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Abstract. Crowdfunding is emerging as a popular means to gener-
ate funding from citizens for public projects. This is popularly known
as civic crowdfunding. In this paper, we focus on crowdfunding pub-
lic projects with provision point: these are projects in which contri-
butions must reach a predetermined threshold in order for the project
to be provisioned. On web based civic crowdfunding platforms, the
success of crowdfunding public projects has been somewhat mixed.
In this paper, our objective is to design a mechanism that improves
the success of crowdfunding public projects. In particular, we pro-
pose a class of mechanisms for crowdfunding platforms with sequen-
tially arriving agents. This class of mechanisms induces an extensive
form game for agents arriving on the platform and we show that the
game has a non-empty set of sub-game perfect equilibria at which the
project is fully funded. We call this new class of mechanisms Provi-
sion Point Mechanism with Securities (PPS). The novelty of PPS lies
in the use of a prediction market to incentivize agents to contribute
in proportion to their true value for the project and to contribute as
soon as they arrive at the crowdfunding platform. Different variations
of PPS are possible depending on the underlying prediction market.
In this paper, we use a cost function (or equivalently, scoring rule)
based prediction market; in fact, we specify the requirements that a
cost function should satisfy to be used in PPS. We study and com-
pare two specific instances of PPS: (1) Logarithmic Market Scoring
Rule based and (2) Quadratic Scoring Rule based. We also discuss
the considerations that should guide the choice of the cost function
when deploying our mechanism on crowdfunding platforms.

1 INTRODUCTION

Civic crowdfunding platforms like Spacehive [1], Citizinvestor [11],
Neighbourly [20] etc., aim to generate funding for public and com-
munity projects from citizens. The success of these platforms has
been mixed. For example, in the United Kingdom, Spacehive has
generated £4.4 million for public projects from citizen contributions
across 68 cities with a 44% success rate (the fraction of posted
projects that are fully funded)[1]. Thus, less than half the number of
projects posted meet their funding targets. In this paper, our objective
is to design a mechanism that can markedly improve the success rate
of crowdfunding public projects. A typical process that is followed
in crowdfunding of public projects is as follows:

1. Requester posts public project: A requester, seeking crowdfund-
ing for a public project, posts a proposal. The proposal specifies
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Figure 1. Public projects listed on a crowdfunding platform

a target amount of funds to be raised for the project to be pro-
visioned: the target amount is thus also known as the provision
point. The requester also specifies a deadline by which the funds
need to be raised.

2. Agents arrive: Agents arrive over time to view the project and ob-
serve (i) the target amount, (ii) the amount pending to be funded,
and (iii) the deadline. Figure 1 shows two different ongoing pub-
lic projects from a crowdfunding platform [1] as they appear to an
agent arriving at the platform.

3. Agents contribute: Each arriving agent may contribute a certain
amount towards funding the project.

4. Requester provisions or refunds: If the funding target is achieved
by the deadline, the requester provisions the project; otherwise,
the contributions of all agents are refunded.

Two features in this process are notable: (i) Crowdfunding relies
on voluntary contributions and hence neither coercion nor punish-
ment is an option. (ii) Since contributions arrive over a period of
time, an agent is able to observe the contributions of the agents who
have contributed so far.

Relying on private contributions to fund a public project is not a
new phenomenon and has been studied in the literature extensively
[4, 5, 25, 26, 12, 6, 23, 27, 16]. The key challenge in relying on pri-
vate contributions to fund a public project is the free-riding problem:
since public projects are non-excludable and non-rival, agents have
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an incentive to free-ride on the contributions of others. One approach
to solve the free riding problem is using assurance contracts which
allow agents to commit contributions conditional on sufficient contri-
butions from others [5, 25]. The term dominant assurance contracts
is used to refer to contracts which can ensure that the project gets
funded at equilibrium [26]. Several mechanisms have been proposed
which implement assurance contracts.

Provision Point Mechanism (PPM) [4] invites contributions for a
target amount. If the target is met, the project is provisioned; other-
wise, agents’ contributions are refunded. Provision Point mechanism
with Refund bonus (PPR), proposed by Zubrickas et. al. [27], invites
contributions for a target amount. If the target is met, the project
is provisioned; otherwise, agents’ contributions are refunded and
agents who volunteered to contribute are paid an additional refund
bonus which depends on the quantum of the agent’s contribution.

Neither of the above two mechanisms takes into account the se-
quential nature of agent contributions in crowdfunding platforms.
The mechanisms also do not handle the fact that contributions, once
made, are common knowledge. Applying these mechanisms in a se-
quential setting could hamper their success in crowdfunding of pub-
lic projects (Section 3.2). This motivates the need for our proposed
mechanism, in which, we retain the idea of a refund bonus4 from
[27] but the way we compute the refund bonus makes the mecha-
nism more attractive. Moreover our mechanism explicitly takes into
account the sequential nature of arrivals of agent contributions. The
novelty in our mechanism is in using a prediction market based ap-
proach for computing the refund bonuses. We award contingent secu-
rities to the agents who contribute to the public project: if the project
is not funded, an agent is paid a unit amount for each unit of secu-
rity held by the agent. The number of securities awarded to an agent
is based on the quantum of the agent’s contribution and the time at
which the agent makes the contribution. As the securities are allot-
ted only for the outcome that the project is not funded and not for
the outcome that the project is funded, the prediction market under
consideration is classified as complex prediction market [2].

1.1 Contributions and Outline

The following are the main contributions of this paper.

• We propose a class of mechanisms, named Provision Point Mech-
anism with Securities (PPS) for crowdfunding public projects.
PPS induces an extensive form game and we show that the game
has a non-empty set of sub-game perfect equilibria at which the
project is fully funded (Theorem 3).

• PPS solves the free-riding problem when public projects are pro-
visioned using private contributions since agents are incentivized
to contribute in proportion to their true value for the project and
to contribute as soon as they arrive at the crowdfunding platform.

• PPS uses a complex prediction market [2]. Different versions of
PPS are possible depending on the underlying prediction market
and the cost function. We study and compare two specific in-
stances of PPS: (1) Logarithmic Market Scoring Rule (LMSR)
[14, 15] based and (2) Quadratic Scoring Rule (QSR) based.

The rest of the paper is organized as follows. In Section 2, we
summarize the notation we use and present some preliminaries. In
Section 3, we position our work in relation to the existing literature.
In Section 4, we review complex prediction markets and propose a

4 Even though PPS relies on a sponsor to offer a refund bonus while the funds
are being collected, the bonus is not paid out at equilibrium.

new class of mechanisms, PPS, for crowdfunding a public project
and show the existence of a non-empty set of sub-game perfect equi-
libria where the project gets fully funded. In Section 5, we compare
the performance of PPS mechanism with two popular cost functions
and discuss the impact of the cost function in PPS. We conclude in
Section 6 with a summary.

2 PRELIMINARIES

We focus on crowdfunding projects which involve private provision-
ing of a public project without coercion and with agents arriving
over time. Table 1 lists the key notation used in this work. Similar

Symbol Definition

T Time at which fund collection concludes
t Epoch of time in the interval [0, T ]
ht Amount that remains to be funded at t;
h0 Target amount (provision point)

i ∈ {0, 1, . . . , n} Agent id; i = 0 refers to the requester
θi ∈ R+ Agent i’s value for the project
xi ∈ R+ Agent i’s contribution to the project
ai ∈ [0, T ] Time at which agent i arrives at the platform
ti ∈ [ai, T ] Time at which agent i contributes to the project
ψi = (xi, ti) Strategy of agent i

ϑ ∈ R+ Net value for the project
χ ∈ R+ Net contribution for the project

Table 1. Key notation

to previous work [4, 27], we assume that agents have quasi-linear
utility (ASSUMPTION-1) and apart from knowing the history of con-
tributions, agents do not have any information regarding whether the
project will get funded or not (ASSUMPTION-2). We model the fol-
lowing sequence of events. At t = 0, the requester posts a proposal
for funding a public project. This includes the target amount of funds
h0 (the provision point) and a deadline T till which agents may con-
tribute to the project. ht refers to the target amount that remains to
be collected at time t: h0, T , and ht are common knowledge. Agent
i ∈ {1, 2, . . . , n} arrives at time ai ∈ [0, T ] and observes the funds
that have been collected so far (h0 − hai ). The value that an agent
derives from the public project getting provisioned (θi) is his private
information. Agent i may decide to contribute funds xi ∈ [0, hai ]
to the project at any time ti ∈ [ai, T ]. We assume that agents con-
tribute only once to the project (ASSUMPTION-3). This assumption
is reasonable in civic crowdfunding scenarios where agents typically
visit the project website once and contribute if the project has value
to them. From an analysis view point, the mechanism we design en-
sures that agents have no advantage in delaying or splitting up their
contributions. We leave it for future work to study effect of spiteful
contributions [8].

The strategy of agent i is ψi = (xi, ti). x = (x1, . . . , xn) refers
to the vector of agent contributions and ψ = (ψ1, . . . , ψn) denotes
the strategy profile of agents. We use the subscript −i to represent
vectors without agent i; so, for example, x−i refers to the vector
of contributions of all agents except i. The net value for the project
among the agents is ϑ =

∑n
i=1 θi and the net contribution is χ =∑n

i=1 xi. The utility derived by agent i with value θi for the project,
when agents use strategy profile ψ is ui(ψ; θi).
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2.1 Important Definitions

We seek to design mechanisms in a sequential setting such that a
public project gets funded at equilibrium. Such mechanisms induce a
game among the agents {1, 2, . . . , n}. With ψis being agents’ strate-
gies and uis as their utilities, we define Pure Strategy Nash Equilib-
rium (PSNE) and Sub-Game Perfect Equilibrium (SGPE).

Definition: (Pure Strategy Nash Equilibrium) A strategy profile
ψ∗ = (ψ∗1 , . . . , ψ

∗
n) is said to be a Pure Strategy Nash Equilibrium

(PSNE) if ∀i, ∀θi
ui(ψ

∗
i , ψ

∗
−i; θi) ≥ ui(ψ̃i, ψ

∗
−i; θi) ∀ψ̃i.

Let Ht be the history of the game till time t, that contains the agents’
arrivals and their contributions, then we define:

Definition: (Sub-game Perfect Equilibrium) A strategy profile
ψ∗ = (ψ∗1 , . . . , ψ

∗
n) is said to be a sub-game perfect equilibrium

if ∀i, ∀θi
ui(ψ

∗
i , ψ

∗
−i|Hai ; θi) ≥ ui(ψ̃i, ψ

∗
−i|Hai ; θi) ∀ψ̃i, ∀Ht

Here ψ∗−i|Hai indicates that the agents who arrive after ai follow the
strategy specified in ψ∗−i.

3 RELATED WORK

Our work is related to the literature on provisioning of public goods.
In this paper, we use the term public project instead, since it is more
suitable for crowdfunding platforms. The literature deals with two
kinds of public projects. For discrete public projects, a predetermined
target amount must be collected for the project to be provisioned.
For continuous public projects, the extent of project provisioned in-
creases monotonically with net contributions, up to a threshold.

For continuous, public projects, one of the simplest mechanisms
is the Voluntary Contribution Mechanism (VCM): agents voluntar-
ily contribute and the extent of the public project provisioned cor-
responds to the aggregate funds collected. VCM induces a simul-
taneous move game which has multiple equilibria. Many of these
equlibiria lead to an under-provisioning of the public project, a result
which has been verified empirically [17]. Morgan [19] studies the
use of state lotteries for funding continuous public projects. Volun-
tary contributions are incentivized by offering an opportunity to win
a fixed prize and an agent’s contribution towards public project also
determines the likelihood of his winning the prize. This game has
a unique equilibrium which provisions a higher level of the public
project than VCM.

In this paper, our focus is on discrete public projects (projects
with a provision point) which are predominant on crowdfunding
platforms. As discussed in Section 1, our work is motivated by the
need to non-trivially extend the work of [4] and [27] to the realis-
tic setting where agent contributions arrive sequentially. Marx and
Matthews[18] consider a sequential setting where agents make re-
peated contributions to a project, taking turns in a round-robin fash-
ion. They prove the existence of a Nash equilibrium where each agent
contributes if and only if all the past agents have contributed their
equilibrium contributions. Thus, it is not a sub-game perfect equilib-
rium. Our work differs from this in that, there is neither a pre-fixed
order of contributions nor do agents contribute repeatedly and we
look for sub-game perfect equilibria.

3.1 Provision Point Mechanism (PPM)

PPM [4] for discrete public projects collects voluntary contributions.
The project is provisioned if the funding target is achieved. If the
funding target is not achieved, the contributions are refunded. Let
IX be an indicator random variable which takes the value 1 if X is
true and 0 otherwise. Thus, for PPM, the project gets funded only if
χ ≥ h0, and agent i’s (i > 0) utility5 in PPM is:

ui(x; θi) = Iχ≥h0 × (θi − xi) + Iχ<h0 × 0 (1)

In PPM, an agent’s utility consists of a funded utility (θi−xi), which
is the agent’s utility if the project is provisioned and an unfunded util-
ity (zero) which is the agent’s utility if the project is not provisioned.
PPM has been shown to have multiple equilibria, many of which are
inefficient [4]: a result which has been verified empirically too [17].

3.2 Provision Point Mechanism with Refund bonus
(PPR)

PPR [27] for discrete public projects collects voluntary contribu-
tions. The project is provisioned if the funding target is achieved.
If the funding target is not achieved, the contributions are refunded
and an additional refund bonus is paid to agents who volunteered to
contribute, in proportion to their contribution. The refund bonus is
xi
χ
B ∀i where B > 0 is the refund budget set aside by the requester

at the beginning and is common knowledge among all agents. Thus,
for PPR too, the project is provisioned only if χ ≥ h0 and agent i’s
utility in PPR is:

ui(x; θi) = Iχ≥h0 × (θi − xi) + Iχ<h0 ×
(
xi

χ
B

)
(2)

In PPR, an agent’s utility consists of a funded utility (θi−xi), which
is the agent’s utility if the project is provisioned and a strictly positive
unfunded utility (xi

χ
B > 0), which is the agent’s utility if the project

is not provisioned. The set of Pure Strategy Nash equilibria with PPR
are characterized as follows:

Theorem 1 [27] Let ϑ > h0 and B > 0. In PPR, the set of PSNE
are {(x∗i ) : x∗i ≤ h0

B+h0 θi∀i;χ = h0} if B ≤ ϑ − h0. Otherwise
the set of PSNE is empty.

Limitations of PPR

PPR considers a setup where agents decide their contributions si-
multaneously without knowledge of contributions made by the other
agents. The game induced is thus a simultaneous move game. When
applied in a sequential (discrete time) setting where agents can
contribute over time and can observe previous contributions, agent
strategies consist of the contribution amount and the interval in which
they contribute.

Proposition: Let ϑ > h0 and B > 0. If B ≤ ϑ − h0, the set
{(x∗i , T ) : x∗i ≤ h0

B+h0 θi∀i;χ = h0} constitutes Pure Strategy
Nash equilibria of PPR in the sequential setting.

5 As the strategy space in PPM consists only of contribution to be made, we
drop ψ here.
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Proof: In PPR, since the refund bonus does not depend on the time
when the contribution is made, no agent has an incentive to invest
earlier than the deadline, if all other agents do the same. Effectively,
PPR in sequential setting collapses to a one shot simultaneous move
game at t = T where x∗i s are given by Theorem (1). Thus, (x∗i , T )
constitute a set of PSNE of PPR in sequential setting. �

The implication of the above proposition is that all the agents may
delay their contribution as close to the deadline as possible in se-
quential settings and wait to free-ride till the end. This is undesirable
since such temporal strategies can lead to the equilibrium not being
achieved in practice. This shortcoming of PPR in sequential settings
is because early contributions do not receive any advantage.

We seek to design crowdfunding mechanisms by explicitly captur-
ing and taking advantage of the fact that on web based crowdfunding
platforms, contributions are sequential rather than simultaneous. The
key intuition in our approach is that by giving participants a pay-
off structure which refunds them more generously if they contribute
earlier (in the event the project is not funded), participants have an
incentive to contribute early. This overcomes the serious limitation
of PPR. We achieve our objective using a novel prediction market
approach.

4 OUR APPROACH: PREDICTION MARKET
FOR CROWFUNDING MECHANISMS

We incorporate ideas from the literature on prediction markets with
the key idea being that contributors actually buy contingent securities
which each pay a unit amount if the project is not funded. As these
securities are purchased, the price increases, thereby incentivizing
the participants to contribute earlier rather than later. Our mecha-
nism achieves an equilibrium at which the project is funded and thus
the refund bonus is not paid out at equilibrium. Since our approach
leverages prediction markets, we briefly explain important concepts
from prediction market literature that are relevant to our crowdfund-
ing mechanism design approach.

4.1 Cost function based Prediction Markets

A Prediction Market seeks to predict the outcome of an event in fu-
ture. Let Ω be the set of mutually exclusive and exhaustive outcomes
of the event. For example, in a prediction market designed to predict
the outcome of a political election among two candidates, we would
be interested in an outcome set Ω = {ωA, ωB} where ωA is the out-
come that candidate A wins the election and ωB is the outcome that
candidate B wins the election. Since |Ω| = 2, we refer to this as a
binary outcome event. A prediction market incentivizes agents to ex-

Symbol Definition

Ω = {ωj}j∈{1,...,|Ω|} Set of possible outcomes of the event
πωj Payoff vector if outcome ωj is realized
pωj Price of an infinitesimally small amount of se-

curity associated with outcome ωj

q = {qωj }{1,...,|Ω|} Vector of securities issued by the market maker
C : R|Ω| → R Cost function used in the prediction market

r Bundle securities purchased by an agent
Cost(r|q) Cost of purchasing a bundle of r securities

when q securities are outstanding

Table 2. Important terms for prediction market

press their belief about the outcome of an event. One approach to re-
alize a prediction market is by associating securities (Arrow-Debreu
contracts [3]) with the outcomes of the event. A security associated
with outcome ωj pays a unit amount if ωj is realized and zero other-
wise. An agent with a belief different from the market belief can buy
(or sell) securities to modify the market belief. An automated market
maker is a software agent which automates pricing and order execu-
tion of such securities. An automated market maker can be realized
using a cost function C : R|Ω| → R which is a potential function
specifying the amount of money wagered in the market as a function
of the number of securities that haven been issued by the market for
each outcome. In a market with a binary outcome event, C : R2 → R

is a function of the vector of outstanding securities, q ∈ R
2. Several

authors [22, 21, 2, 10, 6] have studied conditions that a cost function
must satisfy to be used in prediction markets.

4.1.1 Conditions on Cost Function

• CONDITION-1 (PATH INDEPENDENCE) This condition requires
that the cost of acquiring a bundle of r securities must be the same
regardless of how an agent splits up the purchase. This condition
implies that in a prediction market, prices can be represented by a
cost function such that the cost of purchasing a bundle of r secu-
rities is Cost(r|q) = C(q+ r)− C(q).

• CONDITION-2 (CONTINUOUS AND DIFFERENTIABLE) This
condition requires that the gradient of the cost function (∇C(q))
is well defined everywhere so that it can be treated as a vector of
instantaneous prices for securities associated with each outcome.
Further pωj = ∂C(q)/∂(qωj ) ≥ 0 ∀ωj ∈ Ω represents the
price per security of an infinitesimally small amount of security
associated with outcome ωj .:

• CONDITION-3 (INFORMATION INCORPORATION) This condi-
tion requires that a purchase of a bundle of r securities should
never lower the price of r, that is, for any q and r ∈ R

|Ω|

C(q + 2r) − C(q + r) ≥ C(q + r) − C(q). This condition
is required to ensure that participating in the market is incentive
compatible for a myopic agent. Further, this condition implies that
the cost function used in prediction markets must be convex.

• CONDITION-4 (NO ARBITRAGE) This condition requires that it
is never possible for an agent to purchase a bundle of securities r
and receive a positive payoff regardless of the outcome. For all q
and r ∈ R

|Ω|, ∃ωj ∈ Ω such that C(q+ r)− C(q) > r · πωj

• CONDITION-5 (EXPRESSIVENESS) This condition requires that
any agent can set the market belief to reflect his belief about the
expected outcome. Let Δn be the n dimensional probability sim-
plex, then ∀p ∈ Δ|Ω|, ∃q ∈ R

|Ω| s.t. ∇C(q) = Eω∼p[π(ω)].
• CONDITION-6 (BOUNDED LOSS) This condition requires that

an automated market maker using a cost function can only lose
a finite amount regardless of the transactions undertaken by the
agents, that is, supq[maxωj (qωj ) − C(q)] < ∞. If the market
maker initializes the market with q = (0, 0), then the worst case
loss for the market maker is supq[maxωj (qωj )−(C(q)−C(0))].

With a binary outcome event, two popular cost functions that sat-
isfy these conditions are [7]:

CLMSR(q) = b ln(exp(qω0/b) + exp(qω1/b)) (3)

CQSR(q) =
qω0 + qω1

2
+

q2ω0
+ q2ω1

4b
− (qω0 + qω1)

2

8b
− b

2
(4)

where b is a parameter that controls how fast prices change.
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4.2 Proposed Mechanism: Provision Point
Mechanism with Securities (PPS)

We now introduce a new class of mechanisms which explicitly takes
into account the sequential nature of contributions. Similar to PPM
and PPR, in this new class of mechanism too, the project gets
provisioned only if the net contributions reach the provision point
(χ ≥ h0). However, the refund bonus of a contributor is determined
using securities from the complex cost based prediction market de-
fined in Section 4.2.1. We refer to our mechanism as Provision Point
Mechanism with Securities (PPS).

In PPS, we create a prediction market by associating securities
with the binary outcome of the public project getting funded or not.
We consider a binary outcome (Ω = {ω0, ω1}) event where ω0 refers
to the (negative) outcome that the project is not funded by the dead-
line and ω1 refers to the (positive) outcome that the project is funded
by the deadline. The key intuition in PPS is to incentivize agents to
contribute to public projects by treating every contribution towards
the public project as simultaneously an investment in purchasing se-
curities associated with the negative outcome (project not getting
funded). We treat every contribution xi > 0 at ti towards the public
project as simultaneously an investment in purchasing rtii > xi > 0
securities associated with the negative outcome ω0: each of these se-
curities pays out a unit amount if the project is not fully funded and
zero otherwise. Thus, agent i’s utility who contributes xi at ti is:

ui(ψ; θi) = Iχ≥h0 × (θi − xi) + Iχ<h0 × (rtii − xi) (5)

Equation (5) consists of two terms: the funded utility is (θi − xi)
and the unfunded utility is (rtii − xi). The funded utility is a mono-
tonically decreasing function of xi and is independent of the time
the contribution is made (ti) and the history of the game till time ti
(Hti ).

The unfunded utility (rtii − xi) depends on rtii which in turn de-
pends on (i) the quantum of the contribution (xi)6, (ii) the timing of
the contribution (ti) and (iii) the history of past contributions Hti

via the total number of outstanding securities (qti ). CONDITION-3
ensures that rtii is a monotonically decreasing function of qti . This
means that for a given contribution, the number of securities awarded
to an agent cannot increase with time: intuitively, this is the reason
why agents are incentivized to contribute early. It turns out that the
cost function needed to determine rtii in our crowdfunding mecha-
nism needs to be a complex cost function [2].

4.2.1 Complex Prediction Markets

Abernethy et. al. [2] introduce the distinction between complete and
complex cost function based prediction markets. In a complete cost
function based market, the market maker offers a security corre-
sponding to each potential outcome and each of these securities pays
a unit amount if the associated outcome is realized. In a complex cost
function based market, the market maker may offer K < |Ω| securi-
ties and/or a security may not necessarily pay a unit amount when an
outcome ωj ∈ Ω is realized.

A key result from [2] imposes additional constraints on cost func-
tion to be used in complex prediction markets. Let πΩ = {πωj |ωj ∈
Ω} and let H(πΩ) be the convex hull of πΩ. Then,

Theorem 2 [2] If H(πΩ) is closed, then under CONDITIONS2-5, C
must be convex with {∇C(q) : q ∈ R

K} = H(πΩ).

6 Even though r
ti
i depends on xi, we use the notation r

ti
i for simplicity.

The following corollary, which can be derived from Theorem 2 and
its proof in [2], will be useful in determining the price of securities
awarded to agents who contribute to the public project.

Corollary: If H(πΩ) is closed, then under CONDITIONS2-4, C
must be convex with {∇C(q) : q ∈ R

K} ⊆ H(πΩ).

4.2.2 A Complex Prediction Market for Crowdfunding

Previous work has used complex cost function based markets in sce-
narios where the outcome space (|Ω|) is very large [2, 9, 13]. Our use
of complex prediction markets in the context of crowdfunding (bi-
nary outcome event) is motivated not by a large outcome space but
with the explicit objective of limiting the expressiveness of agents.

For a binary outcome event, a complete cost function based pre-
diction market offers K = |Ω| = 2 securities where the securities
associated with the negative outcome (qω0 ) pay a unit amount of the
project is not funded (πω0 = (1, 0)) and securities associated with
the positive outcome (qω1 ) pay a unit amount of the project is funded
(πω1 = (0, 1)). Thus, πΩ = {(1, 0), (0, 1)}.

For a binary outcome event, we propose a complex cost function
based prediction market that offers K = |Ω| = 2 securities where
the securities associated with the negative outcome (qω0 ) pay a unit
amount if the project is not funded (πω0 = (1, 0)) but securities asso-
ciated with the positive outcome (qω1 ) never payout (πω1 = (0, 0)).
Thus, πΩ = {(1, 0), (0, 0)} and H(πΩ) = [0, 1]. Furthermore,
agents are not allowed to sell securities. Thus, the design of our com-
plex prediction market for crowdfunding has the following implica-
tions.

1. FIXED POSITIVE OUTCOME SECURITIES Since the payoff asso-
ciated with the positive outcome are zero (πω1 = (0, 0)) and since
CONDITION-2 requires that the price of the positive security is
non-negative (∂C(q)/∂qω1 ≥ 0), no agent will purchase securi-
ties associated with the positive outcome. For the rest of the paper
we will assume that the market is initialized with q = (0, 0)7.
Thus, for the duration of the market qω1 = 0 and q = (qω0 , 0).

2. LIMITED EXPRESSIVENESS Since agents are not allowed to sell
securities and since they can purchase securities associated with
the negative outcome only, it follows that agents may not be able
to express their true beliefs about the event and thus our complex
market violates CONDITION-5.

3. LOW RANK PRICE SPACE Using the previous implication and
Corollary from Section 4.2.1, we have that ∂C(q)/∂qω0 ∈
[0, 1] and if the market is initialized with q = (0, 0), then
∂C(q)/∂qω0 ∈ [0.5, 1].

To emphasize that securities related with the positive outcome are
fixed at initialization and not traded for the duration of the market
([0, T ]), we will refer to the cost function used in this proposed pre-
diction market as C0. Such a cost function can be obtained by tak-
ing any cost function which satisfies CONDITIONS 1-4,6 and setting
qtω1

= 0 ∀t ∈ [0, T ]. Thus, C0 : R → R. For the rest of the pa-
per, since we will be using prediction market involving only negative
outcome securities, we will use the following simplified notation:

q ≡ qω0

π ≡ πω0

p ≡ pω0 =
∂C0(q)

∂qω0

7 If the market is initialized with a different number of positive securities, z,
then q = (qω0 , z). Section 5.4 discusses this scenario.
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Proposition: Let C be a cost function which satisfies
CONDITION-2 and C0 be the corresponding cost function obtained
by setting qtω1

= 0 ∀t ∈ [0, T ], then C0 is invertible.

Proof: Since qtω1
= 0 ∀t ∈ [0, T ], C0 : R → R is a one-to-one

function of a single variable. By CONDITION-2, C0 is continuous
and differentiable. Thus, by the inverse function theorem [24], the
inverse of C0 exists. �

We use the notation C−1
0 to refer to the inverse of the function C0.

In PPS, the cost of purchasing rtii securities at ti when qti securities
are outstanding is:

Cost(rtii |qti) = C0(q
ti + rtii )− C0(q

ti)

Thus, an agent who contributes xi at ti receives rtii securities where:

xi = C0(q
ti + rtii )− C0(q

ti)

rtii = C−1
0 (xi + C0(q

ti))− qti (6)

Since the cost function must be path independent (CONDITION-1),
the number of securities issued by a single contribution of h0 is the
same as the number of securities allocated if the contribution is split
into any number of smaller contributions (

∑
i xi = h0). Hence, in

PPS the total number of securities that will be issued for crowdfund-
ing a project with a target amount h0 is:∑

i

rtii = C−1
0 (h0 + C0(0)) (7)

4.2.3 Equilibrium Analysis of PPS

We now specify an additional condition that a cost function needs to
satisfy to be used in PPS.

• CONDITION-7 (SUFFICIENT LIQUIDITY) This condition re-
quires that a cost function should ensure that ∀θi < h0, an agent’s
unfunded utility (rtii − xi) is monotonically increasing in xi, that

is, ∀qti , ∀xi < h0, ∂
∂xi

(rtii − xi) > 0 ⇒ ∂r
ti
i

∂xi
> 1.

Theorem 3 Let C : R2 → R be a cost function that satisfies CON-
DITIONS 1-4,6 and C0 : R → R be the cost function obtained from
C by fixing the number of positive outcome securities. If C0 satisfies
CONDITION-7 and is used in PPS for crowdfunding a project with
provision point h0 when ϑ > C−1

0 (h0+C0(0)), the strategies in the

set
{
(ψ∗i = {x∗i , ai}) : x∗i ≤ (C0(θi+ qai)−C0(q

ai)) if hai > 0,

otherwise x∗i = 0; χ = h0

}
are sub-game perfect equilibria.

Proof: First we claim in Step 1 that, at equilibrium, χ = h0. In
Step 2, we characterize the equilibria strategy of agent i (ψ∗i ). Step 3
proves the upper bound on b. We show that these equilibria strategies
are sub-game perfect in Step 4.
Step 1: In equilibrium, χ > h0 cannot hold since the requester stops
collecting the funds at χ = h0 if this happens before the dead-
line T . In equilibrium, χ < h0 cannot hold since an agent can in-
crease his utility by contributing more and receiving a higher ri due
to CONDITION-7. Thus, in equilibrium χ = h0.
Step 2: Due to ASSUMPTION-2, agents do not have any bias in be-
lieving whether the project will be funded, other than the contribu-
tions. From Step 1, the contributions would be such that the project

is funded in equilibrium. Thus, at equilibrium, an agent will con-
tribute such that his funded utility is no less than the highest possible
unfunded utility. That is, if (x∗i , t

∗
i ) is agent’s equilibrium strategy,

r∗i − x∗i ≤ θi − x∗i ⇒ r∗i ≤ θi. Expressing r∗i in terms of x∗i and t∗i
using Equation (6), we get the condition:

C−1
0 (x∗i + C0(q

ti))− qti ≤ θi

or equivalently, x∗i ≤ C0(θi + qti)− C0(q
ti)

Note that (i) the RHS of Equation (8) is a monotonically decreasing
function of qt

∗
i and (ii) qt, the number of securities allotted by the

market at time t, is a monotonically non-decreasing function of t.
Thus, an agent with value θi minimizes the RHS at t∗i = ai, that
is, he contributes as soon as he arrives8. Thus, ψ∗i = (x∗i , ai) and at
equilibrium:

x∗i ≤ C0(θi + qai)− C0(q
ai) (8)

Step 3: Summing up r∗i − x∗i ≤ θi − x∗i for all agents leads to the
condition

∑n
i=1 r

∗
i ≤ ϑ. Since securities are allocated using a path

independent cost function (CONDITION-1), using Equation (7) the
condition for Nash Equilibrium becomes:

C−1
0 (h0 + C0(0)) < ϑ (9)

Step 4: These equilibria, specified as a function of the aggregate his-
tory (hai ), are also sub-game perfect. Consider agent j who arrives
last at aj . If haj = 0, then his best strategy is x∗j = 0. If haj > 0,
irrespective of Haj and haj , his funded and unfunded utility are the
same at x∗j , defined in the theorem and still it is best response for j to
follow the equilibrium strategy. With backward induction, by similar
reasoning, it is best response for every agent to follow the equilib-
rium strategy irrespective of history. Thus, these equilibria are also
sub-game perfect equilibria. �

The above theorem characterizes a set of sub-game perfect equi-
libria at which crowdfunding projects using PPS gets fully funded.
Since no agent, without any additional information regarding the
project getting funded or not (ASSUMPTION-2), should invest no
more than the bound of Equation (8), we believe that this is the
only set of sub-game perfect equilibria of induced game at which
the project gets fully funded. We are yet to identify any other Nash
equilibria for the game induced by PPS.

5 PPS WITH DIFFERENT COST FUNCTIONS

In this section, we undertake a comparison of PPS instantiated us-
ing two popular cost functions: logarithmic scoring rule based and
quadratic scoring rule based. In both cases, the cost functions sat-
isfy CONDITIONS 1-4,6. A well known criterion for choosing the
cost function in prediction markets is the the trade off between the
worst case loss and market liquidity [7]. In PPS, CONDITION-7 ex-
plicitly lower bounds the liquidity in the market. Interestingly, this
upper bounds the refund budget and thus the worst case loss. Thus
for PPS, the key consideration in choosing the cost function comes
from the trade off between satisfying CONDITION-7 and the maxi-
mum bonus that can be offered to incentivize agents to contribute to
the public project earlier.

8 For an intuitive explanation, See Section 5.3
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5.1 LMSR-PPS

In our complex cost function based prediction market, LMSR-PPS,
which uses the cost function specified in Equation (3) is specified as:

C0(q
t) = b ln(1 + exp(qt/b))

pt =
exp(qt/b)

1 + exp(qt/b)

Cost(rt|qt) = C0(q
t + rt)− C0(q

t)

= b ln

(
1 + exp( q

t+rt

b
)

1 + exp( q
t

b
)

)

An agent who contributes xi at ti receives rtii securities where:

xi = b ln

⎛
⎝1 + exp(

qti+r
ti
i

b
)

1 + exp( q
ti

b
)

⎞
⎠ and

rtii = b ln

(
exp

(
xi

b
+ ln(1 + exp(

qti

b
))

)
− 1

)
− qti

Proposition: LMSR-PPS satisfies CONDITION-7.

Proof: CONDITION-7 requires that ∀qti , ∀xi < h0,
∂r

ti
i

∂xi
> 1.

With LMSR-PPS,

∂rtii
∂xi

=
exp

(
xi
b
+ ln(1 + exp( q

ti

b
))
)

exp
(

xi
b
+ ln(1 + exp( q

ti

b
))
)
− 1

Since the RHS is always greater than 1, CONDITION-7 is always sat-
isfied for LMSR-PPS. We note that this is an immediate implication
of the infinite liquidity of LMSR based prediction markets [14]. �

Corollary: If ϑ > h0 and b > 0, in LMSR-PPS, the strategies in

the set
{
(ψ∗i = {x∗i , ai}) : x∗i ≤ b ln

(
1+exp

(
θi+qai

b

)

1+exp( qai
b

)

)
if hai >

0, otherwise x∗i = 0; χ = h0

}
are sub-game perfect equilibria if

b < ϑ−h0

ln 2
.

Proof: Since LMSR-PPS satisfy CONDITIONS 1-4,6-7, Theorem
3 is applicable and Equation (8), the equilibrium contribution of
agent i with value θi who arrives at ai is:

x∗i ≤ C0(θi + qai)− C0(q
ai) = b ln

⎛
⎝1 + exp

(
θi+qai

b

)
1 + exp( q

ai

b
)

⎞
⎠

The condition for attaining this equilibrium corresponding to Equa-
tion (9) is:

C−1
0 (h0 + C0(0)) = b ln

(
exp

(
h0

b
+ ln(2)− 1

))

< b ln

(
exp

(
h0

b
+ ln(2)

))
< ϑ

⇒ b <
ϑ− h0

ln 2

�

5.2 QSR-PPS

In our complex cost function based prediction market, the QSR-PPS,
which uses the cost function specified in Equation (4) is specified as:

C0(q
t) =

qt

2
+

(qt)2

8b
− b

2

pt =
1

2
+

qt

4b

Cost(rt|qt) = C0(q
t + rt)− C0(q

t)

= rt
(
1

2
+

qt

4b
+

rt

8b

)

An agent who contributes xi at ti receives rtii securities where:

xi = rtii

(
1

2
+

qti

4b
+

rtii
8b

)
and

rtii =
√

(qti + 2b)2 + 8bxi − (qti + 2b)

Proposition: QSR-PPS satisfies CONDITION-7 if b > 2
3
h0

Proof: CONDITION-7 requires that ∀qti , ∀xi ≤ h0,
∂r

ti
i

∂xi
> 1.

With QSR-PPS,

∂rtii
∂xi

=
4b√

(qti + 2b)2 + 8bxi

The RHS obtains its minimum value with qti = 0 and xi = h0:
this corresponds to the condition when the first agent who arrives
contributes the whole amount for the public project. Ensuring that
this minimum is greater than 1 leads to the condition b > 2

3
h0. �

Corollary: If ϑ > h0 and b > 0, in QSR-PPS, the strategies in

the set
{
(ψ∗i = {x∗i , ai}) : x∗i ≤ θi

(
1
2
+ qai

4b
+ θi

8b

)
if hai >

0, otherwise x∗i = 0; χ = h0

}
are sub-game perfect equilibria if

b < ϑ2

8h0 .

Proof: With b > 2
3
h0, since QSR-PPS satisfies

CONDITIONS 1-4,6-7, Theorem 3 is applicable and Equation
(8), the equilibrium contribution of agent i with value θi who arrives
at ai is:

x∗i ≤ C0(θi + qai)− C0(q
ai) = θi

(
1

2
+

qai

4b
+

θi
8b

)

The condition for attaining this equilibrium corresponding to Equa-
tion (9) is:

C−1
0 (h0 + C0(0)) =

√
(2b)2 + 8bh0 − 2b

<
√
8bh0

< ϑ

⇒ b <
ϑ2

8h0

�
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Figure 2. LMSR based PPS: utility vs. contribution

5.3 Choosing a Cost Function for PPS

Sections 5.1 and 5.2 show that both LMSR and QSR based PPS can
achieve successful crowdfunding of a public project under the right
conditions. In both cases, the condition that ϑ > C−1

0 (h0 + C0(0))
(Theorem 3) leads to an upper bound on b. For LMSR-PPS, b <
ϑ−h0

ln 2
and for QSR-PPS, b < ϑ2

8h0 . This upper bound ensures that the
the refund bonus is not so high that it exceeds the net value of the
project.

A lower bound on b (and hence the refund bonus) comes
from CONDITION-7. In LMSR-PPS, the unfunded utility is al-
ways a monotonically increasing function of the contribution and
CONDITION-7 is always satisfied. Thus, the lower bound on b is
trivial (b > 0) and all agents have an incentive (no matter how
small) to contribute. In practice, if the refund bonus in LMSR is too
small to incentivize agents, then CONDITION-7 can be modified to

require that ∀qti , ∀xi < h0,
∂r

ti
i

∂xi
> (1+ ε) and we can show that

b > h0/ln( 1
2ε
).

In QSR-PPS, the unfunded utility first increases then decreases
and thus satisfying CONDITION-7 creates a lower bound on the re-
fund budget (b > 2

3
h0). Intuitively, if b is too low than agents who

arrive after the contributions have crossed a certain threshold (but
not yet reached the provision point) will not have an incentive to
contribute.

Figure 2 and 3 compare the performance of LMSR-PPS and QSR-
PPS with b = 100. In both the figures, the three straight lines cor-
respond to funded utility of agents with different types. Since the
unfunded utility depends both on the contribution and the timing of
the contribution (via the number of outstanding securities at the time
of the contribution), the unfunded utility as a function of the contri-
bution for three different histories (different number of outstanding
negative outcome securities) are shown. Note that the unfunded util-
ity is independent of agent type.

If more securities have been sold at the time agent i contributes, he
must contribute more to obtain the same unfunded utility. For a given
history (number of outstanding securities), the point where the curve
(unfunded utility) intersects the line (funded utility) is the contribu-
tion amount where the agent derives the same utility independent of
whether or not get the project is funded. The set of equilibria x∗i lie
to the left of this intersection.

Figure 3. QSR based PPS: utility vs. contribution

5.4 Price and Probability in PPS

In any cost function based prediction market, the gradient of the cost
function is interpreted as both the instantaneous price of a security
and the market probability of the associated event. In PPS however,
this needs to be reinterpreted. For every contribution xi towards the
public project, PPS allocates securities associated with the project
not getting funded. As the contributions near the target (χ → h0),
the price of the project not getting funded nears one (p → 1): this
is desirable since PPS is designed to incentivize early contributions.
However, interpreting p as the probability of the project not getting
funded is counter intuitive. Instead we propose to interpret 1 − p
as the market probability that the project will not be funded. The
range of instantaneous price (p) and probability (1− p) also depend
on the number of securities with which the market is initialized. If
q = (0, 0), then p ∈ [0.5, 1]. If the market is initialized with q =
(qω1 , 0) then the price space expands or shrinks depending on the
value of qω1 . Thus, initialization of q can be used to control the price
space in PPS.

6 Conclusion

In this work, we have proposed a class of provision point mecha-
nisms, PPS for civic crowdfunding. PPS induces an extensive form
game among the agents who arrive on the crowdfunding platform
and achieves equilibria at which the project is funded. These equilib-
ria have the desirable property that agents do not free ride but instead
contribute in proportion to their true value for the project and do so
as soon as they arrive. PPS achieves this by incentivizing agents with
a refund greater than their contribution if the project is not funded.
In PPS, securities issued in a cost function based prediction market
determine the refund bonus. Even though PPS relies on a sponsor to
offer a refund bonus while the funds are being collected, the bonus
is not paid out at equilibrium. As these securities are purchased, the
price increases, thereby incentivizing participants to contribute ear-
lier. We specified the conditions that a cost function must satisfy to
be used in PPS and compared PPS under two popular cost functions.
Using these as the benchmark, we provided considerations to choose
an optimal cost function. We believe that our work can significantly
improve the success rate of provisioning public projects using private
funds in scenarios like civic crowdfunding.
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