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Abstract. There is an extensive literature on the complexity of plan-
ning, but explicit bounds on time and space complexity are very rare.
On the other hand, problems like the constraint satisfaction problem
have been thoroughly analysed in this respect. We provide a number
of upper and lower bound results for both plan satisfiability (PSAT)
and length-optimal planning (LOP), with an emphasis on monotone
planning (where actions have only positive effects) which is used in,
for instance, h+ and similar heuristics. Let v and a be the number of
variables and actions, respectively. We consider both restrictions on
the number and polarity of preconditions and effects of actions and
the PUBS restrictions in SAS+. For all such classes, we show that
PSAT and LOP is either tractable or cannot be solved in subexponen-
tial time 2o(v) or time 2o(a), unless the so-called Exponential Time
Hypothesis (ETH) is false. There is also a sharp transition: mono-
tone LOP can be solved in time 2o(v) if a ∈ o( v

log v
) but not if

a ∈ Ω(v). We also study upper bounds and discuss the trade-off
between time and space, providing a polynomial-space algorithm for
monotone LOP that beats depth-first search in most cases. This raises
the important question how lower bounds are affected by polynomial
space restrictions.

1 INTRODUCTION

The computational complexity of the plan satisfiability problem
(PSAT) and the plan-length optimisation problem (LOP) is well-
studied in the literature. Bylander [8] analysed subclasses of both
problems based on restricting the preconditions and effects of actions
in the STRIPS language. Bäckström and Nebel [6] made a similar
study for the PUBS restrictions in the SAS+ langugage. The com-
plexity of cost-optimal planning (COP) has also been studied (cf.
Katz and Domshlak [28]). More recently, parameterised complex-
ity analysis has been used. Bäckström et al. [5] analysed LOP for
a number of subclasses using plan length as parameter, Kronegger
et al. [30] used many parameters, including plan length, analysing the
complexity for combinations of these parameters, and Aghighi and
Bäckström [3] analysed COP using plan cost as parameter. Many
more examples can be found in the literature. However, they all
have in common that they classify problems into complexity classes,
rather than providing any explicit time bounds.

While explicit upper bounds can be provided by demonstrating al-
gorithms, it is more difficult to prove non-trivial lower bounds. An
important step forward was the Exponential Time Hypothesis (ETH)
[22], which conjectures that k-SAT cannot be solved in subexponen-
tial time 2o(n), where n is the number of variables. This has proven a
very useful hypothesis since there is a large number of NP-complete
problems that are related in the sense that either all of them can be
solved in subexponential time or none of them can. Hence, proving
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that a problem cannot be solved in subexponential time under the
assumption that the ETH holds is a very strong indication of hard-
ness. While all NP-complete problems are equivalent under the the-
ory of NP-completeness, it is known that they differ widely in hard-
ness in practice. The ETH has enabled to separate the NP-complete
problems with respect to concrete time bounds, which is more fine
grained and better related to practice than the usual classifications
into complexity classes. The ETH is nowadays a standard assump-
tion in complexity theory [31].

The ETH, and similar assumptions, was recently used to analyze
the constraint satisfaction problem (CSP) [13, 27]. This showed that
if the ETH is true, CSP cannot be solved in subexponential time even
for a large number of common restrictions, although some special
cases were identified where subexponential algorithms exist. CSP is a
very important NP-complete problem. Apart from its widespread use
in AI and elsewhere, it is also an archetypical NP-complete problem
in the sense that many other NP-complete problems can easily be
modelled as CSP classes. Planning is similarly a good and natural
modelling language for many problems in PSPACE, and in NP, but
no similar analysis of lower bounds exists for planning.

We address the issue of explicit upper and lower bounds for plan-
ning, with an emphasis on monotone planning (where actions have
only positive effects). One reason for the latter is that monotone plan-
ning is NP-complete, while general planning is PSPACE-complete,
so it is a stronger result to prove that not even monotone planning can
be solved in subexponential time. Another reason is that monotone
planning is important for many heuristics, like h+ [21].

First, we derive some straightforward upper bounds in Sec. 3, both
for monotone and non-monotone planning, in order to put the forth-
coming lower-bound results into a perspective. We then turn to lower
bounds, using restrictions on the number and polarity of precondi-
tions and effects of actions (cf. Bylander [8]). Let v and a be the
number of variables and actions, respectively. In Sec. 4, we give a
complete classification of PSAT for these restrictions in the sense that
each such class is either tractable or not solvable in subexponential
time in the number of variables or actions, i.e. in time 2o(v) or 2o(a),
(unless the ETH is false). We then do similar analyses of the LOP
problem for the same type of restrictions. In Sec. 5, we focus on
monotone planning and show that not even severly restricted classes
can be solved in time 2o(v) or 2o(a) (unless the ETH is false). For
the general non-monotone case, we show a sharper result in Sec. 6
based on graph colouring. If LOP can be solved faster than time
2

v
2 ·poly(v), then there would be a faster algorithm for graph colour-

ing than currently known. We then show in Sec. 7 that there exists
a sharp transition: Monotone LOP cannot be solved in time 2o(v) if
a ∈ Ω(v), i.e. the number of actions is at least linear in the number of
variables, but it can be solved in time 2o(v) if the number of actions
is sublinear in the number of variables. This resembles a similar tran-
sition result for CSP [13]. Then we consider lower bounds for other
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types of restrictions. In Sec. 8 we consider the PUBS restrictions (cf.
Bäckström and Nebel [6]) and provide complete classifications for
both PSAT and LOP, in the sense that all combinations of restrictions
are either tractable or cannot be solved in time 2o(v) (unless the ETH
is false). We also settle an open question and prove NP-hardness for
those combinations that have remained unclassified in the literature.
For the last type of lower bound results, we consider planning classes
defined by the structure of the causal graph (cf. Katz and Domsh-
lak [29] and Giménez and Jonsson [19]). We show that even if re-
stricted to a number of simple types of causal graphs, including sev-
eral types studied in the literature, planning cannot be solved in time
2o(v) (unless the ETH is false). After that, we once again consider
upper bounds in Sec. 10, and, in particular, we consider the trade-off
between time and space. While the previously derived upper bounds
are based on algorithms requiring exponential space, we ask how fast
we can plan using only polynomial space. For monotone planning,
depth-first search satisfies this criterion, since the depth is limited,
but the time bound increases with the branching factor. We provide
an alternative polynomial-space algorithm which outperforms depth-
first search except for instances with small branching factor. This also
raises an important open question: How would lower-bound results
be affected by a restriction to polynomial space?

2 PRELIMINARIES

For a set or sequence X of objects, we write |X| to denote the cardi-
nality (the number of objects) of X and we write ||X|| to denote the
size (the number of bits of the representation) of X .

2.1 Planning

In the general case, we will use the SAS+ planning framework [6],
which uses variables with arbitrary finite domain. Let V =
{v1, . . . , vn} be a finite set of variables, with an implicit order
v1, . . . , vn, each with a finite domain D(vi). This defines the state
space S(V ) = D(v1)× . . .×D(vn). A member s ∈ S(V ) is called
a (total) state and can be viewed as a total function that specifies a
value in D for each vi ∈ V . A partial state may leave the value un-
defined for some (or all) variables, and is thus a partial function. The
value of a defined variable vi in a (total or partial) state s is called
the projection of s onto vi and is denoted s[vi]. If s is a partial state,
then vars(s) is the set of variables with a defined value in s.

A planning instance P = 〈V,A, I,G〉 has a set of variables V over
the domain D, a set of actions A, a total initial state I and a partial
goal state G. Each action a ∈ A has a precondition pre(a) and an
effect eff(a), both partial states. Let a ∈ A and s ∈ S(V ). Then a is
valid in s if pre(a)[v] = s[v] for all v ∈ vars(pre(a)), and the result
of a in s is a state t ∈ S(V ) such that for all v ∈ V , t[v] = eff(a)[v]
if v ∈ vars(eff(a)) and t[v] = s[v] otherwise. Let s0, s� ∈ S(V )
and let ω = a1, . . . , a� be a sequence of actions. Then ω is a plan
from s0 to s� if either (1) ω = 〈〉 and � = 0 or (2) there are states
s1, . . . , s�−1 ∈ S(V ) such that for all i (1 ≤ i ≤ �), ai is valid in
si−1 and si is the result of ai in si−1. Furthermore, ω is a plan (i.e.
a solution) for P if it is a plan from I to G.

For every class C of SAS+ instances, we define the following two
problems.

PLAN SATISFIABILITY
(
PSAT(C)

)
Instance: An instance P = 〈V,A, I,G〉 in C.
Question: Does P have a plan?

LENGTH-OPTIMAL PLANNING
(
LOP(C)

)
Instance: An instance P = 〈V,A, I,G〉 in C and a non-
negative integer k.
Question: Does P have a plan ω of length |ω| ≤ k?

Most of our results, in particular the lower-bound results, only
make use of binary variables. In these cases, it is often clearer and
more convenient to use Propositional STRIPS with Negative goals
(PSN) [8], which can be viewed as a different way to define SAS+

with binary variables. Let V be a set of binary variables, i.e. propo-
sitional atoms. For any set V ′ ⊆ V , the set of literals over V ′ is
L(V ) = {v, v | v ∈ V }. A total state s over V is a subset s ⊆ V ,
where a variable v is true in s if and only if v ∈ s. The space of
total states over V is S(V ) = 2V . A partial state p over V is a con-
sistent subset p ⊆ L(V ), i.e. it does not contain both v and v for
any v ∈ V . A variable v is true in p if v ∈ p, false if v ∈ p and
undefined if p ∩ {v, v} = ∅. We also define p+ = {v ∈ V | v ∈ p}
and p− = {v ∈ V | v ∈ p}. Let p be a partial state and s a total
state. Then p is satisfied in s, denoted p � s if both p+ ⊆ s and
p− ∩ s = ∅. The � operator is defined as s� p = (s \ p−) ∪ p+.
Finally, vars(p) = {v | v ∈ p or v ∈ p}.

A PSN instance is a tuple P = 〈V,A, I,G〉 where V is a set of
variables, A is a set of actions, the initial state I is a total state over
V and the goal G is a partial state over V . Each action a in A has
a precondition pre(a) and an effect eff(a), which are both partial
states. For all total states s, t over V and all a ∈ A, a is from s
to t if both (1) pre(a) � s and (2) t = s � eff(a). A sequence
ω = a1, . . . , a� of actions in A is a plan from a state s0 to a state
s� if either (1) s0 = s� and ω is the empty sequence or (2) there
are total states s1, . . . , s�−1 such that ai is from si−1 to si for all i
(1 ≤ i ≤ �). The sequence s0, . . . , s� is the state sequence of ω. A
solution for P is a plan from I to some total state s such that G � s.
A solution for P is called a plan for P.

We write a : P⇒E to define an action a with precondition P and
effect E. We define PSN (and later SAS+) subclasses based on the
number and polarity of the preconditions and effects, e.g. PSN2+

1

denotes the class of PSN instances where the actions have at most
two positive literals in the precondition and one literal in the effect.
We use ∗ to denote an unrestricted number of literals, i.e. PSN∗1 al-
lows any number of literals in the preconditions but only one literal
in the effects. A PSN instance is monotone if no action has any neg-
ative effects, i.e. all monotone instances belong to PSN∗∗+. Note that
PSN∗∗ = PSN.

2.2 Satisfiability and the ETH

The k-SAT problem is defined as follows and it is known to be NP-
complete for k ≥ 3 [18].

k-SAT
Instance: A CNF formula F where each clause has at most k
literals.
Question: Does F have a satisfying assignment?

We will use n for the number of variables and m for the number
of clauses of k-SAT instances. A more precise complexity char-
acterization is possible by using the Exponential Time Hypothesis
(ETH) [22].

Definition 1 For all constant integers k ≥ 3, let sk be the infimum
of all real numbers δ such that k-SAT can be solved in time O(2δn).
The ETH says that sk > 0 for all k ≥ 3.
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Somewhat informally, the ETH says that k-SAT cannot be solved
in subexponential time 2o(n).

If the ETH holds, then for every k ≥ 3, there is some constant ck
such that k-SAT cannot be solved in time 2ckn. The ETH is a quite
strong assumption that allows for defining a theory similar to the one
of NP-completeness. There is a large number of NP-complete prob-
lems that form a completeness class in the sense that either all of
them can be solved in subexponential time, or none of them can [24].
There is also strong variant of the hypothesis (SETH) that addition-
ally conjectures that limk→∞ sk = 1.

We will frequently make use of the following result, that it is suf-
ficient to assume a linear number of clauses in the instances.

Lemma 2 (de Haan et al. [13, Lemma 1]) k-SAT (k ≥ 3) is solvable
in time 2o(n) if and only if k-SAT with a linear number of clauses
and in which the number of occurences of each variable is at most 3
is solvable in time 2o(n).

3 UPPER BOUNDS

In order to set the forthcoming lower-bound results into a perspec-
tive we first derive some straightforward upper bounds for planning.
Consider the general case, a SAS+ instance with v variables, each
with a domain of size d. Then the state space consists of dv states.
Each state can have an arc to every state, including itself, so the max-
imum number of arcs in the state-transition graph is dv · dv = d2v .
A straightforward way to solve LOP is to use Dijkstra’s algorithm.
Fredman and Tarjan’s [16] variant of Dijkstra’s algorithm runs in
time O(|E| + |V | log |V |). A planning instance P can be viewed
as a compact representation (in the sense of Galperin and Wigder-
son [17]) of its state-transition graph, where we can check in time
poly(||P||) if an arc exists. It follows that we can solve LOP(SAS+)
in time O

(
(d2v + dv log dv) · poly(||P||)) = O

(
d2v · poly(||P||)).

Heuristic search algorithms may be preferrable in many practical
cases, but they give no advantage in the worst case, e.g. Dijkstra’s
algorithm is essentially equivalent to the A∗ algorithm [15].

For PSN we have d = 2, so the state space is of size 2v and
can have up to 22v = 4v arcs, i.e. we can solve LOP(PSN) in time
O
(
4v · poly(||P||)). We then proceed to the monotone case, when

the actions have no negative effects, i.e. PSN∗∗+. Then there can only
be an arc from s to t if s ⊆ t. For each i, there are

(
v
i

)
states of

size i. For each such state, there are 2i subsets. Hence, the maximum
number of arcs is

e(v) =
v∑

i=1

(
v

i

)
2i =

v∑
i=0

(
v

i

)
2i − 1.

Using the binomial formula

(a+ b)v =
v∑

i=0

(
v

i

)
av−ibi

and setting a = 1 and b = 2 we get

v∑
i=0

(
v

i

)
2i =

v∑
i=0

(
v

i

)
1v−i2i = (1 + 2)v = 3v

i.e. e(v) < 3v = 2v log 3.

Observation 3 LOP(PSN∗∗+) can be solved in time
O
(
3v · poly(||P||)) using Dijkstra’s algorithm.

4 SUBEXPONENTIAL LOWER BOUNDS FOR
PSAT

Both problems PSAT(PSN1
1+) and PSAT(PSN1+

2 ) are known to be
NP-hard [8]. We will strengthen these results below by also proving
that neither can be solved in subexponential time (in either the num-
ber of variables or the number of actions), unless the ETH is false.

Construction 4 Let F be a 3-SAT instance with variables x1, . . . , xn

and clauses c1, . . . , cm, where each clause cj is of the form
{l1j , l2j , l3j}. Construct a corresponding PSAT(PSN1

1+) instance P =
〈V,A, I,G〉 as follows:

• V = {fi, ti | 1 ≤ i ≤ n} ∪ {yj | 1 ≤ j ≤ m};
• A contains the actions

– setfi : {ti}⇒{fi}, for all i (1 ≤ i ≤ n),

– setti : {fi}⇒{ti}, for all i (1 ≤ i ≤ n) and

– vfykj : {l̂kj }⇒{yj}, for all j, k (1 ≤ j ≤ m, 1 ≤ k ≤ 3),
where l̂kj = fi if lkj = xi and l̂kj = ti if lkj = xi;

• I = ∅ and G = {y1, . . . , ym}.

Theorem 5 If PSAT(PSN1
1+) can be solved in time 2o(v) or time

2o(a), then the ETH is false.

Proof. Proof by reduction from 3-SAT to PSAT(PSN1
1+). Let F be a

3-SAT instance and let P be the corresponding PSN instance accord-
ing to Construction 4. For each variable xi in F, a plan for P can set
either fi or ti to true, but not both. It follows that P has a plan if and
only if F is satisfiable, so Construction 4 is a polynomial reduction
from 3-SAT to PSAT(PSN1

1+).
Let Sd denote the class of 3-SAT instances where m ≤ dn and

choose d such that Sd cannot be solved in time 2o(n) if the ETH is
true. Such a d exists according to Lemma 2. Let Pd be the class of
PSN1

1+ instances we can get by applying Construction 4 to Sd.
Suppose PSAT(PSN1

1+) can be solved in time 2o(v). Choose an
arbitrary c > 0. Then PSAT(PSN1

1+) can be solved in time in 2cv

for large v. Let F be a 3-SAT instance in Sd with n variables. Then
F has m ≤ dn clauses. Let P be the corresponding PSN instance.
We have v = 2n+m ≤ 2n+dn = (2+d)n and ||P|| is polynomial
in n, so it follows from our assumption that we can solve satisfiability
for Sd in time poly(n) + 2c(2+d)n ≤ 2(c(2+d)+ε)n, for all ε > 0 and
large n. However, c is arbitrary so we can choose arbitrary c′, ε > 0

such that c(2 + d) + ε ≤ c′ and Sd can be solved in time 2c
′n for

large n. Unless the ETH is false, this contradicts our assumptions and
it follows that PSAT(PSN1

1+) cannot be solved in time 2o(v).
We further have a = 2n + 3m, i.e. v ∈ O(a), so PSAT(PSN1

1+)
cannot be solved in time 2o(a) unless the ETH is false.

Construction 6 Let F be a 3-SAT instance with variables x1, . . . , xn

and clauses c1, . . . , cm. Construct a corresponding PSAT(PSN1+
2 )

instance P = 〈V,A, I,G〉 as follows:

• V = {ei, fi, ti | 1 ≤ i ≤ n} ∪ {yj | 1 ≤ j ≤ m};
• A contains the actions

– setfi : {ei}⇒{ei, fi}, for all i (1 ≤ i ≤ n),

– setti : {ei}⇒{ei, ti}, for all i (1 ≤ i ≤ n) and

– vfykj : {l̂kj }⇒{yj}, for all j, k (1 ≤ j ≤ m, 1 ≤ k ≤ 3),
where l̂kj = fi if lkj = xi and l̂kj = ti if lkj = xi;

• I = {e1, . . . , en} and G = {y1, . . . , ym}.
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Theorem 7 If PSAT(PSN1+
2 ) can be solved in time 2o(v) or time

2o(a), then the ETH is false.

Proof. Analogous to the proof of Theorem 5, but using Construc-
tion 6 instead. For each variable xi in F, a plan for P can set either
fi or ti to true, but not both since we can never set ei to true again
once it is reset. Hence, this is a polynomial reduction from 3-SAT to
PSAT(PSN1+

2 ) such that v = 3n+m and a = 2n+ 3m.

It is further known that the problems PSAT(PSN∗+∗+),
PSAT(PSN0

∗) and PSAT(PSN∗+1 ) can be solved in polynomial
time [8]. Hence, we have a complete classification of all PSN
classes defined by the number and polarity of preconditions and
effects of actions, each being classified as either tractable or not
solvable in subexponential time.

5 LOWER BOUNDS FOR MONOTONE LOP

We start with LOP for monotone instances. Finding a length-optimal
plan is hard even when the actions are restricted to only one positive
precondition and one positive effect.

Construction 8 Let F be a 3-SAT instance with variables x1, . . . , xn

and clauses c1, . . . , cm, where each clause cj is on the form
{l1j , l2j , l3j}. Construct a corresponding PSN1+

1+ instance P =
〈V,A, I,G〉 as follows:

• V = {fi, ti, si | 1 ≤ i ≤ n} ∪ {yj | 1 ≤ j ≤ m};
• A contains the actions

setfi :∅⇒{fi}, setti : ∅⇒{ti}, setsfi : {fi}⇒{si} and
setsti : {ti}⇒{si}, for all i (1 ≤ i ≤ n), and
vfykj : {l̂kj }⇒{cj}, for all j, k (1 ≤ j ≤ m, 1 ≤ k ≤ 3), where
l̂kj = xf

i if lkj = xi and l̂kj = xt
i if lkj = xi;

• I = ∅ and G = {s1, . . . , sn} ∪ {y1, . . . , ym}.

Theorem 9 If LOP(PSN1+
1+) can be solved in time 2o(v) or time

2o(a), then the ETH is false.

Proof. Proof by reduction from 3-SAT to LOP(PSN1+
1+). Let F be

a 3-SAT instance with variables x1, . . . , xn and clauses c1, . . . , cm,
where each clause cj is of the form {l1j , l2j , l3j}. Let P be the corre-
sponding PSN instance according to Construction 8. We claim that
F is satisfiable if and only if P has a plan of length 2n+m.

⇒: Suppose α is a satisfying assignment for F. Construct a plan
ω as follows. For each xi, let ω contain setfi and setsfi if α(xi) = 0
and otherwise let ω contain setti and setsti . Then, for each clause cj =
{l1j , l2j , l3j}, there is at least one k such that α makes lkj true. Choose
such a k and add action vfykj at the end of ω. Clearly, ω is a plan for
P of length 2n+m.

⇐: Suppose ω is a plan for P of length 2n+m. It must contain n
actions setting the si variables and m actions setting the yj variables.
In order to set the si variables, it must also set either of fi and ti for
each i, but it cannot set both since there can only be n such actions
in total. Hence, ω corresponds to a satisfying assignment.

It follows that the construction is a polynomial reduction.
Let Sd denote the class of 3-SAT instances where m ≤ dn and

choose d such that Sd cannot be solved in time 2o(n) if the ETH is
true. Such a d must exist according to Lemma 2. Let Pd be the class
of PSN1+

1+ instances we get by applying the reduction above to Sd.
Suppose LOP(PSN1+

1+) can be solved in time in 2o(v). Choose an
arbitrary c > 0. Then LOP(PSN1+

1+) can be solved in time 2cv for
large v. Let F be a 3-SAT instance in Sd with n variables. Then F

has m ≤ dn clauses. Let P be the corresponding PSN instance. We
have v = 3n+m ≤ 3n+ dn = (3+ d)n and ||P|| is polynomial in
n, so it follows from our assumption that we can solve the class Sd in
time poly(n) + 2c(3+d)n ≤ 2(c(3+d)+ε)n, for all ε > 0 and large n.
However, c is arbitrary so we can also choose arbitrary c′, ε > 0 such
that c(3 + d) + ε ≤ c′ and Sd can be solved in time 2c

′n for large
n. Unless the ETH is false, this contradicts our assumptions and it
follows that LOP(PSN1+

1+) cannot be solved in time 2o(v).
We further have a = 4n + 3m, i.e. v ∈ O(a), so LOP(PSN1+

1+)

cannot be solved in time 2o(a) unless the ETH is false.

This lower bound for LOP(PSN1+
1+) holds even if the number of

actions is linear in the number of variables.

Theorem 10 If a ∈ Ω(v), then LOP(PSN1+
1+) cannot be solved in

time 2o(v) unless the ETH is false.

Proof. In the proof of Theorem 9 we have |V | = 3n + m ≤ 3n +
dn = (3 + d)n and |A| = 4n + 3m ≤ 4n + 3dn = (4 + 3d)n.
Hence, the class Pd satisfies that a ∈ Ω(v) and the proof works also
in this case.

We will see in Sec. 7 that this no longer holds if the number of
actions is sublinear in the number of variables.

The previous theorem covers all cases of monotone planning, ex-
cept when actions have no preconditions at all. In the case of no
preconditions, we have to rely on a conjecture about the SET COVER

problem, which is defined as follows:

k-SET COVER

Instance: A set S and a set C of subsets of S.
Question: Does S have a cover of size k, i.e. is there a subset
C′ ⊆ C such that

⋃
X∈C′ X = S and |C′| ≤ k?

Cygan et al. [11] conjectured that k-SET COVER cannot be solved in
time 2o(n) unless the SETH is false, where n = |S|.
Theorem 11 LOP(PSN0

k+) cannot be solved in time 2o(v) unless
k-SET COVER can be solved in time 2o(n).

Proof. Polynomial reduction from k-SET COVER. Given an instance
I = 〈S,C〉 of k-SET COVER, construct a LOP(PSN0

k+) instance
P = 〈V,A, I,G〉, where V = S ∪ {yc | c ∈ C}, A contains the
action ac : ∅⇒{x | x ∈ c} for all c ∈ C and all x ∈ c, I = ∅ and
G = S. Clearly, P has a plan of length k if and only if I has a cover
of size k.

6 LOWER BOUNDS FOR GENERAL LOP

For the general case, we prove a sharper bound than for monotone
LOP based on results about graph colouring.

GRAPH COLOURABILITY

Instance: A graph G = 〈V,E〉 and a positive integer k ≤ |V |.
Question: Is G k-colourable, i.e. is there a function f : V →
{1, . . . , k} such that f(u) �= f(v) whenever {u, v} ∈ E?

The best known upper bound for GRAPH COLOURABILITY is time
2n · poly(n), where n = |V |, [7, Prop. 1], and it is considered an
important open question whether a faster algorithm can exist [23].
Hence, we can use GRAPH COLOURABILITY instead of the ETH to
prove sharper bounds, but under somewhat different assumptions. In
particular, we show a sharper limit for planning with negative effects.
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Theorem 12 If LOP(PSN) can be solved in time
2

cv
2 · poly(v) for some c > 0, then GRAPH COLOURABILITY

can be solved in time 2cn · poly(n).

Proof. Proof by reduction from GRAPH COLOURABILITY to
LOP(PSN). Let I = 〈G, k〉 be an instance of GRAPH COLOURA-
BILITY, where G = 〈V,E〉 is a graph and k > 0 is an integer.
Assume V = {v1, . . . , vn}. Construct a corresponding LOP(PSN)
instance I

′ = 〈P′, k′〉 as follows. Let P′ = 〈V ′, A′, I ′, G′〉, where

• V ′ = {v1, . . . , vn, b1, . . . , bn};
• A′ contains the actions as : ∅⇒{b1, . . . , bn} and

ai : {bi}⇒{vi} ∪ {bj | {vi, vj} ∈ E} for all vi ∈ V ;
• I ′ = {b1, . . . , bn, v1, . . . , vn} and G′ = {v1, . . . , vn}.

Let k′ = n+ k − 1.
A plan colours the vertices in phases, one colour in each phase.

The phases are separated by occurences of action as, which switches
to the next colour. Variable vi is true if vertex vi has been coloured
and variable bi is a blocking variable, preventing vi from being
coloured for the moment. The actual colour of a vertex is only im-
plicit in the plan, and not explicitly represented. At the start of each
phase, any node can be (re)coloured and colouring a node immedi-
ately blocks its neighbours from being coloured in the same phase.

We now claim that I is k-colourable if and only if I′ has a plan of
length k′.

⇒: Suppose G has a k-colouring. Then there is a partition
C1, . . . , Ck of V such that Ci is an independent set for all i. Cre-
ate the action sequence ω = ω1, as, ω2, as, . . . , as, ωk, where ωi

contains action aj for each vj ∈ Ci in arbitrary order. The initial
state guarantees that all bj variables are false at the start of sequence
ω1 and the as actions guarantee that all bj variables are false at the
start of sequence ωi for each i > 1. Since all vertices in Ci have the
same colour, there are no two vj , vh ∈ Ci such that {vj , vh} ∈ E.
Hence, no action in ωi will set bj for any vj ∈ Ci. It follows that
all actions in ωi are valid. Furthermore, the as actions are always
valid. Since each vj ∈ V occurs in some Ci, it follows that action aj

occurs somewhere in ω for each vj ∈ V . Hence, the resulting state
state satisfies G.

⇐: Suppose ω is a plan for P′ of length k′ or less. Without losing
generality, assume ω is a shortest such plan. Then ω does not contain
any successive occurences of action as, so it is of the form ω =
ω1, as, ω2, as, . . . , as, ωm, for some m, where the subplans ωi do
not contain any occurences of action as. Since ω must contain at least
one occurence of action aj for each vj ∈ V , it follows that |ω| ≥
n+m−1, i.e. m ≤ k. Suppose there is some i and two actions aj , ah

in ωi such that {vj , vh} ∈ E. Without losing generality, assume vj
occurs before vh. Then aj sets bh, but this blocks the execution of
ah. Hence, the assumption must be false and {vj , vh} �∈ E for all
aj , ah ∈ ωi. It follows that G must have an m-colouring, and, thus,
a k-colouring.

It follows that the construction is a polynomial reduction from
GRAPH COLOURABILITY to LOP(PSN).

Now, suppose there is some c > 0 such that LOP(PSN) can be
solved in time 2

cv
2 ·poly(v). Since |V ′| = 2|V |, we can solve GRAPH

COLOURABILITY in time 2cn · poly(n).

This is a sharper result than the previous ones for monotone plan-
ning in the following sense. If LOP(PSN) can be solved faster
than time 2

v
2 · poly(v), then there is a faster algorithm for GRAPH

COLOURABILITY than previously known, i.e. this result is based on
an assumption about a specific fixed value for the constant in the ex-

ponent. Note that Theorem 9 still applies, i.e. LOP(PSN) cannot be
solved in time 2o(v) unless the ETH is false.

7 SUBEXPONENTIAL SOLVABILITY

We will now demonstrate three PSN classes that can be solved in
subexponential time in the number of variables, if the number of ac-
tions is subexponential in the number of variables.

For the first class, we need the following lemma.

Lemma 13 LOP(PSN∗+∗+) can be solved in time O(2|A|).

Proof. Enumerate all subsets of A. For each such subset A′, we can
apply the actions greedily until we either have a plan, or no more
action is applicable. Since we try to find plan for each subset of A,
we must find an optimal plan, so it is sufficient to keep track of the
shortest plan found. Since there are 2|A| subsets of A and each subset
can be checked in polynomial time by the greedy strategy, it follows
that we can solve LOP(PSN∗+∗+) in time O(2|A|).

Theorem 14 LOP(PSN∗+∗+) can be solved in time 2o(v) if a ∈ o(v).

Proof. Immediate from Lemma 13.

There is a similarily sharp bound for actions with arbitrary precon-
ditions, if we limit their effects to a constant number of variables.

Theorem 15 LOP(PSN∗k+) can be solved in time 2o(v) if a ∈ o(v).

Proof. With a actions, we can set at most ka variables, so v − ka
variables are redundant and can be removed from the instance before
solving it. Since a ∈ o(v), we get o(v) remaining variables.

If allowing also arbitrary preconditions, we get a somewhat less
sharp bound.

Lemma 16 Generating all plans of length �, or less, can be done in
time O(�|A|+2|V |2).

Proof. For |A| ≥ 2 and � ≥ 2, there are at most

0|A| + 1|A| + · · ·+ �|A| = 1 +
�∑

i=1

i|A| ≤ � · �|A| = �|A|+1

action sequences of length �, or less. Each plan of length �, or less,
can be verified in time O(�|V |2). Hence, we can generate all plans of
length �, or less, in time O(�|A|+1 · �|V |2) = O(�|A|+2 · |V |2).

Theorem 17 If a ∈ o( v
log v

), then LOP(PSN∗∗+) can be solved in
time 2o(v).

Proof. No action need to occur more than once in a plan for a mono-
tone instance, so the maximum plan length is a. Hence, we know
from Lemma 16 that we can generate all plans of length a, or less,
in time O(aa+2v2). Hence, we can solve LOP(PSN∗∗+) by keeping
track of the shortest plan found.

It remains to prove that aa+2v2 ∈ 2o(v), but aa+2v2 = aa · a2v2

so we can show separately that aa ∈ 2o(v) and a2v2 ∈ 2o(v).
We first prove that aa ∈ 2o(v). Since a ∈ o( v

log v
), it holds for all

c > 0 that a < c v
log v

, for large v. We get

aa = 2a log a < 2
( cv
log v

) log cv
log v = 2

cv
log cv

log v
log v .
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Choose an arbitrary c′ > 0. We want to prove that there is a c > 0
such that

2
cv

log cv
log v

log v ≤ 2c
′v,

that is,

cv
log cv

log v

log v
≤ c′v.

We rewrite to

cv
log c+ log v − log log v

log v
≤ c′v,

but
lim
v→∞

log c+ log v − log log v

log v
= 1

so it is sufficient to choose c = c′, which is allowed since we only
require that c > 0. It follows that aa ∈ 2o(v), since c′ was chosen
arbitrarily. We must next prove that also a2v2 ∈ 2o(v). We know that
a ∈ o(v) so it holds for all c > 0 that a < cv, for large v. Choose
c = 1. We get a2v2 ≤ v2v2 = v4 and it is straightforward that v4 ∈
2o(v). We have now shown that aa ∈ 2o(v) and that a2v2 ∈ 2o(v), so
it follows that aa · a2v2 = aa+2v2 ∈ 2o(v).

8 THE PUBS RESTRICTIONS

For the SAS+ language, it is common to consider classes defined by
combinations of the following four restrictions on instances [6].

P (post-unique): For all v ∈ V and x ∈ D(v), eff(a)[v] = x
for at most one a ∈ A.

U (unary): For each a ∈ A, |vars(eff(a))| = 1.

B (binary): |D(v)| = 2 for all v ∈ V .

S (single-valued): For all a, b ∈ A and v ∈ V ,
if v ∈ vars(pre(a)) ∩ vars(pre(b)) and
v �∈ vars(eff(a)) ∪ vars(eff(b))
then pre(a)[v] = pre(b)[v].

Combinations of these restrictions are written by juxtaposing the cor-
responding letters, eg. SAS+-PUB is the class of all SAS+ instances
that are post-unique, unary and binary. We will now prove subex-
ponential lower-bound results for all non-tractable combinations of
such restrictions. The following construction can be used to imple-
ment disjunctions in SAS+-PUB.

Construction 18 (Bäckström et al. [5], proof of Lemma 2) An OR
gate g with two inputs x1, x2 and output y can be encoded as a
SAS+-PUB instance P = 〈V,A, I,G〉 as follows:

• V = {x1, x2, y, y1, y2, i1, i2}, all with domain {0, 1},
• A contains the following actions:

– ay : {y1 = 1, y2 = 1}⇒{y = 1},

– ay1 : {i1 = 1, i2 = 0}⇒{y1 = 1},

– ay2 : {i1 = 0, i2 = 1}⇒{y2 = 1},

– ai1 : {∅}⇒{i1 = 1},

– ai2 : {∅}⇒{i2 = 1},

– av1 : {x1 = 1}⇒{i1 = 0},

– av2 : {x2 = 1}⇒{i2 = 0}.

• I[x1] and I[x2] are arbitrary and I[v] = 0 for all other v ∈ V .
• G[y] = 1 and G is otherwise undefined.

Theorem 19 If PSAT(SAS+-PUB) can be solved in time 2o(v) or
time 2o(a), then the ETH is false.

Proof sketch. Instance P in Construction 4 is a SAS+-UB instance,
but it is not post-unique since there are three actions with the same
effect for each clause variable yj . The three actions together simulate
the disjunction in the clause. Construction 18 computes the logical
OR of two variables in a PUB instance, using seven actions and four
additional variables. This gadget has the property that it has no plan
if both input variables are false, and otherwise it always has a plan
of length six that sets the output variable. We can then compute the
logical OR of four variables by using three such gadgets, using the
outputs of the first two as inputs to the third. Since we only need three
variables as input, we can use one of the variables for two inputs. We
need three OR gadgets for each clause, and the outputs of the first
two must be new variables. That is, we need 3 · 4 + 2 = 14 new
variables for each clause, which yields a total of 2n+15m variables
for the instance. We also need 3 ·7 = 21 new actions for each clause,
but the original three ones are not needed, so there are 18 actions
per clause, which yields a total of 4n + 18m actions. The proof of
Theorem 5 can easily be modified to this case.

Corollary 20 If PSAT(SAS+-PBS) can be solved in time 2o(v) or
time 2o(a), then the ETH is false.

Proof. Immediate from Theorem 19 since there is a polynomial re-
duction from LOP(SAS+-PUB) to LOP(SAS+-PBS) that increases
the number of variables by a factor 2 [6, Proof of Thm. 4.16].

It has remained an open question in the literature whether
PSAT(SAS+-PUB) and PSAT(SAS+-PBS) are NP-hard, while the
corresponding LOP problems are known to be NP-hard. Since the
two preceeding proofs use polynomial reduction from 3-SAT we can
settle this question affirmatively as a spin-off result.

Corollary 21 PSAT(SAS+-PUB) and PSAT(SAS+-PBS) are NP-
hard.

It is further known that PSAT(SAS+-US) is in P [6] and corre-
sponding results for all other combinations of the PUBS restrictions
follow trivially, so this is a complete classification for PSAT for all
combinations of the PUBS restrictions.

All the hardness results for PSAT above immediately apply also
to LOP, but the tractable cases are fewer for LOP, it is only known
that LOP(SAS+-PUS) is in P [6]. It is sufficient to add the following
result to get a complete classification also for LOP.

Corollary 22 (To Theorem 9) If LOP(SAS+-UBS) can be solved in
time 2o(v) or time 2o(a), then the ETH is false.

9 CAUSAL GRAPHS

The causal graph of a planning instance describes certain types of
variable dependencies of a planning instance, and has frequently
been exploited for identifying easy subclasses or for classifying the
complexity of planning classes [19, 20, 26, 29, 38].

Definition 23 The causal graph for a SAS+ instance P =
〈V,A, I,G〉 is the directed graph CG(P) = 〈V,E〉 where for all
u, v ∈ V , 〈u, v〉 ∈ E if and only if both u �= v and there
is some a ∈ A such that u ∈ vars(pre(a)) ∪ vars(eff(a)) and
v ∈ vars(eff(a)).
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We first show a general hardness result for instances with quite
restricted causal graphs.

Theorem 24 If LOP(PSN1+
1+) can be solved in time 2o(v) or time

2o(a) for instances where the causal graph is acyclic, bipartite and
has degree 3 and depth 2, then the ETH is false.

Proof. Consider the construction in the proof of Theorem 9. The
causal graph contains contains the following arcs:

• 〈fi, si〉 and 〈ti, si〉 for all i (1 ≤ i ≤ n);
• 〈fi, yj〉 for all i, j (1 ≤ i ≤ n, 1 ≤ j ≤ m) such that xi ∈ cj and

〈ti, yj〉 for all i, j (1 ≤ i ≤ n, 1 ≤ j ≤ m) such that xi ∈ cj .

This graph is bipartite and each yj variable has at most 3 incoming
arcs and no outgoing arcs. Similarily, each si variable has two in-
coming arcs and no outgoing arc. It also follows from Lemma 2 that
we can restrict the class Sd in the proof of Theorem 5 to instances
where each variable occurs at most 3 times. We can assume that the
SAT instance is preprocessed so variables which occur with only one
polarity are removed. Then each variable of type fi or ti has at most
two outgoing arcs to variables of type yj and one arc to variable si
and no incoming arcs. It follows that the graph has degree 3.

It can be analogously shown that also Theorems 5 and 7 hold when
restricted to instances where the causal graph is acyclic bipartite of
degree 3 and depth 2.

We then continue to some special types of causal graphs that have
been studied in the literature: out-stars (aka. forks), in-stars (aka.
inverted forks), directed-path graphs (aka. chains) and fences. It is
known that PSAT remains NP-hard when restricted to instances hav-
ing a causal graph of either of these types [4, 14, 19]. We can sharpen
these results by the following explicit lower bounds.

Theorem 25 If PSAT(SAS+2
1) can be solved in time 2o(v) or time

2o(a) for instances where the causal graph is an out-star, then the
ETH is false.

Proof sketch. There is a polynomial reduction from 3-SAT to
PSAT(SAS+2

1) with out-star causal graphs and m + 1 variables [4,
Lemma 5]. This can be used to make a proof analogous to the one
for Theorem 5.

Theorem 26 If PSAT(SAS+1
1) can be solved in time 2o(v) or time

2o(a) for instances where the causal graph is an in-star, then the ETH
is false.

Proof sketch. There is a polynomial reduction from 3-SAT to
PSAT(SAS+1

1) with in-star causal graphs and n variables [4,
Lemma 4].

Theorem 27 If PSAT(SAS+2
1) can be solved in time 2o(v) or time

2o(a) for instances where the causal graph is a directed-path graph,
then the ETH is false.

Proof sketch. There is a polynomial reduction from 3-SAT to
PSAT(SAS+2

1) with directed-path causal graphs and (2m+4)n vari-
ables [19, Proposition 5.5].

Theorem 28 If PSAT(SAS+1
1) can be solved in time 2o(v) or time

2o(a) for instances where the causal graph is a fence graph, then the
ETH is false.

Proof sketch. There is a polynomial reduction from 3-SAT to
PSAT(SAS+1

1) with fence causal graphs and 2m + 1 variables [4,
Lemma 7].

10 TIME VS. SPACE

The best upper bounds for hard problems usually assume algorithms
that do not run in polynomial space. For instance, the result of
Björklund et al. [7] that GRAPH COLOURABILITY can be solved
in time 2npoly(n) also requires using space 2npoly(n). They also
show an upper bound of time 2.2461npoly(n) under the additional
restriction of polynomial space [7, Proposition 7].

Our Observation 3 gives an upper bound of time O(3v) for mono-
tone planning, but this result also requires space O(3v), since it is
based on Dijkstra’s algorithm. Almost all heuristic search algorithms
also require exponential space. However, Depth-first search (DFS)
runs in time O(bd) and space O(bd) for implicitly represented graphs
[32], where b is the branching factor and d is the search depth. Since
the shortest plans are of length v at most, we can solve LOP(PSN∗∗+)
in time O(bv) and polynomial space. This is still heavily dependent
on the branching factor, so we will present an algorithm that also runs
in polynomial space and beats DFS for larger branching factors. To
do so, we first need to recapitulate some theory on ordered partitions.

The Stirling number
{
n
k

}
of the second kind denotes the number

of ways we can partition a set of size n into k parts. Each partition
of size k can be ordered in k! different ways, so the total number of
ordered partitions of all sizes of a set with n elements is F (n) =∑n

k=0 k!
{
n
k

}
= 1

2

∑∞
m=0

mn

2m
, which is known as the nth Fubini

number (or the nth ordered Bell number).

Theorem 29 LOP(PSN∗∗+) can be solved in time
O(F (v) · poly(||P||)) using polynomial space.

Proof. Let P = 〈V,A, I,G〉 be a PSN∗∗+ instance. Let
a1, a2, . . . , a� be a plan from I to some state s�, and let
s0, s1, . . . , s� be its state sequence. Then I = s0 ⊆ s1 ⊆ · · · ⊆ s�,
since all action effects are positive. Furthermore, if the plan is op-
timal, then all subset relations are strict, since ai is redundant if
si−1 = si. It follows that for each optimal plan ω = a1, a2, . . . , a�,
there is some sequence I = s0 ⊂ s1 ⊂ · · · ⊂ sk = V of
states such that s0, s1, . . . , s� is the state sequence of ω for some
� (1 ≤ � ≤ k). Hence, we can find all plans for P by enumerating all
such state sequences and check which ones have prefixes that corre-
spond to a plan. Also define the sequence δ = d1, d2, . . . , dk such
that di = si \ si−1 for all i (1 ≤ i ≤ k). We note that δ is a par-
tition on V , and it is furthermore an ordered partition since different
orders on its parts generate different state sequences. That is, there is
a one-to-one correspondence between the monotone state sequences
and the ordered partitions, so it is sufficient to enumerate the latter.

For each ordered partition d1, d2, . . . , dk, generate the corre-
sponding state sequence s0, s1, . . . , sk, where s0 = I and si =
si−1 ∪ di for all i. For all i from 0 to k do the following: If there
is no a ∈ A such that pre(a) � si−1 and di ⊆ eff(a), then break
and continue with the next partition. Otherwise, choose any such ac-
tion as action ai. If G � si, then break and remember i if it is the
shortest plan length so far.

Generating all partitions of the set {1, . . . , n} takes O(1) amor-
tized time per partition [35] and generating all permutations of
{1, . . . , n} takes O(1) time per permutation [34], both in polyno-
mial space. Hence, all F (n) ordered partitions of {1, . . . , n} can
be generated in time O

(
F (n)

)
. Checking each partition takes poly-

nomial time in the instance size, so our algorithm runs in time
O
(
F (v) · poly(||P||)) and uses only polynomial space, since it con-

siders only one partition at a time.

It is known that F (n) � n!
2(ln 2)n+1 [36] and that n! < (n

2
)n,
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so this algorithm will beat DFS for branching factors approximately
greater than v

2
. Furthermore, our algorithm does not even depend on

the branching factor.
For the general, non-monotone case, however, we probably cannot

hope for nearly as efficient algorithms under the polynomial-space
constraint. It may even be difficult to find any algorithm running in
polynomial space since the shortest plans may themselves be of ex-
ponential length in the general case. Exceptions exist in restricted
cases, though. Jonsson and Bäckström [26] report a class of planning
problems where the shortest solutions can be of exponential length,
but it is always possible to decide in polynomial time if there is a
solution or not. Jonsson [25] has further shown that it is even possi-
ble to generate a polynomial-size macro representation of a solution
in this case. However, deciding if there is a solution of a specified
length is NP-complete.

We do know, of course, that there must exist an algorithm for
LOP(SAS+) that runs in polynomial space, since the problem
is in PSPACE, but this does not tell us much about the actual
time bounds. Even if using an implicit representation of the state-
transition graph, most search algorithms may still use an exponen-
tial amount of memory. This applies even to depth-first search (since
there are planning instances with exponentially long shortest solu-
tions). By using Savitch’s theorem [33], the amount of memory can
be lowered. Savitch showed that there exists an algorithm AS that
takes a graph G = 〈U,E〉 as input and checks whether there ex-
ists a path from u ∈ U to v ∈ U of length k or less using space
O
(
log2(|U |)) and time |U |O(log k). The time bound did not appear

in Savitch’s article, but it is a well-known folklore result. The only
thing one has to keep in mind when using this time bound is that we
must be able to check whether two vertices are connected or not in
polynomial time (in the size of the graph). Problem PSAT can thus be
solved by asking if there is a plan of length k = |S| = 2|V |, i.e. by
solving LOP for this value of k. If we assume an implicit graph rep-
resentation (where vertex adjacency can be checked in p(||P||) time
for some polynomial p) we can thus solve PSAT in time

|S|O(log k) · p(||P||)
= |S|O(log |S|) · p(||P||) = (d|V |)O(log d|V |) · p(||P||)
= (d|V |)O(|V |) · p(||P||) = dO(|V |2) · p(||P||)

using space

O(log2 |S|) = O(log2 d|V |) = O(|V |2)

Savitch’s theorem is clearly also useful for problem LOP, since
checking whether there exists a plan of length k or less takes time
2O(|V | log k)) and uses space O(|V |2), which can be substantially
better than solving PSAT when k is moderately large.

We conclude by noting that the polynomial factor p(||P||) that we
have used to cover the time for checking the action set of an instance
P is sufficient also for verifying an action.

Note that Savitch’s theorem has been repeatedly applied to plan-
ning in the literature for proving membership in PSPACE. However,
it has never been used to derive explicit bounds on time and space in
the way we do.

11 DISCUSSION

Most of the planning classes that we prove not solvable in subex-
ponential time (unless the ETH is false) are already known to be
NP-hard. Our results are stronger in the following sense: even if it is

the case that P �= NP, it is possible that an NP-hard problem can be
solved in subexponential time (there are superpolynomial subexpo-
nential functions). Our results rule out that possibility (assuming the
ETH holds).

For problems that are not solvable in polynomial time, one usually
resorts to alternative methods, for instance, polynomial-time approx-
imation algorithms or heuristic search, in the latter case hoping that
this will perform satisfactorily in practice. However, with modern
computers it is becoming increasingly popular to consider also algo-
rithms running in superpolynomial time. Preferrably, such an algo-
rithm should still run in subexponential time. It is then interesting to
know whether such an algorithm can exist or not, thus asking for the
type of lower-bound results we derive in this paper. There are even
cases where one considers algorithms, and even approximation algo-
rithms, that require low-order exponential time [12]. In such cases,
the performance is very sensitive to the constant in the exponent, re-
quiring results in the style of our Theorem 12.

Our analysis of LOP is similar in spirit to recent analyses of lower
bounds for CSP [27, 13]. It is interesting to note that they prove a
case where CSP can be solved in time 2o(n) if m ∈ o(n), but cannot
be solved in time 2o(n) if m ∈ Ω(n) and the ETH holds, where n
is the number of variables and m the number of constraint tuples.
Although there are no immediate connections, this is a sharp easy-
hard transition of the same type indicated by Theorem 10 contrasted
with the results in Section 7.

Obviously the ratio a/v is crucial here. This has similarities to the
phenomenon of phase transitions for NP-complete problems, which
was pioneered by Cheeseman et al. [10] and has remained an ac-
tive research area ever since. For instance, in the case of k-SAT, the
phase transition occurs at a particular value of the ratio m/n for each
k such that instances around this ratio are likely to be hard and the
probability of hard instances is very low for other values of the ra-
tio. While the vast majority of work in this area has been empirical,
the exact values of the phase transitions for k-SAT have been deter-
mined analytically [2]. There is also a previous result on this type of
phase transitions for planning, but with a very broad transition region
rather than a sharp transition [9]. However, these are all transitions of
the type easy-hard-easy. Our transition is of the type easy-hard and
is, thus, more similar to the type of transitions for resolution proofs
studied by Achlioptas et al. [1].

The upper bounds of time 3v for monotone planning and time 4v

for the general case might, perhaps, suggest that the latter case is
much harder, especially since monotone planning is NP-complete
but the general case is PSPACE-complete. However, it is dangerous
to draw any such conclusions, as Stearns [37] has pointed out:

Although PSPACE-completeness is stronger evidence of
hardness than NP-completeness, there is no reason to believe
that PSPACE-complete problems are harder in the sense that
they require more time.

While upper-bound results sometimes take space into account,
lower-bound results generally refer to time only, making no addi-
tional restrictions on space. Having seen in Sec. 10 how additional
space restrictions can affect the upper bound, it is a valid question to
ask if additional space bounds could also strengthen the lower-bound
results upwards.
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