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Abstract. Flight routes are paths calculated on a network of
waypoints representing 3D-coordinates. A common approach
is first to calculate a path in a 2D-network, taking into account
feasibility constraints, and then to optimize the altitude of the
flight.

We focus on the problem of determining the vertical trajec-
tory defined by an altitude at each waypoint of a 2D-route.
The cost of an airway depends, directly, on fuel consump-
tion and on flying time, and, indirectly, on weight and on
weather conditions. These dependencies invalidate the FIFO
property, which is commonly assumed for time-dependent net-
works. Moreover, the amount of fuel at departure has an im-
pact on the weight and depends on the length of the route.
This, therefore, needs to be decided upon for our problem.
We aim at minimizing the total cost.

We study path-finding algorithms, both exact and heuristic,
that we iterate in a line-search procedure to decide the fuel
amount at departure. We use real-life data for the experimen-
tal analysis and conclude that on those data the assumption
of the FIFO property remains a good heuristic choice.

1 Introduction

Flight route optimization aims at finding 3D-paths for aircraft
in airway networks that minimize the total cost determined by
fuel consumption and flying time. It has evident financial and
environmental impacts. Airway networks can be huge, due to
the added dimension compared with road networks, and side
constraints complicate further the problem. Moreover, most
of the constraints are determined by a central control insti-
tution, e.g., Eurocontrol in Europe and FAA in USA, and
change rapidly with time in order to take traffic conditions
into account. Therefore, the common practice is to determine
the precise flight route a few hours before take-off. For this
to be feasible and bring any advantage, the route determina-
tion must be very fast, say on the order of a few seconds. If
necessary, the route can then be adjusted during the flight by
real-time optimization, considering more up-to-date informa-
tion.

In this work, we focus on the off-line flight route optimiza-
tion. The common approach in the industry has been to de-
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compose the problem: first a shortest, feasible 2D-route is
found and, afterwards, the vertical trajectory is optimized.
The problem consists in finding a shortest path in a network,
made of nodes that are the combination of waypoints, de-
cided by the 2D-route returned by the first stage, and the
allowed altitudes for the aircraft. Arcs connect nodes belong-
ing to consecutive waypoints in the 2D-route if the distance
between them is enough for the aircraft to make the corre-
sponding altitude transition.

The costs of flying through these arcs depend on two re-
sources: time and fuel. There is a direct dependency because
airlines calculate the total cost as a weighted sum of time and
fuel consumed and there is an indirect dependency, because
the amount of time and fuel consumed depends on the per-
formance of the aircraft, which is influenced by the weather
conditions, which in turn depend on time, and by the weight,
which in turn depends on the fuel consumed. A consequence of
these dependencies is that the cost and the feasibility of each
arc are not statically given but become known only when the
path to a node is determined. The situation is further compli-
cated by the fact that the amount of fuel at departure is not
given, since it is also a decision that can be optimized. The
main issue for solution algorithms is that due to the indirect
dependencies and the impossibility to wait at the nodes (even
at the departure airport), the total cost is a non-monotone
function with respect to time and fuel. That is, it may be dis-
advantageous to arrive cheaply at a node (and hence earlier or
lighter than other alternatives) as it may preclude the chance
to obtain high savings in the remaining path due to favorable
weather conditions developing somewhere at a later time. For
labeling algorithms, this means that a total ordering of the
labels at the nodes is not available.

In the latest years, a considerable amount of research has
focused on engineering aspects of algorithms for the shortest
path problem (SPP) on large road networks [1]. Huge im-
provements have been achieved using several advanced tech-
niques, most of which we deem inapplicable in our setting
due to arc costs being unknown before starting the search. In
time-dependent SPP arc costs can change with the time of
traversal. In one of the first solution attempts to solve this
variant, Bellman’s iterative algorithm [3] was extended by
performing finitely many iterations for any possible starting
time [5]. A property of the problem that demarcates solution
approaches is the FIFO property. If a network is FIFO, then a
vehicle leaving a node cannot be overtaken by another vehicle
leaving the same node at a later stage. The SPP in time-
dependent FIFO networks is polynomially solvable [9], while
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the problem becomes NP-hard for non-FIFO networks [12]. A
variation of the FIFO property, which we will continue to refer
to as FIFO, can be formulated also for the vertical trajectory
problem that we study here. However, in general this prop-
erty does not hold for this problem. Most of the literature has
focused on FIFO networks. In [4], the authors present an ex-
tension for FIFO networks that results in significant speed-up
over earlier Dijkstra approaches. In [6], a lower bound on the
cost from each node to the goal, for use as the heuristic in A∗,
is calculated in a preprocessing step by backwards breadth-
first search assuming the fastest possible speed on each arc.
In [2], travel time profile queries are discussed, where the de-
parture time at the source can be shifted at convenience, in
a similar fashion as we can decide the amount of fuel to em-
bark at departure. The shortest path with time-dependencies
in non-FIFO networks has so far been disregarded in the liter-
ature. Articles discussing a problem similar to ours appeared
only in specialized literature (see e.g., [13]).

We study the classical shortest path methods, breadth-
first[11][10], Dijkstra[7] and A∗[8] search, modified to take
resource dependencies into account. We compare their per-
formance in terms of quality and running time. In particu-
lar, we set out to assess empirically whether it is important
in terms of final cost to work without the FIFO assump-
tion and whether it is computationally feasible. We design
a lower bound for A∗. Under the FIFO assumption we show
that this A∗ search runs faster than Dijkstra’s algorithm while
still producing optimal solutions under the assumption. Then,
we show that the A∗ approach in [6] but without the FIFO
assumption leaves the search computationally infeasible. To
improve running time we introduce an upper bound to prune
path extensions. We are able to conclude that for the real
life data, on which we based our study, the increased scrutiny
obtained by relaxing the FIFO assumption does not pay off.

Our work is in collaboration with the industrial partner
Aviation Cloud (AC) A/S, a Danish company, whose core
business is in flight route planning. The company is inter-
ested in an algorithm that can solve the problem very fast,
within a few seconds, since it must be used as an aiding tool
for flight route planning in an interactive setting. Differently
from other sources, e.g., [13], that used the Base of Aircraft
Data, an open source database provided by Eurocontrol, our
experimental analysis is conducted on data from the specific
business case of Aviation Cloud. As common in the sector,
aircraft manufacturers supply airlines with look-up tables to
calculate the resource consumption of operating the aircraft.
Airlines then provide these data to Aviation Cloud. We in-
clude a comparison of the quality of our vertical trajectories
with the solution currently in use at Aviation Cloud.

2 Problem formulation

Airspaces in different areas of the world are represented by
2D networks, i.e., directed graphs D2D = (V2D, A2D). The
nodes in V2D represent waypoints defined by latitude and lon-
gitude coordinates. Altitude is not part of a waypoint descrip-
tion. The arcs in A2D represent feasible connections between
waypoints. A 2D (flying) route is an (s, g)-path in D2D rep-
resented by n waypoints plus a departure node (source) s
and an arrival node (goal) g, that is, R = (s, r1, . . . , rn, g),
s, ri, g ∈ V2D for i = 1..n, (ri, ri+1) ∈ A2D for i = 1..n − 1

and (s, r1), (rn, g) ∈ A2D.
In this work we assume that a 2D route R is given and we

want to optimize the vertical trajectory. Aircraft may only
cruise at specific (standard) flight levels that may differ from
area to area. Hence, at each waypoint ri, i = 1..n, of R we
associate a set of flight levels F1, . . . , Fn. Thus, for a 2D route
R a vertical trajectory is an (s, g)-path in a layered, directed
graph DR = (VR, AR) where VR = {s}∪F1∪. . .∪Fn∪{g} and
AR = A0 ∪A1 ∪ . . .∪An−1 ∪An with A0 = {(s, f) | f ∈ F1},
An = {(f, g) | f ∈ Fn}, Ai = {(f, h) | f ∈ Fi, h ∈ Fi+1} for
i ∈ {1..n−1}. If we denote by m the size of all Fi for i = 1..n,
then |VR| = nm+ 2 = Θ(nm) and |AR| = (n− 1)m2 + 2m.

Connections in AR exist if allowed by regulations and by
the operational properties of the aircraft. Aircrafts can only
begin a climb or a descent at waypoints but they cannot climb
or descend more than at a given rate, which depends on the
current weight and weather conditions.

For these reasons the existence of connections in DR can be
determined only during the search for routes when the state
of the aircraft at a node becomes known.

We consider fuel and time as resources whose amounts are
nonnegative, i.e., they belong to R+. The resource consump-
tion accumulated at a node u in VR along an (s, u)-path P
in DR is a pair �τP = (τx

P , τ
t
P ) ∈ R

2
+, where the superscripts

x and t are used to denote the fuel and time components of
the resource cost. We assume known the departure time from
the starting airport, τ t

s , and unknown the amount of fuel at
departure, τx

s .
The changes in the resource consumption associated with

an arc (u, v) ∈ AR are given by resource extension func-
tion (REF) values and can be represented by the vector
�fuv = (fx

uv, f
t
uv) ∈ R

2
+. The components of a REF vector,

fx
uv and f t

uv, depend on the consumption of resources at the
tail node u of arc (u, v), which can be calculated from the
resource consumption accumulated along a path P from s
to u. Specifically, the fuel at u is τx

s − τx
P and the time is

τ t
s + τ t

P . The resource consumption accumulated along a path
P ′ = (s, . . . , u, v) that extends P by an arc (u, v) is thus

�τP + �fuv(�τP ).
For a given aircraft, REF values are looked up in a set of

tables of aircraft performance data that output the time and
fuel consumption for an arc using as inputs: (i) flight level
of starting and arrival point, (ii) weight, (iii) temperature
deviation, (iv) wind component, and (v) cost index. The cost
index, ρ, is an efficiency ratio between the time-related cost
and the fuel cost that airlines use to specify how to operate
the aircraft. It determines the speed of the aircraft and we
assume it given. It is decided at strategic level and it cannot
be changed during the planning phase. Note that for a path
P = (s, . . . , u) and an arc (u, v) ∈ AR, �fuv depends on τx

P

because of (ii) and depends on τ t
P because of (iii) and (iv).

A path P = (s, v1, . . . , vk) inDR is resource feasible if τx
P ′ >

0 for any prefix path of P ′ (there are no restrictions for τ t
P ′).

Both resources contribute to define the cost function c : AR×
R

2
+ → R+ for the network specified by DR. This function

represents the monetary cost of flying through an arc. Airlines
use the following formula (see e.g. [13]):

c((u, v), �τP ) = f t
uv(f

x
uv/f

t
uv + ρ).

For an arbitrary path P = (v1, . . . , vk) in DR with prefixes
Pi = (v1, . . . , vi), i = 2..k−1, its resource-dependent cost, cP ,
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is defined recursively as follows:

cP1 = 0
cPi = cPi−1 + c((vi−1, vi), �τPi−1)

We can now, more formally, define our vertical flight tra-
jectory optimization problem.

Definition 1 (Vertical flight trajectory problem). Given a
2D flight route R from a departure node s to an arrival node
g, the layered digraph DR = (VR, AR) constructed from R
and the available flight levels, a resource extension function
�f : AR → R

2, a cost function c : AR × R
2
+ → R+, and a

departure time τ t
s at s; find an amount of fuel at departure,

τx
s , and a resource feasible (s, g)-path P in DR such that cP
is minimum, i.e.,

cP = min{cQ | Q is an (s, g)-path in DR and τx
Q′ > 0

for any prefix Q′ of Q}.
Further we define two functions λ, μ : AR → R+ with the

following properties:

λ(u, v) ≤ c((u, v), �τP ) ∀ (u, v) ∈ AR,

�τP ∈ R
2
+, P = (s, . . . , u) ⊆ DR

μ(u, v) ≥ c((u, v), �τP ) ∀ (u, v) ∈ AR,

�τP ∈ R
2
+, P = (s, . . . , u) ⊆ DR

In other terms, λ is a lower bound and μ an upper bound
on the cost of arcs independent on resources. In our appli-
cation, the minimal cost can be given by any condition from
having the strongest tailwind and carrying as little fuel as
possible to having the strongest headwind and carrying the
maximum amount of fuel.2 The values of λ and μ for every
arc uv ∈ AR are calculated in a global preprocessing phase
and saved in a table. More precisely, for each arc, we look
up the corresponding distance and flight level change in the
aircraft performance data and try all conditions recording the
smallest and highest cost. Distances are discretized and the
value to look up is rounded down for calculating λ and up for
μ.

Using these functions, it is possible to calculate a lower and
an upper bound on the cost of a path from any node u ∈ VR

to the final node g, i.e.,

LB(u, g) = min

{ n∑
i=1

λ(vi, vi+1) | (v1, . . . , vn+1)

path in DR with v1 = u, vn+1 = g

}

UB(u, g) = max

{ n∑
i=1

μ(vi, vi+1) | (v1, . . . , vn+1)

path in DR with v1 = u, vn+1 = g

}

2 Indeed, although counterintuitive, high weight may imply low
cost, because it may allow descents at a speed otherwise impossi-
ble. Similarly, strong headwind may allow an airplane to climb or
descend larger differences in altitude for a given ground distance
than under normal conditions.

These values can be computed in a preprocessing stage by a
backwards breadth-first search.

An analogous of the FIFO property (or non-overtaking
property) for time-dependent networks can be defined for our
case as follows.

Definition 2 (FIFO property). For any pair of nodes, u, v ∈
VR, and any pair of paths, P = (s, . . . , u) and Q = (s, . . . , u),
arriving in u with �τP and �τQ, respectively, if cP < cQ then
cP + c((u, v), �τP ) ≤ cQ + c((u, v), �τQ).

However, this property may be violated in our case. In-
deed, if at node u an (s, u) path Q is more expensive than
an (s, u)-path P (cP < cQ) then, because of the way the cost
is calculated, it must be that Q has consumed more time or
more fuel or both. But in all these cases it is still possible
that there is a cheaper (s, . . . , u, v) path extending Q rather
than P if, for example, weather conditions at time τ t

s + τ t
Q

are more beneficial than at time τ t
s + τ t

P (and waiting is not
possible). Although the FIFO property seems not to hold in
theory it is unclear how much it is violated in the real data
and how much worse we do by assuming it as a heuristic. We
study therefore both the FIFO and the non-FIFO cases.

3 Algorithm design

The overall solution approach is sketched in Alg. 1. The main
function, findFuelAndPath(), performs a line search on the
amount of fuel at departure. We start with an initial guess
τx
s,0. Then at each iteration i, we call a path finding proce-
dure, findPath, with the current guess τx

s,i. If the amount of
fuel is sufficient to find a path in DR from s to g such that
τx
g,i ≥ 0, then we update our guess with τx

s,i+1 = τx
s,i − τx

g,i.
Otherwise, the path finding procedure continues with empty
tank until the goal is reached accumulating a negative τx

g,i,
which is used to update τx

s,i+1 yielding an increase of value.
We continue in this way until the tentative values converge,
that is, when the amount of fuel carried, but not spent, τx

g,i,
is less than 2% of the fuel at departure, τx

s,i. Depending on
the discretization of the aircraft performance data, the algo-
rithm might never reach this state. This can be counteracted
by increasing the threshold after several iterations. However,
this was not necessary in any of our tests.

The core of the findFuelAndPath function is the path
finding function findPath, which will be executed a few
times. We focus, therefore, on algorithms to make this func-
tion effective and efficient. We consider breadth-first search
and variants of best-first search. In Alg. 1 we give a general
template that remains valid for all the algorithms described
below. A label is a piece of information associated with a
node of DR and created when the algorithm first considers or
“opens” a node. The expansion of a label is the operation of
generating a new label for any node in DR reachable by an
arc going out from the node of the label under expansion.

The algorithm takes as input information about how to
construct the network, the REF tables, the amount of fuel at
departure and the departure time. It then works with a list
of open labels Q and in turn expands labels from this list.
The specific algorithms differ by how a label is selected for
expansion (line 13) and by how it is inserted in the list (line
20).
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1 Function findFuelAndPath(DR, �f, c, τ
t
s)

2 initialize τx
s,0

3 P, τx
g,0, τ

t
g,0 ← findPath(DR, �f, c, τ

x
s,0, τ

t
s,0)

4 i← 0
5 while τx

g,i ≥ 0.02 · τx
s,i do

6 P, τx
g,i, τ

t
g,i ← findPath(DR, �f, c, τ

x
s,i, τ

t
s,i)

7 τx
s,i+1 = τx

s,i − τx
g,i

8 i = i+ 1

9 return P, τx
s

10 Function findPath(DR, �f, c, τ
x
s , τ

t
s)

11 initialize the open list Q by inserting a label for the
departure node

12 initialize � with an empty path of cost infinite
13 while true do
14 �′ ← select a label from Q � Selection criterion

depends on algorithm
15 if (cost of �′ greater than cost of �) then break
16 if (�′ is at destination) and (cost of �′ smaller

than cost of �) then
17 �← �′

18 break

19 foreach reachable and allowed node at next
waypoint do

20 calculate cost of reaching node
21 add new label to Q � Insertion depends on

algorithm

22 return P, τx
g , τ

t
g of �

Algorithm 1: A general template for solving the flight tra-
jectory problem

When expanding a label on line 18 the possible reachable
nodes in the next layer are calculated. The distance between
consecutive waypoints is given by the 2D-route. It is then
possible to calculate which flight levels in the next layer can
be reached from a node by iteratively trying higher or lower
altitudes until the distance available is not enough for the
climb or descent. Using the aircraft performance data one can
retrieve the REF vector for each of the reachable altitudes and
for each node create a label. Since aircraft are allowed to reach
waypoints outside of standard flight levels, we might have to
add labels at nodes that are not associated with a standard
flight level. These labels are flagged, meaning that they can be
expanded only by a climbing or descending arc and not by a
cruising arc. Only two of these labels need to be created: one
at the maximum climb rate and one at the maximum descent
rate. Due to the discretization of the performance data, we
allow only one flagged label of each kind between each pair of
adjacent standard flight levels. The influence of these on the
graph is discussed in the analysis section.

Initial fuel amount The initial fuel, τx
s,0, which is used as

the first value in the line search, is calculated as follows. We
start with the maximum load and adjust its value using the
information gathered by a linear time greedy algorithm. This
algorithm expands only one label at each waypoint. The la-
bel expanded belongs to the next waypoint and has flight
level equal to the minimum between a given value h and the
highest flight level reachable given the current condition of

the aircraft. Whenever from a waypoint the destination node
cannot be reached at the steepest descent, the construction
backtracks to the previous waypoint and descends directly
to the destination from there. After such construction the
amount of fuel at departure is updated. The whole procedure
is repeated decreasing h through all standard flight levels and
halting when either 5 iterations are done or the fuel amount
left after the path is less than 2% of the value at departure. Fi-
nally, τx

s,0 is set equal to the value that generated the cheapest
route during this phase.

Breadth-first search All labels at one layer of DR (corre-
sponding to all the different flight levels at one waypoint of
the 2D route) are expanded before moving on to the next
waypoint. The order of expansion is not relevant. Using the
FIFO property, label domination occurs at each node: for mul-
tiple labels reaching a node only the cheapest one is kept. We
denote this baseline algorithm by F-BFS.

Dijkstra The open list is sorted according to the current cost
of the labels and the cheapest label is selected for expansion.
The FIFO property is used for label domination and an ad-
ditional list of closed nodes prevents expanding nodes more
than once. We denote this algorithm by F-Dijk.

A∗ The cost of labels is given by the sum of the cost of the
path to the corresponding node plus a heuristic cost of the
path from the node to the goal. The cheapest label is selected
for expansion and, under the FIFO assumption, at any given
node, the cheapest label dominates the others, which are then
removed from (or never added to) the open list. To guaran-
tee optimality the heuristic must be admissible, i.e., it never
overestimates the cost of reaching the goal, and consistent,
i.e., for every node u, the estimated cost of reaching the goal
from there is no greater than the cost of getting to a succes-
sor v plus the estimated cost from v to the goal. It is easy
to show that consistency is a stronger property as it implies
admissibility. We use the lower bounds LB defined in Sec. 2
that is thus both consistent and admissible. We denote this
algorithm F-A∗.

Non-FIFO A∗ Lifting the FIFO assumption in F-A∗ means
that labels cannot be dominated at nodes based purely on the
cost of reaching that node. This algorithm, denoted by nF-A∗,
does not use the FIFO assumption but it tries to reintroduce
some form of domination at nodes. It does so using the upper
bound UB (see Sec. 2). Let P and Q be two paths in DR

from s to u and let � and �′ be the corresponding labels in u,
respectively. The label �′ is dominated by �, if cQ > cP and
cQ − cP > UB(u, e) − LB(u, e). That is, it is impossible for
the most expensive label �′ to gain the difference in cost over
the cheapest label � in the remaining path to destination even
if in the case that �′ continues in the best possible way and �
in the worst possible way. When a new label is created it may
either be dominated by the currently cheapest label on that
node, or it may dominate any number of the more expensive
current labels at the node. Selection is still based on the cost
of the path plus the heuristic cost to the goal.

A∗ with an inconsistent and inadmissible heuristic
Experimental analysis shows that nF-A∗ lacks efficiency. The
heuristic via lower bound LB is quite weak and this is bad
when domination can occur only seldom. Further experimen-
tal observations suggested that using always maximum tail
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wind and zero fuel in the calculations of the λ values asso-
ciated to each arc led to a stronger LB bound and therefore
to faster searches. However, as explained earlier in this way
we cannot guarantee the consistency and admissibility of the
heuristic. However in order to be able to solve instances of a
considerable sizes, we introduce a variant of nF-A∗, which uses
the stronger bound. We denote it nF-iA∗. In Sec. 5 we analyze
the trade-off between computation speed and quality of the
solutions in the two variants.

We also tested the impact of the stronger lower bound in a
FIFO setting. F-iA∗ is a variant of F-A∗ that uses the stronger
bound, but also allows a node to be revisited, should a cheaper
label be discovered later. The point of allowing revisits is that
it causes inconsistency to no longer lead to suboptimal results.
This limits the amount of instances where the algorithm does
not find optimal solutions. However, it does not fix problems
caused by inadmissibility, so optimality is still not guaranteed.

4 Analysis

Data structures The open list is implemented as a red-black
tree. We maintain a pointer to the minimum cost label, so
we are able to retrieve it for expansion in amortized constant
time. Access is worst case constant time and rebalancing after
deletion is amortized constant time. To check domination,
when a new label is created, the label must be compared with
the minimum cost label at the same node. For F-Dijk and
F-A∗, there can only be a single label for each node and so they
can be stored in a simple list. For nF-A∗, we need to keep track
of the labels per node and be able to retrieve the minimum
and the maximum cost labels. This is achieved by keeping a
red-black tree of labels at each node with a pointer to the
minimum cost label and one to the maximum. The entries
in these trees have pointers to the corresponding entries in
the open list and vice versa. Then we are able to perform all
extractions and deletions in the two structures in amortized
constant time. Finally, the closed list is implemented as a
bitwise array with one bit per node.

FIFO algorithms Let n be the number of waypoints and
m the number of standard flight levels. Due to the domina-
tion in F-BFS, F-Dijk, and F-A∗, we can expand exactly one
label for each node at a standard flight level. Hence, the size
of the open list and the number of labels we can expand is
O(nm). Each expanded label can generate a maximum of m
additional labels. This means that we can create O(nm2) la-
bels overall. This is also true when taking into account the
climb- and descent-only labels. Whenever expanding a label
leads to the creation of either, it means that some number of
standard labels were not created. The expansion of the climb-
or descent-only label can then generate exactly that number
of additional labels, leading to a maximum of m+2 labels cre-
ated per expansion if both kinds are created. Due to allowing
revisits the labels created by F-iA∗ may increase exponentially
to O(mn).

Upon creation, a label must be inserted into the open list
and into the node list. F-BFS simply inserts it into a simple list
in O(1). F-Dijk, F-A∗ and F-iA∗ insert them into the red-black
tree that implements the open list in O(log(nm)). With our
datasets this cost is, however, dominated by the constant time
needed to expand a label, due to several look-ups to calculate
the cost of an arc.

Non-FIFO Since domination is restricted in both nF-A∗ and
nF-iA∗, the number of labels in the open list grows exponen-
tially with respect to the depth of the search, which we know
to be n. Thus, the open list can end up containing O(mn)
labels. The insertion of each label costs O(nlogm).

Preprocessing The A∗ algorithms need the values LB(u, g)
for all u ∈ VR. Since these values are resource independent we
calculate them once for every (s, g)-path query, that is, before
running findPath and hence it is unaffected by the repetition
of findPath. We do this by a backwards breadth-first search
in O((n ·m) · (n+m)). For nF-A∗ we also calculate UB(u, e)
for all u ∈ V . This latter needs additional O((n ·m) · (n+m))
for a backwards breadth-first search.

5 Experimental Assessment

All algorithms described above except nF-A∗ are heuristic al-
gorithms, that is, because of the FIFO assumption or the use
of inconsistent and inadmissible heuristics they do not guar-
antee to terminate with optimal solutions. We set out then to
assess the deterioration in quality of the heuristic algorithms
and their running time with the goal of suggesting the best
trade off. We also compare the quality of our solutions with
those found by AC, a fast greedy algorithm previously in use
at Aviation Cloud.

We use real life data provided by Aviation Cloud. This data
consists of aircraft performance data, weather data forecast in
standardized GRIB2 format and 2D-routes provided by Avi-
ation Cloud’s route planner. The aircraft performance data
refers to one single aircraft and the standard flight levels are
from 0 to 48000 feet in intervals of 200 feet. The weather
data forecast are from three different days with intervals of
three hours and with varying top wind speeds (the strongest
wind speed recorded was 270 km/h). A specific test instance
(or query) is determined by the time of departure and the
2D-route. The same aircraft performance data and weather
conditions are shared by several instances. All tests were run
with a default of 5% contingency fuel. To account for fluctua-
tions in CPU time measurement, each instance was tested 15
times and only the fastest was recorded.

The instances have been grouped by the number of way-
points in the 2D-routes, varying from 11 to 50 with increments
of 1. This is the most important factor for the complexity of
the problem. For each different number of waypoints 30 routes
are available, arbitrarily chosen among the routes serviced by
Aviation Cloud. Overall we tested on 3600 instances, which
should be enough to guarantee that the visual differences be-
tween algorithms in the following analysis are statistically sig-
nificant.

All algorithms were implemented in C# and the tests were
carried out on a virtual machine in a cloud environment with
an Intel Xeon E5-2673 processor at 2.40Ghz and with 7GB
RAM. We introduced time limits for the non-FIFO algorithms
that were 30 seconds for nF-iA∗ and 10 minutes for nF-A∗.
nF-A∗ was able to solve instances only with less than 14 way-
points. FIFO A∗ algorithms used in the worst case 100 MB of
memory of which 90 MB was used to store the preprocessed
aircraft performance data. nF-iA∗ reached 500 MB when the
time limit was reached and nF-A∗ reached more than 5 GB in
several instances.
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Figure 1. Scatter plot of percentage gap to the best solutions on each instance.

Cost assessment We ran each algorithm i on each instance
j and recorded the cost returned by the algorithm, xij ,
and the cheapest cost found by any algorithm in our study
on an instance, x∗j . We then computed the percentage gap
yij = 100 · (xij − x∗j )/x

∗j. A scatter plot of this metric is re-
ported in Fig. 1. We observe that F-BFS, F-Dijk, and F-A∗ find
trajectories of exactly same cost. nF-A∗ also finds the same so-
lutions in the instances it is able to solve. These solutions are
also always the best except for one single instance where the
two non-FIFO algorithms find a better solution. This is the
only case out of 3600 where we observed that not assuming
the FIFO property is necessary to achieve better solutions.
For instances below 14 waypoints, where nF-A∗ terminated,
a gap equal to zero indicates that the solution is provably
optimal. For more waypoints the optimal solutions could be
better than those found in our experiments and hence the im-
pact of assuming FIFO might be more pronounced. Another
explanation for the low impact of the FIFO assumption can
be the low frequency of changes in our weather data. Given
more frequent changes, the impact might be more relevant. It
should also be noted that fluctuating weather conditions could
make the optimal route bumpy, and, therefore, unpleasant for
the passengers. Our algorithm could be adjusted to prevent
bumps however this turned out to be unnecessary in our tests
that resulted always in stable routes.

As expected, inconsistency and inadmissibility issues in
both F-iA∗ and nF-iA∗ seem to have a considerable impact
on the deterioration of solution quality. Finally, the solutions
we found with any algorithm in this study are better than
those of AC.

Computation cost assessment The running time of the whole
trajectory optimization algorithm comprises the time to carry
out preprocessing computations, where needed, and the time
to execute findPath until convergence. The number of calls
to findPath was in most of the cases two or three with peaks
of four or five with many waypoints. There is no significant
influence on this number by the algorithm used to implement
findPath, hence in the analysis that follows we consider re-
sults only on preprocessing and single runs of findPath. A
scatter plot of the number of opened and expanded nodes and
of the computation time in milliseconds is reported in Fig. 2.

It is evident from the figure that the number of labels
opened and expanded is much higher in non-FIFO algorithms.
As a consequence several runs do not terminate within the
time limit. For this reason we stopped prematurely running

nF-A∗ on instances with more than 14 waypoints. The use of
the inconsistent and inadmissible heuristic in nF-iA∗ was in-
stead effective. It reduces by a good margin the amount of
labels opened and expanded, and thus nF-iA∗ can solve also
the instances with high number of waypoints, although still
not all. This comes at the cost of suboptimal routes though.

We observe that F-Dijk opens fewer nodes than F-BFS but
expands about the same number of nodes and hence has al-
most the same running times. Optimal paths typically climb
to a high altitude and then cruise at that altitude for most
of their lengths. However, F-Dijk gets trapped expanding la-
bels of descending nodes, as these are almost always cheaper.
Whenever F-BFS opens a label, it only needs to insert it into
a list, whereas F-Dijk needs to add it to the red-black tree.
This fact has however no evident consequence on the running
time, which is anyway dominated by the calculation of the
cost of an arc and, hence, by the number of labels expanded.
F-A∗ opens and expands less nodes than F-Dijk and is there-

fore also slightly faster, even including the preprocessing time
required to do the backwards breadth-first search to find the
heuristic values. However, as mentioned earlier the bound is
not very strong and thus the decrease in search space is not
impressive. F-iA∗ reduces the search space by a much larger
margin, and is also considerably faster. Once again though,
this comes at the cost of suboptimal routes.

6 Conclusions

We found impractical from a computational point of view
finding optimal trajectories without assuming the FIFO prop-
erty. Then, our best suboptimal algorithm without assuming
FIFO is nF-A∗. However, we found only a single instance out of
3600 tested, where this algorithm finds better solutions than
those found by much faster algorithms that instead assume
the FIFO property. To solve the problem in a FIFO setting,
either F-A∗ or F-iA∗ is the best choice, depending on whether
solution cost or running time is deemed most important. F-A∗

finds always the solution of best cost, which is optimal in the
most common case that the FIFO property holds in the data.
F-A∗ finds less good solutions but is faster.

The design of a heuristic for A∗ that makes the algorithm
optimal while maintaining its efficiency is a possible focus for
further research. However, important savings in costs could be
found by an integrated solution approach for 3D route opti-
mization, where the 2D route and the trajectory are optimized
together.
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Figure 2. Above, semi-logarithmic plot of the number of opened and expanded nodes; below, semi-logarithmic plot of the computation
time of preprocessing and findPath. There is no preprocessing in F-BFS and F-Dijk. Data points related to runs that exceeded the time

limit are marked in black.
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