
Interval-Based Relaxation for General Numeric Planning

Enrico Scala and Patrik Haslum and Sylvie Thiebaux and Miquel Ramirez
The Australian National University and NICTA

Canberra, ACT, Australia
firstname.lastname@anu.edu.au

Abstract. We generalise the interval-based relaxation to sequen-
tial numeric planning problems with non-linear conditions and ef-
fects, and cyclic dependencies. This effectively removes all the limi-
tations on the problem placed in previous work on numeric planning
heuristics, and even allows us to extend the planning language with
a wider set of mathematical functions. Heuristics obtained from the
generalised relaxation are pruning-safe. We derive one such heuristic
and use it to solve discrete-time control-like planning problems with
autonomous processes. Few planners can solve such problems, and
search with our new heuristic compares favourably with them.

1 Introduction

The ability to express quantitative information is crucial to realisti-
cally model many planning domains, in particular domains that in-
volve interaction with physical systems. Examples include positions
in time and space, quantities such as pressure, flow or volume, as
well as resources.

Planning with unbounded numeric variables is significantly harder
than classical planning with only finite-domain variables. Not only
can the values of variables grow unboundedly, but even finite values
may be reachable only asymptotically. For example, repeatedly ap-
plying the effect x = (x+y)/2 brings x arbitrarily close to y, whilst
repeatedly applying the pair of effects x = (x+y)/2 and y = x×y
can either diverge to ±∞ or converge to 0 or 1, depending on the
starting values of x and y. In general, numeric effects can be state-
dependent: The effect on x of the update x = (x+ y)/2 depends on
the current value of both x and y. Behaviours of this kind complicate
reachability analysis, and therefore the construction of informative
heuristics for numeric planning. Because of this, work on heuris-
tic search for numeric planning has focused on restricted forms of
numeric conditions and effects, such as linear expressions. Starting
from the MetricFF planner [17], the majority of numeric planning
heuristics have (implicitly or explicitly) relied on an interval relax-
ation, which approximates reachable values with upper and lower
bounds. Only recently did Aldinger et al. [1] examine the interval-
based relaxation theoretically, and show that asymptotic reachability
is decidable for the full range of numeric effects expressible with
arithmetic expressions (built using +, −, × and ÷), as allowed in
PDDL 2.1 [11]. However, even their analysis is restricted to prob-
lems with only a very limited form of cyclic dependencies between
variables. The example above, in which the effect on both x and y
depend on the value of both variables, is outside their scope.

In this paper we show that interval-based relaxed reachability
analysis is feasible, and produces informative heuristic guidance,
for a much wider range of numeric planning problems, involving

cyclic dependencies as well as expressions using standard mathemat-
ical functions such as exponentiation, square root, and others. This
is achieved by two innovations: an asymptotic relaxed reachability
analysis that works also with cyclic dependencies among additive
numeric effects, and a syntactic transformation of the problem which
eliminates non-additive state-dependent effects, at the cost of induc-
ing an additional relaxation.

Finally, we apply the resulting heuristic to solve time-discretised
planning problems with autonomous processes, which feature com-
plex numeric conditions and non-linear effects. Few planners have
the expressive range to attempt these problems and heuristic search
using our generalised interval-based relaxation heuristic is more ef-
ficient than comparable alternatives.

Figure 1: The ball moves along the plane, and is accelerated by tilting
the plane. The goal is to make it fall into the winning hole on the
right. If the ball falls off the left side, the game is lost.

2 Motivating Example

Let us consider the numeric domain represented in Figure 1: A ball,
at position x on a plane, moves with velocity v, possibly falling from
one of the sides. x = 0 at the centre, and position and velocity is
positive to the right. The change in velocity is a function of the incli-
nation α of the plane, accounting for gravity (g) and drag along the
surface, proportional with a constant μ to the speed squared (like in
the car domain by Bryce et al. [3]). The drag always acts in the oppo-
site direction to the current velocity. An action models the discretised
movement of the ball over δt units of time, changing variables x and
v as follows:

x = x+ vδt

v =

{
v + (g sinα− μv2)δt when v ≥ 0

v + (g sinα+ μv2)δt when v < 0

The left hand side is the updated value of x and v. δt is a constant and
determines the precision of the discretisation. The other two actions
increase and decrease α by a constant amount, by tilting the plane.

ECAI 2016
G.A. Kaminka et al. (Eds.)
© 2016 The Authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/978-1-61499-672-9-655

655

The goal is to bring the ball into the hole on the right; this is achieved
when x exceeds a given threshold.

This domain has both cyclic dependencies (i.e., a self-cycle in
the second numeric effect) and non-linear effects (e.g., the velocity
squared). Earlier work on defining heuristics for numeric planning
has focused on linear effect expressions [17, 5, 13] or on acyclic
planning tasks [1]. By removing these two assumptions, we address
this class of numeric planning problems. Our key concern is the re-
laxation that underlies heuristics.

3 Notation and Background Material

We focus on sequential numeric planning with ground actions, cor-
responding to PDDL 2.1 level 2 [11] but extended with additional
interpreted mathematical functions.

A state of the system is a partial assignment over propositions P
and real-valued numeric variables X ; V = P ∪ X . A propositional
condition is a positive literal, while a numeric condition is a tuple
〈ξ,�, 0〉 where � ∈ {≥, >,=} and ξ is a numeric expression re-
cursively defined as follows: (I) a rational constant is an expression;
(II) a variable x ∈ X is an expression; (III) if ξ′ is an expression,
then so are ξ ⊕ ξ′ where ⊕ ∈ {+,−, ·,÷}, ξn , where n ∈ N,
bξ and logb(ξ), where b ∈ R and b > 0, and

√
ξ. Other functions

(e.g., trigonometric functions, nth root, etc) can also be supported,
as long as they are functions in the mathematical sense, and com-
putable; for the interval-based relaxation, functions must also have an
interval extension (cf. next section). We write val(x, s) and val(ξ, s)
for the value of variable x and expression ξ in state s, respectively.
The value of a variable not assigned in s is undefined. Undefinedness
propagates through expressions, in the sense that the value of a func-
tion is undefined whenever any of its arguments is. Some functions
have restricted domains, and their result is undefined when any of
their arguments is outside its domain; for example,

√
x is undefined

whenever x < 0. A condition 〈ξ,�, 0〉 is unsatisfied whenever the
value of ξ is undefined [11]. With slight abuse of notation, we write
x ∈ ξ to mean that variable x appears in expression ξ.

Let C be a set of propositional and numeric conditions. We write
s |= C when state s satisfies all conditions in C.

Definition 1 (Numeric Action). A numeric action a is a pair
〈pre(a), eff(a)〉 where pre(a) is a set of propositional and numeric
conditions and eff(a) is a set of effects. A classical effect is of the
form p =
 or p = ⊥ (p ∈ P). A numeric effect is x◦= ξ, where
◦=∈ {=,+=,−=} and ξ is an expression over variables in X .
eff(a) cannot contain multiple effects on the same variable.

We use subscripts to distinguish propositional and numeric parts
(e.g., effnum(a) is the set of numeric effects of a). For an effect e,
lhs(e) denotes the affected variable, op(e) the effect operator (=,
+= or −=) and rhs(e) denotes the right-hand side expression.

Definition 2 (Numeric Planning Problem). A numeric planning
problem is a tuple Π = 〈s0,A,G,V〉 where V = P ∪ X is the
set of variables, s0 is an assignment to variables in V that is com-
plete for variables in P , A is a set of numeric actions, and G is a set
of propositional and numeric goal conditions.

An effect is called state-dependent if the right-hand side is not a con-
stant. Increase and decrease effects can be reformulated as assign-
ments (e.g., x+= ξ as x = x + ξ). However, we will see that this
distinction is, surprisingly, crucial, because increase and decrease ef-
fects are additive operations, which assignments are, in general, not.

Given an action a, we partition effnum(a) into sets incr(a), decr(a)
and assn(a) of increase, decrease and assign effects, respectively.
We also write const assn(a) for the set of state-independent propo-
sitional and numeric assignment effects of a (e.g., x = 5).

Action a is applicable in state s iff s |= pre(a), and its execution
results in state s′ = succ(s, a) such that ∀x ∈ V : val(x, s′) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

rhs(e) if ∃e ∈ const assn(a) : lhs(e) = x

val(rhs(e), s) if ∃e ∈ assn(a) : lhs(e) = x

val(x, s) + val(rhs(e), s) if ∃e ∈ incr(a) : lhs(e) = x

val(x, s)− val(rhs(e), s) if ∃e ∈ decr(a) : lhs(e) = x

val(x, s) otherwise (Frame Axiom)

Definition 3 (Plan). A plan π for Π = 〈s0,A,G,V〉 is a se-
quence of actions a0, ..., an−1 from A such that each action in π
is applicable in the state resulting from the application of its pre-
decessors, i.e., s0 |= pre(a0), succ(s0, a0) |= pre(a1), etc, and
succ(sn−1, an−1) |= G. A plan π is said to be optimal if, among all
valid plans, it has a minimal number of actions.

3.1 The Interval-Based Relaxation

Numeric planning is harder than propositional planning, and unde-
cidable in the general case [15]. To obtain useful heuristics we must
look for relaxations of the model that yield a computationally ef-
fective representation of the task to solve. Moreover, it is important
to look for relaxations generating heuristics that are adequate for the
task they are relaxing [17]. We consider only relaxations (and heuris-
tics) that are pruning-safe. A relaxation is pruning-safe if it has no
solution only when the original (non-relaxed) problem is also un-
solvable; that is, it overestimates the space of reachable states.

An idea pursued in previous work in both classical and numeric
planning is that of abstracting away negative effects of the actions,
considering only their positive contribution towards achieving a goal
or precondition. In propositional planning this amounts to ignoring
the delete effects of actions. In general, it implies a possibilistic re-
laxed interpretation, in which variables accumulate sets of possible
values monotonically [14]. Applying this principle to numeric vari-
ables, which have unbounded domains, requires a compact represen-
tation of the set of values; this is provided by the interval-based rep-
resentation [1, 23]. Pioneered by Hoffman [17]1, the interval-based
relaxation [1] is the underlying principle used in nearly all heuris-
tics for numeric planning [17, 13, 5, 6]. An exception is the work
of Eyerich et al. [9] on the Temporal Fast Downward system, which
extends the context-enhanced additive heuristic [16] to temporal and
numeric planning. However, this heuristic does not account for indi-
rect effects: action a indirectly affects variable x when the effect e
of another action b on x depends on a variable y (in rhs(e)) which
is changed by a. Ignoring indirect effects in numeric planning makes
any reachability analysis not pruning-safe (The context-enhanced ad-
ditive heuristic is also not pruning-safe, but for a different reason.)

For ease of presentation, we will in the following describe only the
relaxation of the numeric part of the problem. The propositional part
is handled by standard delete-relaxation. The two parts interact only
in the relaxed satisfaction of conjunctive conditions.

1 Note that Hoffman does not exploit the interval representation explicitly,
but uses a transformation to Linear Normal Form where variables’ domains
can only increase. This can be interpreted as constructing an enclosure, by
lower and upper bounds, of the possible values attainable by a variable.

E. Scala et al. / Interval-Based Relaxation for General Numeric Planning656

3.1.1 Definition of the Interval-Based Relaxation

In the interval-based relaxation (IBR), a state assigns each (defined)
numeric variable to an interval of the real line, representing the set
of values that the variable can possibly attain. We will refer to this as
a relaxed state, s+. A closed interval x = [x, x] denotes the lower
bound x and upper bound x a variable x can attain. An open interval
x = (x, x) is analogous but with x and x excluded; i.e., (x, x) =
{z : x < z < x, z ∈ R}. A mixed bounded interval mixes open
and closed bounds. Closed interval binary operations between two
intervals x and y are defined as follows [23]:

• x+ y = [x+ y, x+ y];
• x− y = [x− y, x− y];
• x× y = [min(xy, xy, xy, xy),max(xy, xy, xy, xy)];
• x÷y = [min(x÷y, x÷y, x÷y, x÷y),max(x÷y, x÷y, x÷

y, x÷ y)] (if 0 /∈ y otherwise one of the bounds diverges [23]).

Binary operations between open or mixed bounded intervals fol-
lows the same rules; if an open and a closed bound contribute to the
new interval bound, the result is open.

The interval extensions of other mathematical functions in the
planning language (such as xn,

√
x, bx, logb(x)) can be similarly de-

fined. The requirement is only that the result of the interval operation
contains every value that could result from applying the function to
any value(s) in the argument interval(s). To illustrate, we show the
interval power, exponentiation and square root. Let x be an interval
[x, x], n ∈ N and b ∈ R, b > 0. We have:

xn =

⎧⎪⎨
⎪⎩
[xn, xn], if x > 0 or n is odd
[xn, xn], if x < 0 and n is even
[0,max(xn, xn)], if 0 ∈ x and n is even

bx = [bx, bx] for 0 < b < 1

bx = [bx, bx] for b ≥ 1

√
x =

⎧⎪⎨
⎪⎩
[
√
x,
√
x], if x ≥ 0

[0,
√
x], if x ≥ 0

undefined, otherwise

The square root of a negative value is not a real number. Hence, the
interval square root is the result of restricting the argument interval
to the range over which the function is defined, and undefined only
if there is no such value. All three extend to open or mixed bounded
intervals: for integral power, inequalities in the two first cases are
non-strict; for the square root, the second case applies when x > 0.

Expressions, conditions and actions in the IBR are syntactically
the same as in the original PDDL problem; what changes is their
interpretation. In particular, the value of an expression ξ in a relaxed
state s+, denoted val+(ξ, s+), is the interval computed using interval
operations as defined above. Note that mathematical identities are
not necessarily preserved by the relaxed interpretation. For example,
if val+(x, s+) = [−2, 2], then val+(x × x, s+) = [−4, 4], while
val+(x2, s+) = [0, 4]. A numeric condition 〈ξ,�, 0〉 is satisfied in a
relaxed state s+ if val+(ξ, s+) is defined and there exists some value
v ∈ val+(ξ, s+) such that v�0. A set of conditions (that can appear
both in the goal or action preconditions) is relaxed satisfied iff each
condition in the set is. We write s+ |= C when s+ satisfies C.

An action a is applicable in s+ if s+ |= pre(a). In the IBR, action
effects can only extend the set of possible values of a variable. To
define the relaxed successor state, we need the convex union:

Definition 4. The convex union between two closed intervals x, y is
x � y = [min{x, y},max{x, y}]. The extension to open or mixed

bounded intervals uses open/closed bounds according to those used
for x and y.

Definition 5 (Relaxed Action Effects). Let s+ be a relaxed state
and a an action such that s+ |= pre(a). The successor state s+1 =
succ+(s+, a) is such that ∀x ∈ X , val+(x, s+1) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

val+(x, s+) � [rhs(e), rhs(e)] if x = lhs(e), e ∈ const assn(a)
val+(x, s+) � val+(rhs(e), s+) if x = lhs(e), e ∈ assn(a)
val+(x, s+) � (val+(x, s+) + val+(rhs(e), s+))

if x = lhs(e), e ∈ incr(a)
val+(x, s+) � (val+(x, s+)− val+(rhs(e), s+))

if x = lhs(e), e ∈ decr(a)
val+(x, s+1) otherwise

Applying actions’ effects in the IBR can only monotonically in-
crease the variables’ intervals, because the convex union of two inter-
vals contains both. Hence, this relaxation, just like the classical delete
relaxation, is also monotonic with respect to condition satisfaction:
what is true before an action is applied is also true after its execution.
This property ensures that the relaxation over-approximates the set
of reachable conditions, and therefore that it is pruning-safe.

Given a numeric planning problem Π, we denote its relaxation by
Π+. The initial state s+0 of Π+ assigns to each variable x ∈ V the
unit interval [val(x, s0), val(x, s0)], if x is defined in s0.

3.1.2 Asymptotic Behavior of Additive Numeric Effects

In numeric planning, there may be no upper bound on the length of
the action sequence needed to reach a state (or condition). Because
of this, Aldinger et al. [1] considered asymptotic reachability in the
interval-based relaxation, i.e., the variable intervals that are reachable
in the limit of an infinite repetition of actions’ effects. The following
proposition is slightly adapted from their work. (We present it for
increase effects only; the result for decrease effects is analogous.)

Proposition 1. Let s+ be a relaxed state, x ∈ X a numeric variable,
a ∈ A an action such that s+ |= pre(a), and x+= ξ an effect of
a. Let s+lim be the relaxed state reached in the limit by applying a an
unbounded number of times in s+. Then the upper and lower open
bounds of x in s+lim are as follows:

• if ∃y′ > 0 ∈ val+(ξ, s+) then x =∞ in s+lim ; and
• if ∃y′ < 0 ∈ val+(ξ, s+) then x = −∞ in s+lim .

In other words, if the right-hand side of an increase effect affecting
variable x can attain a positive value, no matter how small, then the
value of x can be made arbitrarily large by repeated application of the
action. This follows directly from the monotonicity of the interval-
based relaxation, since if the interval of the right-hand side of the
effect, ξ, contains a positive value in s+ then it contains that value
in any successor state. The rate of increase is not constant in general,
but always greater or equal to the rate in the first state.

The following notion of dependency between numeric variables
was defined by Aldinger et al. We repeat it here because it is neces-
sary for stating precisely how we generalise their work.

Definition 6 (Slightly adapted from Aldinger et al. [1]). A numeric
variable x1 is directly dependent on a numeric variable x2 in task
Π if there exists an action a in A with a numeric effect 〈x1◦= ξ〉
(◦=∈ {=,+=,−=}) such that x2 ∈ ξ.

E. Scala et al. / Interval-Based Relaxation for General Numeric Planning 657

A variable may depend on itself. However, formulating effects
with increase and decrease operators can avoid certain cycles. For
example, the assignment x = x+ 1 causes x to self-depend, but the
equivalent increase effect x+= 1 does not.

Aldinger et al. [1] proved that asymptotic reachability in the
interval-based relaxation is decidable for planning problems where
the dependency relation over the numeric variables has no cycle. In
this paper, we remove this restriction. Moreover, we also show that
the IBR can support an extended set of mathematical functions in
the planning language, such as exponentiation and square root, which
have not been supported in previous work.

We approach the derivation of a heuristic based on the interval
relaxation in two parts: First, we present a procedure to determine if
a condition is asymptotically reachable in the relaxed problem; only
if that is the case do we then compute an estimate of the number of
actions required to achieve it. The second part treated in Section 5.3.

4 The Additive Effects Transformation

Our generalisation starts from the observation that one reason why
Aldinger et al. [1] required the acyclic dependency assumption is the
presence of state-dependent non-additive action effects. Non-additive
effects can be transformed into additive ones by simple reformulation
which preserves their semantic in the real (non-relaxed) problem. An
assignment x = ξ can be rewritten as x+= ξ − x. The expressions
x+ ξ − x and ξ are equivalent in real arithmetic. Formally:

Definition 7 (Additive Effects Transformation). The additive trans-
formation of an effect e is

• τ(e) := lhs(e)+= rhs(e)− lhs(e) if op(e) is an assignment and
rhs(e) is non-constant; and

• τ(e) := e otherwise.

The additive effects transformation of a numeric planning problem
Π is obtained by applying τ to all effects of all actions in Π, and is
denoted by τ(Π).

Note that this tranformation does not change constant (numeric or
propositional) assignments. We refer to the interval-based relaxation
applied to the additive effects transformation of Π as the Additive
Interval-Based Relaxation (AIBR) of Π.

Definition 8. The additive interval-based relaxation of a numeric
planning problem Π is the interval-based relaxation of τ(Π), and is
denoted by Π++.

A natural question is what is the relation between AIBR and
IBR? AIBR is an over-approximation of IBR: The space of reach-
able states in Π++ includes that of Π+. This implies that heuris-
tics based on the the AIBR are also pruning-safe. The inclusion
is a simple consequence of how the interval arithmetic is defined:
x ⊆ x + y − y for any intervals x, y, and consequently z � x ⊆
z � (x+ y − y), for any z. To see how the AIBR can overestimate
(asymptotic) reachability, consider a very simple planning example
with two actions a = 〈∅, x = y〉 and b = 〈∅, y = 1〉 and a state
s = 〈x = 0, y = 0〉. In the IBR, the (asymptotically) reachable
value of x is the interval [0, 1]. Applying the additive effects trans-
formation to a we get τ(a) = 〈∅, x+= y − x〉. From Proposition 1
it is easy to see that the asymptotically reachable value of x is now
[0,∞). Applying b we have val+(y, succ+(s+, b)) = [0, 1], and,
since intervals can only grow, 0 ∈ val+(x, succ+(s+, · · ·)). Hence
the right-hand side of the additive effect (y − x) includes 1, and ap-
plying the action repeatedly achieves arbitrary large values of x. Of

course, if the task does not include any state-dependent assignment
effects, the set of reachable states is exactly the same.

The transformation addresses only partially the problem, since
cyclic dependencies can still occur. Crucially, however, those depen-
dencies are only between additive effects.

5 From Numeric Actions to Supporters and the
Asymptotic Relaxed Planning Graph

As observed in the previous section, we can identify the asymptotic
implications of additive numeric effects on a variable by evaluating
the sign of its right-hand side. The case of constant assignments (x =
k where k is a constant) is simpler as these are idempotent; repeated
application of such effects does not change their initial effect.

A difficulty arises when the possible value of the right-hand side
of some numeric effect depends on the state in which the effect is
applied, since this state depends on the sequence of actions that were
executed before it. As noted by Aldinger et al. [1], this is particularly
problematic when the planning problem has cyclic dependencies. In
this case there is no a-priori ordering of actions that is guaranteed to
produce the complete set of reachable values. If, on the other hand,
the dependency relation is acyclic, it suffices to apply the asymptotic
effect of each action once, in order of the dependency relation.

5.1 Supporters Set

State-dependent numeric effects can be interpreted as a compact way
of expressing conditional effects. Each of these conditional effects
depends on the specific value of the right hand side of the effect,
which in turn depends on the sequence of actions done before. The
main idea of our asymptotic reachability analysis is to make explicit
the conditions for such indirect effects to occur through the use of
auxiliary actions called “supporters”.

Each action a is split into a set of supporters, each modelling one
possible asymptotic outcome of an effect of a. As observed in Propo-
sition 1, an additive numeric effect can extend the interval of the
affected variable to ∞ or −∞. The idea of supporters is to model
explictly the condition enabling these asymptotic behaviors. A sup-
porter is similar to an action, with the difference that it can express a
numeric interval effect x = (x,∞) or x = (−∞, x). As per Defini-
tion 5, this effect updates the state to the convex union of the interval
x in the current state and (x,∞) or (−∞, x), respectively.

Definition 9 (Supporters of Action a). Each additive numeric effect
e ∈ effnum(a) generates two supporters e+ and e−: If op(e) is +=,
then e+ has the precondition pre(a)∪{〈rhs(e), >, 0〉} and the effect
lhs(e) = (x,+∞); the precondition of e− is pre(a)∪{〈rhs(e), <
, 0〉} and the effect lhs(e) = (−∞, x). The supporters generated
by a decrease effect are defined analogously, but with the left-hand
sides of the effects swapped. A constant assignment effect x = k
generates only one supporter, with precondition pre(a) and the effect
unchanged.

Note that in actual numeric planning, assigning an interval is not
possible. The supporters are used only in the AIBR to compactly
represent application of an effect an arbitrary number of times.

From the set of actions A we generate a set of supporters Ω using
this mechanism. The size of Ω is no more than 2n|A|, where n is the
maximum number of effects per action. Supporters have no cyclic
dependencies, according to Definition 6, because their effects are all
constant assignments. The dependencies are instead captured by their

E. Scala et al. / Interval-Based Relaxation for General Numeric Planning658

preconditions. We can therefore compute asymptotic relaxed reacha-
bility in a manner analogous to relaxed planning graph construction
over Ω, as described in the next section.

5.2 Asymptotic Relaxed Planning Graph

This section describes the construction of the Asymptotic Relaxed
Planning Graph (ARPG), G, from the set of supporters. As in the
classical relaxed plan graph construction, G is a digraph of alternat-
ing interval (corresponding to “fact”) and supporter (corresponding
to “action”) layers. The construction of G starts with the unit inter-
vals corresponding to the initial state of the planning task, and ex-
pands it with a supporter layer containing all supporters in Ω whose
preconditions are relaxed satisfied, followed by a new interval layer
updated with the effects of the applied supporters. The process iter-
ates until either the goal condition is relaxed satisfied in the last inter-
val layer, or no new supporters can be added (in which case the goal is
unreacheable). Algorithm 1 formalises the process. With slight abuse
of notation, we write succ+(s+,S) for the (relaxed) state that results
from simultaneously applying all actions in supporter set S. This is
well-defined since all supporters are constant assignments and the
successor state is defined by taking the convex union.

Algorithm 1: Asymptotic Relaxed Planning Graph (ARPG)

Input: Π++

Output: Is G reachable?
1 Ω = supporters of A.
2 s+ = s+0 .
3 S = {a ∈ Ω : s+ |= pre(a)}
4 while S �= ∅ and s+ � G do

5 s+ = succ+(s+,S)
6 Ω = Ω\S
7 S = {a ∈ Ω : s+ |= pre(a)}
8 return s+ |= G

Figure 2 shows an example of the conversion from actions to sup-
porters, and a sketch of the asymptotic reachability analysis.

Proposition 2 (Termination). The ARPG construction terminates.

Proof Sketch: The set of supporters is finite, so, since repetitions
are not allowed, the number of layers that can be built is finite. In
the worst case, the construction will terminate when all applicable
supporters have been tried.

Proposition 3 (Safeness). If ARPG(Π++) returns False, then G is
unreachable in Π.

Proof Sketch: Π++ is a proper relaxation of Π. Assume G is reach-
able, by a plan π = b0, ..., bm that takes s0 to a state s′ such that
s′ |= G. The plan is executable in Π++ (by monotonicity) and the
goal is relaxed satisifed in its final state. From the relaxed execution
of π, we can extract the corresponding supporters that are used; as
these are relaxed applicable, the ARPG construction returns True.

5.3 Heuristic Estimation

The ARPG construction decides only whether G is reachable, in the
relaxed problem, by application of some, arbitrarily large, number
of actions. To compute an estimate of how many actions, we can
proceed to build an RPG in the standard fashion, applying (sets of)

Figure 2: Left: Cyclic dependency (≺) example. Action a depends
on y which is modified by b; b depends on x which is modified
by a. Right: Supporters generated for the two actions. Dependen-
cies between supporters are due to the added preconditions (e.g.,
pre(e+(x)) = {y > 0}). If s0 = 〈x = −5, y = −5〉, support-
ers in the first layer are e+(y) and e−(x). Asymptotically all values
of x and y are reachable both in the AIBR and in the original prob-
lem. If we want to reach goal y < −100 in the AIBR we have to
apply first e+(y) (i.e., using action b) then e+(x) (i.e., action a), and
then e−(y) (i.e., action b again).

relaxed applicable actions until the goal is reached and then counting
how many were needed. Algorithm 2 shows the relaxed plan com-
putation procedure, for the sake of completeness. Because the goal
has already been determined to be relaxed reachable, this process is
guaranteed to terminate in a finite number of steps.

Algorithm 2 simply counts the number of actions applied before
the goal is achieved. This is the heuristic estimate used in our experi-
ments. Although it can obviously overestimate the size of the relaxed
plan substantially, it is very simple to implement and still provides ef-
fective heuristic guidance, as shown in Section 7. The heuristic could
be made more accurate by removing fromA′ actions that do not con-
tribute to achieving G, in a way that is similar to relaxed plan extrac-
tion. How to do that efficiently and in a principled way, as well as
how to find an admissible estimate, is a question for future work.

Algorithm 2: Compute AIBR Estimate

Input: Π++

Output: Integer
1 A′ = ∅
2 s = s+0
3 Loop

4 foreach a ∈ A do

5 if a is relaxed applicable in s then

6 s = succ+(s, a)
7 A′ = A′ ∪ {a}
8 if s |= G then

9 return |A′|

6 Planning with Autonomous Processes in PDDL+

Sequential numeric planning is a crucial building block to support-
ing more expressive planning formalisms, such as planning with au-
tonomous processes as captured in PDDL+ [12]. In the theory of
waiting, proposed by McDermott [22] for planning with autonomous
processes, instantaneous actions (the agent decisions) are interleaved
with waiting (environment evolution). During a waiting action, the
agent observes the evolution of the world for a potentially unbounded

E. Scala et al. / Interval-Based Relaxation for General Numeric Planning 659

amount of time. During this time, the state changes according to the
accumulated, additive, effect of active processes. The activation of
processes is determined by their conditions on the evolving state.

In principle, the amount of time an agent must wait in a given
situation can be arbitrarily large or small. Waiting too long it may
miss a window of opportunity to take some action whose precon-
dition is only briefly satisfied, or the dynamics of the world may
change as its evolution triggers a change in the set of active pro-
cesses. Fixing the minimum waiting time to a constant δt results in
a time-discretised approximation of the model, and a sequential nu-
meric planning problem. The domain presented in Section 2 is an
example of such a model. As shown by Löhr et al. [20, 21], this ap-
proximation is good enough to solve a number of challenging realis-
tic hybrid control problems. The “discretise-and-validate” approach
to planning with processes, exemplified by the UPMurphi planner
[8], also has planning for a time-discretised model at its core, and
embeds it into an iterative scheme in which the proposed plan is
checked against the continuous-time model and the discretisation re-
fined if it is found to be invalid. Importantly, the time-discretisation
of a process model typically results in a sequential planning prob-
lem with complex numeric conditions and effects. UPMurphi solves
this problem by blind search; a recently developed successor system,
DiNo [24], uses a heuristic based on relaxed planning graphs.

We focus here on planning for time-discretised models with in-
stantaneous actions, processes and global constraints2. A global con-
straint is a boolean formula over propositional and numeric condi-
tions that must be satisfied in every state along the plan trajectory,
and they are equivalent to always constraints of PDDL. We use the
global constraint mainly to model the equivalent of PDDL+ events.
In many PDDL+ domains, events restrict particular plan trajecto-
ries by leading to dead-end states (e.g., blowing up the engine in the
CAR domain), playing a role similar to global constraints. Whether
events do in fact make the language more expressive than global con-
straints alone can is an open question, but they are known to be the
cause of significant modeling and computational complications (e.g.,
infinite cascades of events [10]).

We solve the sequential numeric planning problem with a best-first
search using the AIBR heuristic. Because the AIBR is monotonic,
applying the effect of processes in the relaxed problem becomes op-
tional rather than mandatory (i.e., a “may” instead of a “must” se-
mantic). Likewise global constraints, which are always satisfied in
the state being evaluated, cannot be invalidated in the relaxed prob-
lem. In spite of these approximations, the heuristic provides effective
guidance, as shown in the next section.

7 Experiments

To evaluate the effectiveness of the AIBR heuristic, we perform ex-
periments on a set of time-discretised PDDL+ domains involving
autonomous processes and global constraints. We did not consider
IPC numeric planning benchmarks. These have only simple (linear
or constant) conditions and effects, which are already known to be
handled, in most cases quite effectively, by heuristics based on the
interval relaxation. Next, we present the setting and domains used,
then a summary of results, an in-depth analysis for selected domains,
and a comparison with two state of the art numeric planners.

2 As observed by Fox et al. [12], durative actions can be compiled away
using two instantaneous actions modeling the start and the stop of a process,
which in turns captures the continuous effects of the durative action.

7.1 Setting

We implemented a numeric planner using best-first search on f(n) =
g(n)+h(n), where h(n) is the AIBR heuristic. As in McDermott’s
planner [22], branching is on both (sets of) instantaneous action(s)
and waiting. The waiting time is fixed to a constant δt. The succes-
sor state of the waiting realises the cumulative effect of all processes
active at that particular moment. The planner is correct and complete
for the time-discretised problem; of course, like UPMurphi [8] with-
out the validation, the approach is incomplete for the continuous-
time PDDL+ semantics (e.g., we can miss opportunities during the
δt), and can produce invalid plans as we do not check zero-crossings
within the waiting time (e.g., there could be other processes trig-
gered, or global constraints invalidated in that interval). Since our
heuristic can overestimate the actual distance to the goal, it is inad-
missible and can produce suboptimal plans.

The implementation is in JAVA 1.8, and experiments were run on
Ubuntu 14.04 on an Intel I5-vPro with 8 GB of memory. The plan-
ner is called Expressive Numeric Heuristic Search Planner (ENHSP),
and will be publicly available.

7.2 Planning Domains

The large majority of our test domains require reasoning about
autonomous non-linear processes. They include the well-known
PDDL+ domains CAR [12] and GENERATOR [3], in both their lin-
ear and non-linear versions, the CONVOYS domain introduced by
McDermott [22], and two new domains INTERCEPT and HVAC. To
these, we add a challenging pure sequential numeric planning do-
main called COMPLEXPOURING.

Both CAR domain versions involve instantaneous accelerate/de-
celerate actions and processes updating the distance driven and speed
of the car. The non-linear version features a new process, which is
active when the speed v is positive and additionally accounts for the
drag k, according to dv

dt
= −k · v2. Like Bryce et al. [3], we test

the scalability of our approach by increasing the maximum accelera-
tion/deceleration (from 1 to 8) to enlarge the branching factor .

GENERATOR describes power generation by an engine which con-
sumes fuel and may need (concurrent) refilling from various fuel
tanks. The linear [12] and non-linear [3] versions both have turn-
on/turn-off generator and start/stop refuelling actions but different
refuelling dynamics. In the non-linear case, the rate of increase of
the fuel level f caused by refuelling is given by df

dt
= α.t2 where

α is a constant and t the refuelling time. Problem instances differ by
increasing the number of tanks needed to achieve the goal of gen-
erating power for a given duration. Dead-ends appear whenever the
planner delays refuelling for too long or when refueling is impossible
due to the lack of space in the generator’s tank. As in previous work
[3], the largest instance has 8 tanks, all of which are needed.

CONVOYS features a set of convoys that must reach specific loca-
tions starting from their initial positions. The time needed by convoy
c to move between two positions a and b on the map depends on the
speed vc of the convoy and on the inverse of the square of the traf-
fic Ta,b in that specific road segment. There is a process per convoy
and road segment, which updates the distance travelled according to
dDc,a,b

dt
= − vc

T2
a,b

as long as the segment end point is not reached.

Instances in this domain involves up to 8 locations and 4 convoys.
INTERCEPT involves a vampire v and a bird b in the two-

dimensional space Q2. Two processes describe their movement,
given as a function of the speed in the two dimensions. The task is
to launch the vampire (initially stationary) at the right time and with

E. Scala et al. / Interval-Based Relaxation for General Numeric Planning660

the right speed for it to intercept the bird. This happens when the
Euclidean distance between the two is lower than a given radius r,
which is encoded using the constraint (xv−xb)

2+(yv−yb)
2 ≤ r2.

Instances scale according to the initial distance between the vampire
and the bird, and by the radius defining the goal condition.

HVAC is an abstraction of a ventilation, air-conditioning and cool-
ing (HVAC) control problem [19]3. For each zone l in a building,
two HVAC control parameters, the supply air flow rate aSA

l and sup-
ply air temperature T sa

l , must be adjusted from time to time so as to
ensure that the zone temperature Tl meets given constraints. These
constraints reflect the schedule of activities occuring at the zone. In
our abstraction, there are instantaneous actions to increase/decrease
TSA
l and aSA

l by a given amount. A single process updates the actual
time, and a process per zone computes the rate of temperature change
in this zone as dTl

dt
= β.aSA

l .(TSA
l − Tl), where β is a constant.

Time in this representation is implicitly captured by the progress of
the plan, in contrast to the MIP formulation presented in [19], where
each variable is explicitly located on the timeline. Moreover, since
nonlinear optimisation solvers struggle with this problem, the MIP
formulation linearises the bilinear terms in the above equation. In-
stances in this domain are generated by increasing the number of
scheduled activities from 1 to 16.

COMPLEXPOURING is the problem of filling buckets using water
tanks arranged in a complex directed network. Each tank and bucket
has a given capacity and initial volume of water. This is a purely
sequential problem which has no processes but just an action that en-
ables the transfer of water from one container to a connected one.
The transfer is modelled by Toriccelli’s law which states that the vol-
ume V of water left in a tank with an initial volume U of water after
t seconds with an open tap is V = (−kt−√U), with t ∈ (0,

√
U
k

),
where k is a constant that depends on the cross-sectional area of the
tank, the size of the tap, and gravity [18]. In our formulation this law
is discretised to model the change happening after 1 second. In or-
der to achieve the goal, we may have to transfer water from different
tanks into intermediary ones, and so on. In this domain, we study the
complexity arising from two different sources, leading to two differ-
ent instance sets. In the first set, tanks arranged in a flat structure all
feed into a single bucket and we vary the number of tanks from 2 to
10. In the second set, we vary the structure of the network of tanks,
which includes from 3 to 10 tanks and 1 or 2 buckets to fill.

7.3 Summary of Results

Table 1 reports number of instances (I), coverage (C), run time (T),
plan length (PL), and number of expanded nodes (Exp) for all the
domains described in the previous section. The planner was able to
solve all the instances provided.

Domain I C T PL Exp
CAR 8 8 0.1 17.2 30.6
CAR (NL) 8 8 0.3 20.8 353.9
GENERATOR 8 8 3.7 1005.5 1006.5
GENERATOR (NL) 8 8 4.9 1005.5 1006.5
CONVOYS 6 6 25.1 23 935
INTERCEPT 10 10 1.5 114.4 2750.9
HVAC 16 16 16.5 110.6 9235.4
COMPLEXPOURING 17 17 4.9 14.1 1693

Table 1: Overall picture of the experimental results. PDDL+ domains
ran with δt = 1 (apart from INTERCEPT, which requires δt = 0.1 to
make the instances solvable). Time-out is set to 1800 seconds. Plan
Length includes both actions and waiting actions.

3 We only consider the control part of the problem and ignore external influ-
ences such as the temperature of adjacent rooms.

With Heuristic Guidance Blind Search
Exp Eval PL T Exp PL T

1 34 68 20 0.10 359209 20 96
2 73 148 20 0.14 NA NA NA
3 388 948 21 0.34 NA NA NA
4 448 1002 21 0.36 NA NA NA
5 472 1158 21 0.39 NA NA NA
6 472 1158 21 0.39 NA NA NA
7 472 1158 21 0.41 NA NA NA
8 472 1158 21 0.41 NA NA NA

(a) Non-Linear CAR

With Heuristic Guidance Blind Search
Exp Eval PL T Exp PL T

1 1003 1005 1002 2.70 NA NA NA
2 1004 1009 1003 3.05 NA NA NA
3 1005 1014 1004 3.77 NA NA NA
4 1006 1020 1005 4.60 NA NA NA
5 1007 1027 1006 5.01 NA NA NA
6 1008 1035 1007 5.93 NA NA NA
7 1009 1044 1008 6.86 NA NA NA
8 1010 1054 1009 7.65 NA NA NA

(b) Non-Linear GENERATOR

With Heuristic Guidance Blind Search
Exp Eval PL T Exp PL T

1 8 7 7 0.02 7 7 0.06
2 12 22 6 0.05 64 6 0.15
3 386 688 13 0.54 NA NA NA
4 1389 1651 15 1.85 NA NA NA
5 16 30 8 0.05 269 8 0.27
6 7 12 6 0.05 66 6 0.17
7 26 72 11 0.86 88661 11 30.2
8 204 742 14 1.03 NA NA NA
9 309 1131 22 1.01 NA NA NA

10 50 144 11 0.19 88563 11 19.7
11 429 1606 16 1.15 NA NA NA
12 408 1889 19 1.50 NA NA NA
13 1163 6097 21 3.25 NA NA NA
14 18356 109777 24 51.79 NA NA NA
15 5933 33500 22 19.38 NA NA NA
16 35 171 14 0.82 NA NA NA
17 50 363 10 1.22 NA NA NA

(c) COMPLEXPOURING

Table 2: Detailed results

The low average number of expanded nodes in the domain is in-
dicative of heuristic effectiveness; the next section provides more de-
tails. Many domains have non-linear dependencies among numeric
variables, and some require (implicit) temporal reasoning (e.g., GEN-
ERATOR, INTERCEPT). The heuristic is more inaccurate in these do-
mains, especially HVAC which has many global constraints. Since
AIBR is monotone, it does not capture negative effects on them.

7.4 In-Depth Analysis

Next, we present a more in-depth analysis of heuristic guidance for
a subset of domains. AIBR informativness and impact on plan
length is evaluated comparing it with blind search (f(n) = g(n),
i.e, uniform-cost search). We used uniform-cost search rather than
uninformed depth-first search since the latter only solved a few in-
stances of one domain (with plans 10–100 times longer). Since, the
search space is usually infinite, depth-first search often fails to termi-
nate also for solvable instances.
Car domain. Table 2a shows the number of expanded (Exp) and
evaluated nodes (Eval), plan length (PL) and run-time (T) for the
non-linear instances. The increasing spectrum of possible accelera-
tions in instances 1 to 8 only marginally affects ENHSP’s runtime.
Blind search finds minimal-length plans, but is not able to scale up
beyond instance 1. The plans produced using the heuristic, whilst
suboptimal, are still of a good quality.
Non-linear Generator. Table 2b shows data for each instance. Here
the number of necessary plan steps depends on the time the genera-
tor has to run, and on the number of tanks that must be used. With a

E. Scala et al. / Interval-Based Relaxation for General Numeric Planning 661

shortest plan length of about a 1000 actions and an average branch-
ing factor of 3 actions, even the smallest instance has a huge search
space. Despite this, the AIBR heuristic solves all instances, whilst
blind search solves none. Surprisingly, the heuristic overestimation
favours states where fewer actions are possible (a tank can be used
just once in this domain). This causes planner to favour refuelling
over waiting, thus avoiding the generator running out of fuel.
Complex Pouring. Table 2c reports the data for each instance. In-
stances 1-9 belong to the set of instances with a flat network struc-
ture (see Subsection 7.2) The largest instance (instance 9) has a larger
volume of liquid to be poured so as to increase the length of plans. In-
stances 10-16 involving a more complex network of tanks. The depth
of the network affects the length of plans. Blind search was able to
produce plans within the timeout but only for a subset of these in-
stances. This is because, except for the instances requiring more than
11 actions, the state space is small enough to be blindly explored.
Interestingly, none of the plans produced with the heuristics is longer
than the plan produced by blind search. It turns out that, despite its
inadmissibility, our heuristic leads to optimal plans in this domain.

ENHSP outperforms blind search on the other domains. Blind
search only solved instances from the linear version of CAR (ex-
panding on the average 387605 nodes), and 3 instances of CON-
VOYS (average expanded nodes: 10621).

7.5 Comparative Analysis

We compared ENHSP with dReal [3] and UPMurphi [8], both of
which follow the planning via model-checking paradigm. Neither of
them is strictly designed for sequential numeric planning, but they
were the closest comparable planners that we were aware of and that
were available at the time of writing. Another planner with similar
capabilities was proposed by Bajada et al. [2], and two more systems
for planning with non-linear processes have only recently become
available [4, 24]. Examining their comparative performance, and that
of ENHSP on newly proposed benchmarks [24], is a question for
future work.

Table 3 reports the planners’ runtimes on the CAR and GENER-
ATOR domains. The UPMurphi runtimes were obtained by running
the latest version of the planner4 in its standard configuration with a
discretisation step of 1 sec, on the same PDDL+ formalisation the
we use for ENHSP. The dReal runtimes are taken from Bryce et al.’s
paper [3]. This is because dReal does not support PDDL with pro-
cesses natively; a model-checking formulation of each instance has to
be written manually, which includes a mode for each possible combi-
nation of processes (note that there could be an exponential number
of modes to consider). We strived to make our PDDL+ formulations
as close as possible to those in the dReal distribution5.

dReal uses some heuristic guidance, but the heuristic is intended to
estimate the number of jumps between different modes, and ignores
the numeric part of the problem. UPMurphi automatically translates
PDDL+ to the model-checking formulation, but unlike dReal, it uses
blind search and is not guided by any heuristic. Table 3 shows that the
AIBR heuristic provides better search guidance than the mechanisms
employed by these two planners.

However, these results should only be considered as indicative,
rather than as a fair comparison. There are several differences be-
tween the three planners which must be taken into account. For in-
stance, dReal is an approximate planner where preconditions and

4 Available at http://github.com/gdellapenna/UPMurphi
5 http://github.com/danbryce/dreal

Instance 1 2 3 4 5 6 7 8
CAR

ENHSP 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
dReal 1.1 1.2 1.2 1.2 1.2 1.3 1.3 1.2
UPMur. 0.3 0.6 1.0 1.5 1.8 2.1 2.3 2.6

NLCAR
ENHSP 0.1 0.1 0.3 0.4 0.4 0.4 0.4 0.4
dReal 16.7 16.7 16.3 16.8 16.6 16.8 17.4 16.6
UPMur. 4.9 42.7 84.3 113 139 171 187 204

GENERATOR
ENHSP 1.9 2.6 2.7 3.1 4.0 4.4 5.1 5.6
dReal 3.1 15.6 134.7 1699 TO TO TO TO
UPMur. 113.4 MO MO MO MO MO MO MO

NLGENERATOR
ENHSP 2.7 3.1 3.8 4.6 5.0 5.9 6.9 7.7
dReal 12.8 71.6 1696 TO TO TO TO TO
UPMur. 128 MO MO MO MO MO MO MO

Table 3: Comparison of the run times (in sec.) of ENHSP, dReal and
UPMurphi. Each instance can end with a solved situation, timeout
(TO), or out of memory (MO).

goals are satisfied up to an approximation error. ENHSP and UP-
Murphi may also produce unsound plans, but for a different reason,
due to discretisation of time and lack of zero-crossing check. To rem-
edy this would require introducing a plan validation step, and subse-
quent refinement of the discretisation [8]. dReal only finds plan with
a bounded number of steps, specified in advance, so in general must
be run several times, with increasing step bounds. The CPU times in
Table 3 are for a single run only, in which the planner is given the
optimal number of steps for each problem. (CPU times for the whole
process, on some instances, can be found in [4].) In contrast, ENHSP
does not require any a priori bound.

8 Conclusions

The interval-based relaxation is the natural extension of the principle
of monotonic (delete-free) relaxation to numeric planning [17], and
the basis of most numeric planning heuristics [13, 6, 7, 5, 24]. How-
ever, these apply only to restricted problems, for example having lin-
ear conditions and effects. Up to now, it has not been clear if (asymp-
totic) reachability in the relaxation is even decidable for unrestricted
problems, which may have cyclic dependencies [1]. We have shown
that relaxed reachability is computable, through a novel asymptotic
relaxed planning graph formulation, for problems with additive ac-
tion effects, and moreover that non-additive state-dependent effects
can be removed by a syntactic problem transformation, at the price of
a further relaxation. The resulting additive interval-based relaxation
(AIBR) and heuristics derived from it are pruning-safe.

Sequential numeric planning problems with complex non-linear
effects arise naturally as time-discretisations of planning in the pres-
ence of autonomous continuous-time processes [8, 20], and efficient
and general numeric planners are a key building block for support-
ing more expressive forms of planning. Evaluation of a planner using
a heuristic obtained from the AIBR on various non-linear sequen-
tial planning problems and time-discretised PDDL+ problems with
global constraints showed it to be competitive with some planners
designed for such problems [3, 8].

In addition to extending the comparison to other recent planners,
our future work is aimed at understanding how to make the heuristic
more accurate and/or better integrated with the search engine used,
for example through the extraction of helpful actions [17].

Acknowledgements This work is supported by ARC project
DP140104219, “Robust AI Planning for Hybrid Systems”. NICTA
is funded by the Department of Communications and the Australian
Research Council through the ICT Centre of Excellence Program.

E. Scala et al. / Interval-Based Relaxation for General Numeric Planning662

REFERENCES

[1] Johannes Aldinger, Robert Mattmüller, and Moritz Göbelbecker, ‘Com-
plexity of interval relaxed numeric planning’, in Proc. of KI 2015: Ad-
vances in Artificial Intelligence, pp. 19–31, (2015).

[2] Josef Bajada, Maria Fox, and Derek Long, ‘Temporal planning with
semantic attachment of non-linear monotonic continuous behaviours’,
in Proceedings of the Twenty-Fourth International Joint Conference on
Artificial Intelligence, IJCAI 2015, Buenos Aires, Argentina, July 25-
31, 2015, pp. 1523–1529, (2015).

[3] Daniel Bryce, Sicun Gao, David J. Musliner, and Robert P. Goldman,
‘Smt-based nonlinear PDDL+ planning’, in Proceedings of the Twenty-
Ninth AAAI Conference on Artificial Intelligence, January 25-30, 2015,
Austin, Texas, USA., pp. 3247–3253, (2015).

[4] Michael Cashmore, Maria Fox, Derek Long, and Daniele Magazzeni,
‘A compilation of the full PDDL+ language into SMT’, in Workshops
at the Thirtieth AAAI Conference on Artificial Intelligence, (2016).

[5] Amanda Jane Coles, Andrew Coles, Maria Fox, and Derek Long,
‘Colin: Planning with continuous linear numeric change’, Journal of
Artificial Intelligence Research (JAIR), 44, 1–96, (2012).

[6] Amanda Jane Coles, Andrew Coles, Maria Fox, and Derek Long, ‘A
hybrid LP-RPG heuristic for modelling numeric resource flows in plan-
ning’, Journal of Artifificial Intelligence Research (JAIR), 46, 343–412,
(2013).

[7] Amanda Jane Coles, Andrew I. Coles, Maria Fox, and Derek Long,
‘Forward-chaining partial-order planning’, in Proc. of International
Conference on Automated Planning and Scheduling (ICAPS-10),
(2010).

[8] Giuseppe Della Penna, Daniele Magazzeni, Fabio Mercorio, and
Benedetto Intrigila, ‘Upmurphi: A tool for universal planning on
PDDL+ problems’, in Proceedings of the 19th International Confer-
ence on Automated Planning and Scheduling, ICAPS 2009, Thessa-
loniki, Greece, September 19-23, 2009, (2009).

[9] Patrick Eyerich, Robert Mattmüller, and Gabriele Röger, ‘Using the
context-enhanced additive heuristic for temporal and numeric plan-
ning’, in Proceedings of the 19th International Conference on Auto-
mated Planning and Scheduling, ICAPS 2009, Thessaloniki, Greece,
September 19-23, 2009, (2009).

[10] Maria Fox, Richard Howey, and Derek Long, ‘Validating plans in the
context of processes and exogenous events’, in Proceedings, The Twen-
tieth National Conference on Artificial Intelligence and the Seventeenth
Innovative Applications of Artificial Intelligence Conference, July 9-13,
2005, Pittsburgh, Pennsylvania, USA, pp. 1151–1156, (2005).

[11] Maria Fox and Derek Long, ‘Pddl2.1: An extension to pddl for express-
ing temporal planning domains’, Journal of Artificial Intelligence Re-
search, 20, 61–124, (2003).

[12] Maria Fox and Derek Long, ‘Modelling mixed discrete-continuous do-
mains for planning’, J. Artif. Intell. Res. (JAIR), 27, 235–297, (2006).

[13] Alfonso Gerevini, Ivan Saetti, and Alessandro Serina, ‘An approach to
efficient planning with numerical fluents and multi-criteria plan qual-
ity’, Artificial Intelligence, 172(8-9), 899–944, (2008).

[14] Peter Gregory, Derek Long, Maria Fox, and J. Christopher Beck, ‘Plan-
ning modulo theories: Extending the planning paradigm’, in Proceed-
ings of the Twenty-Second International Conference on Automated
Planning and Scheduling (ICAPS 2012), (2012).

[15] Malte Helmert, ‘Decidability and undecidability results for planning
with numerical state variables’, in Proc,. of International Conference
on Artificial Intelligence Planning and Scheduling (AIPS 2002), pp. 44–
53, (2002).

[16] Malte Helmert and Hector Geffner, ‘Unifying the causal graph and ad-
ditive heuristics’, in Proc. of the 18th International Conference on Au-
tomated Planning and Scheduling (ICAPS), pp. 140–147, (2008).

[17] Jörg Hoffmann, ‘The metric-ff planning system: Translating ”ignoring
delete lists” to numeric state variables’, Journal of Artificial Intelli-
gence Research (JAIR), 20, 291–341, (2003).

[18] Richard Howey and Derek Long, ‘VALs progress: The automatic val-
idation tool for PDDL2.1 used in the international planning competi-
tion’.

[19] BoonPing Lim, Menkes van den Briel, Sylvie Thiébaux, Scott Back-
haus, and Russell Bent, ‘Hvac-aware occupancy scheduling’, in Pro-
ceedings of the Twenty-Ninth AAAI Conference on Artificial Intelli-
gence, January 25-30, 2015, Austin, Texas, USA., pp. 679–686, (2015).

[20] Johannes Löhr, Patrick Eyerich, Thomas Keller, and Bernhard Nebel,
‘A planning based framework for controlling hybrid systems’, in Pro-

ceedings of the Twenty-Second International Conference on Automated
Planning and Scheduling (ICAPS), (2012).

[21] Johannes Löhr, Patrick Eyerich, Stefan Winkler, and Bernhard Nebel,
‘Domain predictive control under uncertain numerical state informa-
tion’, in Proceedings of the Twenty-Third International Conference on
Automated Planning and Scheduling (ICAPS), (2013).

[22] Drew V. McDermott, ‘Reasoning about autonomous processes in an
estimated-regression planner’, in Proceedings of the Thirteenth Inter-
national Conference on Automated Planning and Scheduling (ICAPS
2003), June 9-13, 2003, Trento, Italy, pp. 143–152, (2003).

[23] Ramon E. Moore, R. Baker Kearfott, and Michael J. Cloud, Introduc-
tion to Interval Analysis, SIAM, 2009.

[24] Wiktor Piotrowski, Maria Fox, Derek Long, Daniele Magazzeni, and
Fabio Mercorio, ‘Heuristic planning for PDDL+ domains’, in Proceed-
ings of the Twenty-Fifth International Joint Conference on Artificial In-
telligence (IJCAI), New York (NY), USA, July 9-15, (2016). Shorter
version in Proc. AAAI-16 Workshop on Planning for Hybrid Systems.

E. Scala et al. / Interval-Based Relaxation for General Numeric Planning 663

