressed using modal logic
S5 into mere (clausal) Boolean logic, and reuse a computational ap-
proach to consensus-finding that has been developed in the standard
Boolean framework [5].

In the political agenda example, Φi might require both taxes-
increase and ¬taxes-increase to remain possible: any consensus
should prevent any of those formulas from being derivable. In this
way, the taxation issue will remain an open question for possible fur-
ther negotiations since it is not hindered by any consensus, which
can form a first useful acquired result among the agents. Note that if
both formulas were inserted within Φi then Φi would become unsat-
isfiable and no consensus could exist, hence the use of modalities to
prevent this from happening. More generally, we claim that in negoti-
ation and consensus-finding situations, there can be a need to express
and handle requirements from agents asserting that some formulas
should be possible, or in a dual way, that some formulas should not
be derivable. Indeed, an agent might not only express negative de-
sires under the form of standard logic formulas ¬α but also weaker
desires that simply require some α not to be derivable. Additionally,
since the latter form of desire is logically weaker than the former
one, weakening some desires into mere “possible” or “not derivable”
forms can be a way to allow for consensuses to exist when no con-
sensus for the agents’ initial requirements exists.

Let us also give another motivating example for the use of the
possibility modality �. Assume that a consensus is to be found
among two engineers who have conflicting diagnoses about a same
device fault. The first one claims that the reason for failure is to be
found in three (possibly cumulative) device faults. Let us tentatively
represent this by Φ1 = {cause1 ∨ cause2 ∨ cause3}. The sec-
ond one is convinced that the reasons for failure are to be found
in some of the first two causes, only. Assume that this is repre-
sented by Φ2 = {cause1 ∨ cause2}. The only max consensus is
Φ1 ∪ Φ2 since Φ1 ∪ Φ2 is satisfiable. From this consensus we can
deduce cause1 ∨ cause2. It can be argued that this result is counter-
intuitive with respect to the intended role of a consensus since Φ1

requires cause3 to be also considered as a possible cause of failure
whereas the same agent Φ1 does not agree that the only two possible
reasons for failure are cause1 and cause2. Actually, what the engi-
neer Φ1 needs to express is that α = cause1 ∨ cause2 ∨ cause3
is a prime implicate of her own knowledge: namely, no strict sub-
clause of α is derivable. She must thus express that Φ1 
� α for
any α that is a strict sub-clause of cause1 ∨ cause2 ∨ cause3, or
equivalently, that any corresponding formula ¬α must be possible.
In this way, no consensus can allow one to conclude for example
cause1∨cause2 without contradicting her own requirements. Notice
that, like in the example about taxes-increase and ¬taxes-increase,
the set of standard logic formulas ¬α such that α is a strict sub-
clause of cause1 ∨ cause2 ∨ cause3 is unsatisfiable. Hence, intro-
ducing this set within Φi would make Φi collapse and prevent any
consensus from existing: this also justifies our use of modal logic.

4.2 Consensus in modal logic S5

Modal logic S5 is a canonical logic of possibility and necessity that
can also be considered as a logic of knowledge. Its language LM ex-
tends the language of standard Boolean logic by means of two modal-
ity connectives: � and �. Main basic definitions and concepts about
S5 are recalled in Appendix: for the understanding of this paper, it
is sufficient to know that (1). � and � are used as additional unary
connectives: for example �(�a ∨ b ∨ �¬c) is a well-formed for-
mula of LM . (2). modalities are dual in the sense that �α = ¬�¬α.
(3). Truth values of modal formulas can vary depending on the con-
sidered so-called possible world, these worlds being connected by an
equivalence accessibility relation in S5; the satisfiability paradigm is
adapted accordingly. Interestingly, the satisfiability problem in S5 is
NP-complete [11], just like SAT.

We assume that ∀i ∈ [1..n] : Φi ⊂ LM is S5-satisfiable and we
consider [Φ1, . . . ,Φn] as the profile S for which a consensus needs
to be found. Now, all definitions from Section 3 directly apply in this
modal framework, using the satisfiability paradigm of S5. In this last
respect, let us just introduce the two basic cases involving formulas
with modalities. We will indicate how to handle more complex modal
formulas later in the paper by reduction to these formulas and non-
modal ones. Assume that Φi contains the formula �α where α does
not contain any modalities: any consensus for S cannot allow one to
deduce ¬α since any consensus should not conflict with Φ1, which
asserts that α is possible, i.e., is true in some possible world. When
Φi contains �α then any non-empty consensus must contain α since
it cannot conflict withΦ1, which asserts that α is true in any possible
world. Consequently, even when all Φi are satisfiable, the existence
of a non-empty consensus is not guaranteed: when one agent asserts
�α and a second one can deduce ¬α, no non-empty consensus can
exist. In this respect, �α can be interpreted as requiring α to be one
integrity constraint for any non-empty consensus. Similarly, if one
agent can deduce �α whereas another one can deduce �¬α then no
non-empty consensus exists.

Proposition 1. Let S = [Φ1, . . . ,Φn] such that ∀i ∈ [1..n] : Φi ⊂
LM is satisfiable. There is no non-empty consensus for S iff ∃ i, j ∈
[1..n] s.t. for some some α in LM we have (Φi |=S5 ¬α andΦj |=S5

�α) or (Φi |=S5 �¬α and Φj |=S5 �α).

Example 3. Let us come back to Example 1 and assume now that
agentΦ3 strengthens her desires and does not want to leave open any
possibility in the consensus of having an increase of defense spend-
ings:Φ3 is now {�¬ids} (or equivalently {¬�ids}). There remains
only one max# consensus, namely Γ2 = {�¬ids,¬it → ¬ids}.
Note that �¬ids entails ¬ids in S5. Now, if any Φi is then aug-
mented with �ids then no non-empty consensus exists anymore.

5 COMPUTING ONE MAX# CONSENSUS

Let us focus first on the computation of one max# consensus in the
standard Boolean framework. We assume that each Φi in S is a sat-
isfiable set of clauses of L.

If one MSS# of
⋃n

i=1 Φi were to be extracted, we could directly
use SAT-related techniques to address this issue. Specifically, the
problem would amount to solving a variant of Max-SAT(

⋃n
i=1 Φi)

that would return one MSS# of its argument (instead of yielding
merely the cardinality of this MSS). Actually, in order to deliver one
max# consensus, the computation of one MSS# must also take into
account the additional constraint requiring the result to be satisfi-
able with each Φi taken individually. Notice that since the Φi can be
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mutually conflicting, in the general case it is not possible to simply
replace this multiple constraint by a unique one stating that the re-
sult should be satisfiable with

⋃n
i=1 Φi. A naive direct approach to

compute one max# consensus could however consist of the follow-
ing steps. First, initialize Γ with

⋃n
i=1 Φi. Then, consider each Φj ,

successively. At each step, trim the current contents of Γ so that it
becomes satisfiable with the current Φj . Clearly, at the end of the
process, Γ would be satisfiable with each Φj and would be a consen-
sus for S. However, there would be no guarantee that Γ is a maximal
consensus. Indeed, some clauses from Γ might have been dropped
to ensure satisfiability with, say, Φj ; at some subsequent step, some
other clauses could have been discarded from Γ to ensure satisfia-
bility with another source whereas dropping only these other clauses
would have been sufficient to ensure that Γ is satisfiable with Φj .
Hence to ensure that Γ is a max# consensus, we would need to con-
sider every possible ordering of all Φi and for each of them, con-
sider every Φj and record the corresponding various minimal sub-
sets of clauses to be dropped in order to ensure satisfiability with
Φj . Based on all this information, we might finally select the clauses
to be expelled to give rise to one maximal consensus. Clearly, such
an approach is doomed to face a combinatorial blow-up very often,
especially since the number of possible orderings to consider is ex-
ponential.

We have followed another path in [5] and have adapted a method,
called Transformational Method, introduced in [1] to circumvent a
close combinatorial issue consisting in extracting one maximal sub-
set Γ from a set of clauses such that, at the same time, Γ is satisfi-
able with several possibly mutually conflicting contexts. The method
is based on the transformation of the initial problem into one single-
step optimization problem. Intuitively, the satisfiability of Γ with one
givenΦi is interpreted as a sub-problem, using its own range of fresh
Boolean variables. All sub-problems are then linked together with
the use of additional variables, called linking variables. The use of a
Partial Max-SAT solver allows then to extract one subset of clauses
that is a solution to the initial problem. There has been very signifi-
cant progress these last years about the design of experimentally effi-
cient (Partial) Max-SAT solvers: see for example [15] and the related
international competitions http://www.maxsat.udl.cat/. Inter-
estingly, despite the increase of the problem size that is linear with
respect to the number of contexts, this approach proves experimen-
tally far more efficient and scalable than the above naive method [1].
In order to adapt this method to compute one max# consensus, we
use Partial Max-SAT, which belongs to the Opt-P class of problems
[16].

Definition 4. Let Σ1 and Σ2 be two sets of clauses. Partial Max-
SAT(Σ1,Σ2) computes one cardinality maximal subset of Σ1 that is
satisfiable with Σ2. Σ1 and Σ2 are called the sets of soft and hard
constraints, respectively.

Algorithm 1 depicts the method. The problem of having Γ being
a subset of

⋃n
i=1 Φi that is satisfiable with each Φj is first treated as

n independent subproblems; these subproblems will be then linked
together to form one single optimization problem through one single
call to Partial Max-SAT. Each clause δji from any Φi is augmented
with an additional disjunct ¬εji using a new fresh variable (line 2):
this yields a set Σ. These εji variables will be used to link the various
subproblems. Each subproblem is created by unioning Σ with one
Φi and by renaming all variables except the εji (l. 4-7). All together,
the subproblems form the set of hard clauses; these ones are all
simultaneously satisfiable (just assign all εji to true). The set of soft
clauses is made of all unit clauses εji (l. 3). The instance of the Partial

Max-SAT problem with these sets of hard and soft clauses will
search one truth-value assignment such that all hard clauses and one
maximal number of clauses εji are satisfied. Accordingly, all clauses
δji corresponding to the satisfied εji form one max# consensus for S.
Notice that the use of additional variables and clauses is a paradigm
that has long been exploited in Max-SAT computation and the
extraction of minimal unsatisfiable sets of clauses by other authors,
see for example [6] and [14].

Algorithm 1: Compute one max# consensus for S
input : S = [Φ1, . . . ,Φn]: a profile of n satisfiable sets of

Boolean clauses;
Assume that the clauses of Φi are noted δ1i , δ

2
i , . . . ;

output: One max# consensus for S;

1 ΓHard ← ∅; ΓSoft ← ∅;
2 Σ ←

⋃
Φi∈S{¬ε

j
i ∨ δji | δji ∈ Φi and εji are new variables};

3 ΓSoft ← {εji}i,j ;
4 foreach Φi ∈ S do

5 Φi ← Σ ∪ Φi;
6 Rename all var. in Φi (except the εji ) with new ones;
7 ΓHard ← ΓHard ∪ Φi;

8 Σ ←Partial Max-SAT(ΓSoft,ΓHard);
9 return ({δji ∈ S | εji ∈ Σ});

Proposition 2. Let m be the number of clauses in S =
[Φ1, . . . ,Φn]. The Transformational Approach computes one max#
consensus for S. It requires one call to a Partial Max-SAT solver
on a set of hard constraints made of mn clauses and a set of soft
constraints made of m clauses.

6 COMPUTING ONE MAX# CONSENSUS IN S5

Assume now that ∀i ∈ [1..n]: Φi ⊂ LM and Φi is S5-satisfiable.
Consensus-finding grounds itself in multiple occurrences of sat-

isfiability constraints since it amounts to finding a subset of formu-
las that is satisfiable with each source. Interestingly, as already men-
tioned, the satisfiability problem for S5 is NP-complete [11]: hence,
there exists a polynomial transformation allowing this latter problem
to be rewritten as SAT. Accordingly, there has been already much re-
search about SAT-based deduction and satisfiability in S5 and other
usual modal logics: see for example [8] and [9]. In the same vein, one
way to compute consensuses in S5 can thus amount to translating the
profile S in LM into a profile in L, while preserving (un)satisfiability.

The challenge is to devise such a transformation so that the practi-
cal efficiency of the approach in Boolean logic to extract one max#
consensus remains experimentally efficient. Especially, the number
of additional variables and clauses that need to be introduced by the
translation process into standard Boolean logic must be as minimal
as possible to address large instances since the consensus-finding
method in the Boolean framework itself roughly multiplies the size
of the instance by the number of sources. Interestingly, the subse-
quent optimization technique to extract consensuses does not require
the so-called nominals and other related concepts that are often in-
troduced in the Boolean language by existing techniques, like for
example [19], when modal S5 formulas are translated into Boolean
ones. On the contrary, we use a plain direct translation, as proposed in
[18], to transform the S5 modal formulas into equi-satisfiable CNF.
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The first step consists in rewriting the formulas of S into modal CNF
that preserves (un)satisfiability. We used the axiom schemata of S5,
as well as De Morgan laws, which are valid in S5, to simplify nested
occurrences of connectives and modalities, and transform each Φi

into its Normal Negation From (NNF), which requires (1). ¬ to only
occur immediately before a Boolean variable and (2). the absence of
occurrences the → connectives. In a second step, the NNF was then
transformed into a set of Boolean clauses using the Tseitin encod-
ing technique [20], which introduces new variables to encode sub-
formulas, and using other additional variables to encode the various
possible worlds as follows. It is easy to see that it is sufficient to con-
sider a number of different possible worlds that is bounded by the
number of occurrences of modal operators in the NNF. Intuitively, a
formula �a is rewritten as apw1 ∨ ... ∨ apwk where apwi are new
fresh variables referring to a in world i, and k is the total number of
possible worlds that need be considered.

Notice that this transformation procedure of an S5 formula into an
equi-satisfiable CNF standard Boolean logic is linear in the number
of occurrences of modal operators in the initial formula. The num-
ber of Boolean variables in the NNF Boolean form depends on the
number of variables in the initial modal formula with a proportional
factor that is the number of involved possible worlds.

7 EXPERIMENTAL STUDY

All the experimentations have been conducted on Intel Xeon E5-
2643 (3.30GHz) processors with 8Gb RAM with Linux CentOS.
We used the Weighted Partial Max-SAT solver MaxHS from http:

//www.maxhs.org/ and have implemented all the tested algo-
rithms in C++ on top of Glucose (http://www.labri.fr/perso/
lsimon/glucose/). All software, data and results are available at
http://cril.univ-artois.fr/consensus.

7.1 max# consensus in the Boolean framework

The profiles S in the standard Boolean case were based on the 291
(mostly real-world) unsatisfiable instances from the 2011 MUS com-
petition http://www.satcompetition.org/2011/ about the ex-
traction of (set-inclusion) MUSes (Minimal Unsatisfiable Subsets).
MUSes and MSSes are naturally related: each MUS is a minimal
hitting set on the set of Co-MSSes (a Co-MSS is the set-theoretical
complement of an MSS) whereas Co-MSS are hitting sets on the
set of MUSes (see [12] for more on the use of this duality to com-
pute MUSes). The selected instances are highly challenging: they are
made of up to more than 15983000 clauses and 4426000 variables
(457459 clauses using 139139 different variables on average). Each
instance has been randomly divided into n ∈ [3, 5, 7, 10] same-size
(modulo n) sources Φi to yield all the S. Time-out for each single
max# consensus extraction was set to 900 seconds.

Table 1 summarizes the average results for the extraction of one
max# consensus per value of n. It lists the number of successful ex-
tractions, the average time in seconds to extract one max# consensus,
the average numbers of clauses and variables in the transformed in-
stance and, finally, the average number of clauses to drop to deliver
the consensuses. A drop of performance can be observed when n in-
creases (from 235 successful extractions to 207): this is due to both
the increase of size of the representation of the transformed instance
and additional satisfiability tests when n increases. These results
show the viability of the approach and its scalability. Let us stress
again that these benchmarks were selected to test extreme computa-

tional limits of the approach. Hopefully, these benchmarks should be
harder and bigger than most real-life consensus-finding applications.

n = 3 n = 5 n = 7 n = 10
#solved 235 223 210 207
time (seconds) 96 109 119 150
#variables 303643 329599 380110 460194
#clauses 1325632 1855884 2386137 3181517
#clausesremoved 7 2 2 2

Table 1. Computing one max# consensus in the standard Boolean
framework.

7.2 max# consensus in S5

For the S5 logic framework, we have considered all the unsatisfiable
modal logic benchmarks from http://www.ps.uni-saarland.

de/theses/goetzmann/ that we were able to split into n ∈
[2, 3, 5] S5-satisfiable Φi using the following procedure (there were
93 such successfully split benchmarks). For each of them, we have
built the various modal logic profiles S made of n sources as follows.
S is initialized with one source made of the initial benchmark, which
is treated as a unique formula. We define the size of a modal formula
as the number of edges within its usual NNF representation. While
the number of sources in S is less than n, the largest formula Σ in S
is replaced by two formulas obtained from Σ in the following way:
let Σ′ be a sub-formula of Σ such that the size of Σ′ is as close as
possible to half the size of Σ. Then, we replace Σ′ in Σ by a fresh
variable sΣ′ and we insert Σ′ within S as an additional source, to-
gether with the information that sΣ′ ≡ Σ′. In the whole process, we
make sure that all Φi are S5-satisfiable. Then, each resulting modal
profile was translated into a standard Boolean logic one according
to the aforementioned transformation technique. Finally, one max#
consensus was then searched using our transformational Partial Max-
SAT-based technique.

One max# consensus was delivered for all the 93 benchmarks
when n = 2. One max# consensus was found for 88 and 74 bench-
marks when n = 3 and n = 5, respectively. We explain the drop
of performance when n increases by the additional clauses that are
needed to express the sΣ′ ≡ Σ′ constraints in NNF format, and by
the fact that the Partial Max-SAT step increases the size of the repre-
sentation by a factor n. Figure 1 illustrates the number of successful
extractions of max# consensuses according to the CPU time spent
(in seconds) to compute such a consensus for these instances, and
according to n.

Table 2 summarizes the average parameters values of the bench-
marks and of their transformations after the different steps, as well as
the average time spent in the process. The first column gives n. The
four next ones list the main parameters of the initial modal formu-
las and of their corresponding modal profiles S: namely, #vars is
the average number of variables in the initial instance and #{�,�} is
the average number of occurrences of modal operators; sum(|Φi|) is
the average total size of the n Φi (size is the number of edges in the
NNF representation) and, for convenience (since this can be com-
puted from the previous columns) avg(|Ψi|) gives the average size
of each Φi. The next columns list the average values about the CNF
transformation: namely, #vars gives the average number of Boolean
variables used to encode the S5 formula into one CNF; sum(|#clsi|)
is the average total number of clauses in the standard logic pro-
file whereas avg(|#clsi|) is the average number of clauses in each
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Figure 1. Number of modal profiles S for which one max# consensus was
extracted, depending on the CPU time spent and n.

Φi. Then, Time-Tr. gives the average CPU time in seconds spent to
achieve the CNF encoding. The next group of columns provide av-
erage values about the Partial Max-SAT step: #vars and #cls are the
average numbers of Boolean variables and clauses used in the en-
coding of the optimization problem. Finally, Time-Opt. is the aver-
age time in seconds to extract a consensus from the standard Boolean
representation whereas Time-Opt. + Time-Tr. gives the average time
required to compute the consensus plus the time spent for the trans-
lation process, when the whole operation was successful. Hence the
values in this column slightly differ from the sum of values from the
corresponding columns Time-Opt. and Time-Tr. when n = 3 and
n = 5.

It is important to stress that the increase of size of the modal rep-
resentation with n is simply due to the additional clauses that are
needed to express equivalences during the splitting process to form
the modal profiles S. Accordingly, the actual “size” that is relevant
is not the “size” of the modal benchmarks but the number of total
clauses in the the modal S, namely sum(Φi) in Table 2. For the same
reason, the decrease of performance with the increase of n should not
be interpreted as being only an increase of difficulty due to a larger
number of sources, as the Partial Max-SAT step increases the size of
the CNF representation by a factor n. Actually, this is also in part
the expected consequence of having to consider larger modal pro-
files in these specific experimentations. The number of occurrences
of modal operators in the benchmarks also plays a crucial role: it di-
rectly influences the size of the CNF representation. Actually, this
parameter appears to the most limiting one, together with n. Accord-
ingly, we believe that these experimentations show the viability of the
approach for real-life applications, whose size in terms of formulas,
numbers of sources and of occurrences of modal operators remain in
the range of the ones in the tested benchmarks.

8 CONCLUSION AND PERSPECTIVES

Consensus-finding is a ubiquitous issue in real-life and in many A.I.-
related applications. In this paper, a concept of consensus has been
investigated, with a focus on practical computational issues. This
concept of consensus does not merely capture what is shared by sev-

eral agents: it provides a satisfiable fragment of all the information
conveyed by the agents that is satisfiable with every agent. Hence,
such a consensus might be endorsed by the agents as it does not
contradict them. The paper focused on the most appealing consen-
suses, namely maximal ones. They have been studied in both stan-
dard Boolean logic and in modal logic S5, as the necessity and pos-
sibility representation paradigms are highly relevant in consensus-
related domains, like negotiation. Interestingly, we have proposed
and experimented a single-step optimization technique that delivers
one maximal consensus in an efficient way very often, for both logi-
cal frameworks.

At this point, this study opens paths for various promising further
research. Let us here simply mention three of them. First, a natural
extension of this study would consist in allowing various maximality
preferences in consensuses. For example, an agent might pre-order
her desires according to her priorities and any consensus should at-
tempt to obey these preferences. Interestingly, the use of weighted
Partial Max-SAT vs. Partial Max-SAT could allow for a direct han-
dling of these kinds of preferences, not only in the standard Boolean
framework as this has been done in [5], but also in the S5 logic. An-
other natural challenging issue would be the extension of the concept
of consensus for a multiple-agents modal S5. However, extending our
transformational approach accordingly does not seem viable since
satisfiability in such a logic is P-SPACE complete, making a polyno-
mial translation into SAT out of reach. Finally, a promising challenge
would be to build more elaborate transformation procedures for the
modal logic framework, so that the structure of the initial formulas is
not lost in the CNF representation and is fully exploited in the checks
for satisfiability during the subsequent operations in the search for a
maximal consensus.

ACKNOWLEDGEMENTS

We would like to thank the referees for their useful comments, which
helped improve the presentation of this paper. All experimentations
have been conducted on a cluster that has been funded in part by the
Conseil Régional du Nord/Pas-de-Calais and an EC FEDER grant.

APPENDIX

The language LM of modal logic S5 extends the language L of
Boolean logic by allowing two modalities � and � to be used as

additional unary connectives and that are dual in the sense that �
def
=

¬�¬. An axiomatic system for S5 is given by the following axiom
schemata and rules:

All Boolean logic tautologies. K : �(A → B) → (�A → �B)
T : �A → A B : A → ��A 4 : �A → ��A
(or 5 : �A → ��A instead of B and 4)

MP :
A (A → B)

B
Nec : A

�A

The possible worlds semantics of S5 is based on Kripke frames,
which are pairs (W,R) where W is a non-empty set of possible
worlds and R is an accessibility relation between worlds. In S5, the
relation R is reflexive, transitive and symmetric, i.e, is an equiva-
lence relation. We note wRw′ to express that w′ is accessible from
w. A valuation V assigns a subset of W to each atomic proposition
p: namely, the worlds where p is true. Given a Kripke frame (W,R),
a valuation V and a world w, the satisfaction relation |= is defined
inductively as follows.
[(W,R), V, w] |= p iff w ∈ V (p)
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Initial modal formulas and modal profiles CNF transformation step Partial Max-SAT step Total (secs.)
n #vars #{�,�} sum(|Φi|) avg(|Φi|) #vars sum(|#clsi|) avg(|#clsi|) Time-Tr. #vars #cls Time-Opt. Time-Tr. + Time-Opt.

2 80 85 464 232 22022 279983 139991 1.28 324029 1119933 10.30 11.58
3 81 101 569 189 68695 632146 210715 2.07 838233 3160731 90.64 92.49
5 83 106 640 128 114239 924416 184883 2.70 1495611 6470913 96.08 97.90

Table 2. Computing one max# consensus in the S5 framework.

[(W,R), V, w] |= ¬p iff w �∈ V (p)

[(W,R), V, w] |= A ∧B iff [(W,R), V, w] |= A and [(W,R), V, w] |= B

[(W,R), V, w] |= A ∨B iff [(W,R), V, w] |= A or [(W,R), V, w] |= B

[(W,R), V, w] |= �A iff ∃w′ ∈ W s.t. wRw′: [(W,R), V, w′]|= A

[(W,R), V, w] |= �A iff ∀w′ ∈ W s.t. wRw′: [(W,R), V, w′] |= A

The S5 satisfiability problem is: given a formula α of LM , deter-
mine whether there exists a Kripke frame (W,R), a valuation V and
a world w ∈ W s.t. [(W,R), V, w] |= α.

The deduction relation in S5 is noted |=S5.
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