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An Improved CNF Encoding Scheme
for Probabilistic Inference

Anicet Bart! and Frédéric Koriche and Jean-Marie Lagniez and Pierre Marquis®

Abstract. We present and evaluate a new CNF encoding scheme for
reducing probabilistic inference from a graphical model to weighted
model counting. This new encoding scheme elaborates on the CNF
encoding scheme ENC4 introduced by Chavira and Darwiche, and
improves it by taking advantage of log encodings of the elementary
variable/value assignments and of the implicit encoding of the most
frequent probability value per conditional probability table. From the
theory side, we show that our encoding scheme is faithful, and that
for each input network, the CNF formula it leads to contains less vari-
ables and less clauses than the CNF formula obtained using ENC4.
From the practical side, we show that the C2D compiler empowered
by our encoding scheme performs in many cases significantly better
than when ENC4 is used, or when the state-of-the-art ACE compiler
is considered instead.

1 INTRODUCTION

A number of approaches have been developed during the past fifteen
years for improving probabilistic inference, by taking advantage of
the local structure (contextual independence and determinism) which
may occur in the input graphical model (a weighted constraint net-
work, representing typically a Bayesian network or a Markov net-
work) [4, 34, 22, 3, 28, 18, 9, 16, 23, 36]. Among them are ap-
proaches which consist in associating with the input graphical model
a weighted propositional formula via a polynomial-time translation
[14, 33, 7, 37, 10, 11]. Once the translation has been applied, the
problem of computing the probability (or more generally, the weight)
of a given piece of evidence (assignments of values to some vari-
ables) mainly amounts to solving an instance of the (weighted) model
counting problem.

While this problem is still #P-complete, it has received much
attention in the past few years, both in theory and in practice;
thus, many algorithms have been designed for solving the model
counting problem #SAT, either exactly or approximately (see e.g.,
[2, 19, 20, 31, 5]); search-based model counters (like Cachet [32]
and sharpSAT [35]) and preprocessing techniques for #SAT [21]
have been developed and evaluated. Propositional languages support-
ing the (weighted) model counting query in polynomial time have
been defined and investigated, paving the way to compilation-based
model counters (i.e., when the propositional encoding of the model is
first turned into a compiled representation). The most prominent ones
are the language Decision-DNNF of decision-based decomposable
negation normal form formulas [12] and the language SDD consisting
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of sentential decision diagrams — a subset of d—DNNF — [17]. Com-
pilers targeting those languages have been developed (many of them
are available on line); let us mention the top-down compilers C2D
and Dsharp targeting the Decision-DNNF language [12, 15, 25], and
the top-down compiler and the bottom-up compiler targeting the SDD
language [27, 17].

In the following, we present and evaluate a new CNF encoding
scheme for weighted constraint networks. This new encoding scheme
elaborates on the CNF encoding scheme ENC4 introduced in [10],
and improves it by taking advantage of two supplementary “ideas’:
the log encodings of the elementary variable/value assignments and
of the implicit encoding of the most frequent probability value per
table. While log encodings of variables is a simple idea which has
been considered before for credal networks (and defined as “’bina-
rization”) [1], as far as we know, it had never been tested before for
encoding weighted constraint networks into CNF. Furthermore, us-
ing an implicit encoding of the most frequent probability value per
table seems brand new in this context.

Interestingly, unlike the formulae obtained using ENC4, the CNF
formulae generated by our encoding scheme can be compiled into
Decision-DNNF representations which do not need to be minimized
(thanks to a specific handling of the weights given to the negative
parameter literals). As such, they can also be exploited directly by
any weighted model counter. From the theory side, we show that
our encoding scheme is faithful, and that for each weighted con-
straint network, the CNF formula it leads to contains less variables
and less clauses than the CNF formula obtained using ENC4. From
the practical side, we performed a large-scale evaluation by com-
piling 1452 weighted constraint networks from 6 data sets. This
evaluation shows our encoding scheme valuable in practice. More
in detail, we have compared the compilation times and the sizes
of the compiled representations produced by C2D (reasoning.
cs.ucla.edu/c2d/) when using our encoding scheme, with the
corresponding measures when ENC4 is considered instead. Our en-
coding scheme appeared as a better performer than ENC4 since it
led most of the time to improved compilation times and improved
compilation sizes. We have also done a differential evaluation which
has revealed that each of the two “ideas” considered in our encod-
ing is computationally fruitful. We finally compared the performance
of C2D empowered by our encoding scheme with those of ACE, a
state-of-the-art compiler for Bayesian networks based on ENC4, see
http://reasoning.cs.ucla.edu/ace. Again, our empiri-
cal investigation also showed that C2D equipped with our encoding
scheme challenges ACE in many cases. More precisely, it was able to
compile more instances given the time and memory resources allo-
cated in our experiments, and it led often to compiled representations
significantly smaller than the ones computed using ACE.
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2 FORMAL PRELIMINARIES

A (finite-domain) weighted constraint network (alias WCN) is a
triple WCN = (X,D,R) where X = {X1, ..., X,,} is a finite
set of variables; each variable X from X is associated with a finite
set, its domain Dx, and D is the set of all domains of the variables
from X; R = {Ra,..., Rmn} is afinite set of (possibly partial) func-
tions over the reals; with each R in R is associated a subset scope(R)
of X, called the scope of R and gathering the variables involved in
R; each R is a mapping from its domain Dom(R), a subset of the
Cartesian product D of the domains of the variables of scope(R),
to R; the cardinality of scope(R) is the arity of R. In the following,
each function R is supposed to be represented in extension (i.e., as a
table associating weights with assignments).

An assignment a of WCN over a subset S of X is a set a =
{(X,d) | X € S,d € Dx} of elementary asignments (X, d),
where for each X € S there exists a unique pair of the form (X, d) in
a.If ais an assignment of WCA over S and T C S, then the restric-
tion a[7] of a over T is given by a[T] = {(X,d) € a | X € T}.
Given two subsets S and 7 of X such that 7 C &, an assignment a,
of WCN over S is said to extend an assignment a; of WCN over T
when a;[T]| = a,. A full assignment of WCN is an assignment of
WCN over X.

A full assignment s of WCN is a solution of WCN if and only if
forevery R € R, we have s[scope(R)] € Dom(R). The weight of a
full assignment s of WCN is wyyear(s) = 0 when s is not a solution
of WCN; otherwise, wyyen(s) = Ilrer R(s[scope(R)]). Finally,
the weight wyea (a) of an assignment a of WCN over S is the sum
over all full assignments s extending a of the values wyycn (s).

Example 1 Let us consider as a running example the following
"toy” WCN = (X = {X1,X2}, D = {DX17DX2}7 R =
{R}), where Dx, = {0,1,2}, Dx, = {0,1}, and R such that
scope(R) = {X1, X2} is given by Table 1.

X1 X

Table 1: A tabular representation of R.

a = {(X2,1)} is an assignment of WCN over S = {X2}. We have
wwen (a) = 8/30 + 1/10 + 8/30 = 19/30.

3 ON CNF ENCODING SCHEMES

Our objective is to be able to compute the weight of any assignment
a of a given WCN'. Typically, the WCN under consideration will be
derived without any heavy computational effort (i.e., in linear time)
from a given random Markov field or a Bayesian network, and the
assignment a under consideration will represent some available piece
of evidence. In such a case, w(a) simply is the probability of this
piece of evidence.

In order to achieve this goal, an approach consists in translat-
ing first the input WCN = (X,D,R) into a weighted proposi-
tional formula WPROP = (X,w,wo). In such a triple, ¥ is a
propositional representation built up from a finite set of proposi-
tional variables PS, w is a weight distribution over the literals over
PS, i.e., a mapping from Lps = {z,~z | € PS} to R, and

wo is a real number (a scaling factor). The weight of an interpre-
tation w over PS given WPROP is defined as wywprop(w) =
wo X erLI,S‘w(x)zlw(m) X H—mceLpS\w(x)zow(_‘x) if w is a model
of X, and wywprop (w) = 0in the remaining case. Furthermore, the
weight of any consistent term -y over PS given WPROP is given
by wwpror () = Yy WWPROP (w). Given a CNF formula X,
we denote by #var(X) the number of variables occurring in 3, and
by #cl(X), the number of clauses in X. Finally, a canonical term
over a subset V' of PS is a consistent term where each variable of V'
occurs.

Computing w(+y) from a consistent term v and a WPROP =
(X, w,wp) is a computationally hard problem in general (it is #P-
complete). Weighted model counters (such as Cachet [32]) can be
used in order to perform such a computation when ¥ is a CNF for-
mula. Reductions from the weighted model counting problem to the
(unweighted) model counting problem, as the one reported in [6], can
also be exploited, rendering possible the use of (unweighted) model
counter, like sharpSAT [35]. Interestingly, when X has been com-
piled first into a Decision-DNNF representation (and more generally
into a d-DNNF representation®), the computation of w(~y) can be
done in time linear in the size of the input, i.e., the size of ~, plus
the size of the explicit representation of the weight distribution w
over Lpg, the size of the representation of wy, and the size of the
d-DNNF representation of 3. Stated otherwise, the problem of com-
puting w(+y) from a consistent term v and a WPROP = (3, w, wo)
where X is a d-DNNF representation can be solved efficiently.

Whatever the targeted model counter (direct or compilation-
based), the approach requires a notion of translation function (the
formal counterpart of an encoding scheme):

Definition 1 (translation function) A mapping T associating any
WCN = (X, D, R) with a weighted propositional formula
TWCN) = (3, w, wo) and any assignment a of WCN over a
subset S of X with a term 7(a) over the set of propositional vari-
ables PS on which % is built, is a translation function.

Valuable translation functions are those for which the encoding
scheme is correct. We say that they are faithful:

Definition 2 (faithful translation) A transiation function T is faith-
ful when it is such that for any WCN = (X,D,R) and any
assignment a of WCN over a subset S of X, wwen(a) =

w-owen) (7(a)).

Some faithful translation functions have already been identified in
the literature, see [13, 33, 8, 10, 11]. Typically, the set PS of proposi-
tional variables used in the translation is partitioned into two subsets:
a set of indicator variables \; used to encode the assignments, and a
set of parameter variables 6; used to encode the weights. Formally let
us denote by A x the set of indicator variables used to encode assign-
ments of variable X € X and ©r be the set of parameter variables
introduced in the encoding of R € R. Every literal [ over all those
variables has weight 1 (i.e., w1 () = wa(l) = 1), except for the (pos-
itive) literals ;. Translations functions are typically modular ones,
where “modular” means that the representation X to be generated is
the conjunction of the representations 7(X) corresponding to the en-
coding of the domain Dx of each X € X, with the representations
7(R) corresponding to each mapping R in R:

S= A rxX)n A\ 7(R).

Xex RER

3 But existing d-DNNF compilers actually target the Decision-DNNF lan-
guage [26].
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As a matter of example, let us consider the translation functions
71 and 74 associated respectively with the encoding schemes ENC1
[13] and ENC4 reported in [8]. In ENC1 and ENC4, direct encoding
is used for the representation of elementary assignments (X, d). This
means that every (X, d) is associated by 71 (and similarly by 74) in
a bijective way with an indicator variable 71 ((X, d)) = 74((X, d)),
and every assignment a is associated with the term 71 (a) = 74(a)
which is the conjunction of the indicator variables 71 ((X,d)) for
each (X,d) € a. The encoding 71(X) = 74(X) consists of the
following CNF formula:

(V n(X, ) A

deDx dy,d2€Dx |d1#d2

Finally, in 71 and 74, the scaling factor (w1)o = (wa)o is 1.

Contrastingly, ENC1 and ENC4 differ in the way mappings
R are encoded. In ENC1, each 71(R) is a CNF formula, con-
sisting for each a € Dom(R) of the following CNF formulae:
(Vixayea =71 (X, d) V 02) A Ay ayea (T (X, d)) V —02). This
formula contains ¢ X (a + 1) clauses where ¢ is the cardinality
of Dom(R) and a is the arity of R. Here, 0, is a parameter vari-
able which is specific to a. For each a, the corresponding CNF for-
mula actually states an equivalence between 71 (a) and 0,. Finally,
w1 (6.) = R(a).

In ENC4, for each R € R, one parameter variable 6; per non-null
weight in R is introduced, only. Thus, no parameter variable is
introduced for the a € Dom(R) such that R(a) = 0. Furthermore,
all the assignments a € Dom(R) which are associated with the
same value R(a) are associated with the same parameter variable 6;
which is such that w4(6;) = R(a). Each 74(R) is a CNF formula,
obtained first by computing a compressed representation of R in
a way similar to the way a simplification of a Boolean function f
is computed using Quine/McCluskey algorithm, i.e., as a minimal
number of prime implicants of f the disjunction of which being
equivalent to f (see [29, 30, 24] and [10] for details). Once R has
been compressed, 74(R) is computed as the conjunction for each
a € Dom(R) of the following clauses:

V(X,d)ea ~na((X,d)) if R(a) =0,
V(X,d)ea -14((X,d)) Vv 0; if R(a) # 0.

Note that 74 by itself is not a faithful translation: the generated
formula 34 (the conjunction of all 74(X) for X € X and of all
T4(R) for R € R) must be minimized first w.r.t. its parameter vari-
ables in order to get a faithful translation. Such a “cardinality mini-
mization”, noted ming(X4), leads to a strengthening of ¥4, obtained
by removing every model of it assigning to true more than one pa-
rameter variable associated with a given R. Now, for each variable
X € X, given the CNF formula 74(X), exactly one of the indicator
variables 74 ((X, d)) for d € Dx can be set to true in a model of 3.
Accordingly, the “global cardinality minimization” min(24) of 34
(i.e., when “cardinality minimization” is w.r.t. a// the variables) can
be done instead, since we have min(34) = ming(34). The main
point is that the mapping 75" associating WCN = (X, D, R) with
the WPROP (min(X4), wa, (wa)o) is faithful. Interestingly, when
34 has been turned first into an equivalent d—~DNNF representation,
such a “global cardinality minimization” process leading to a min-
imized d-DNNF representation min(X4) can be achieved in linear
time [12].

Example 2 (Example 1 continued) As a matter of illustration, let
us present the encodings obtained by applying T and T4 to our run-
ning example. 71 and T4 are based on the same set consisting of 5

-1 ((X, d1))V=ri (X, d2)))-

indicator variables, Ai , where )\g corresponds to the elementary as-
signment (X, j), and on the same set of indicator clauses:

AV alvag,
—ALV AL

=AY v=aag
AL v=aag

AV Az
_|)\2 \Y _‘>\2.

71 and T4 differ as to their parameter variables, and as to their
parameter clauses. For T, one parameter variable per element of
Dom(R) (hence per line in Table 1) is introduced: each 0; corre-
sponds to line 1, thus 6 variables are introduced. For T4, one param-
eter variable per non-null value taken by R is considered, hence two
parameter variables 01 (corresponding to 1/10) and 02 (correspond-
ing to 8/30) are introduced. On this ground, T(R) consists of the
following parameter clauses:

VYA VAVE/ B AV CAVE'S “A2 v =X V65,

2§V -6y, ALV 63, DY AV
ASV -6y, A3V 03, AV 05,
A0V =L V6, B A LAV A2V AL V6,
2§V =0, ALV s, Af V05,
A% V =05, >\% V =0y, )\% V —0g,

with wy(61) = 0, w1(02) = w1(0s) = wi(fs) = 8/30, wi(03) =
w1(04) = /10, and every other literal has weight 1. ¥1 contains 24
clauses, over 11 variables.

Contrastingly, with T4, R is first compressed into

As a consequence, T4(R) consists of the following parameter
clauses:

SA9 V=S,
A0V AL V6,

—AT V6,
=A%V 6,

with wa(61) = /10, wa(62) = 8/30, and every other literal has
weight 1. 34 contains 10 clauses, over 7 variables.

4 A NEW, IMPROVED CNF ENCODING
SCHEME

We present a new translation function 74;iyp, which is modular as 7
and 74. T41inp elaborates on 74 in two directions: the way elementary
assignments are encoded, and the implicit handling of one parameter
variable per mapping R.

Thus, within the translation function 741iyp, log encoding (aka bit-
wise encoding) is used for the representation of elementary assign-
ments (X, d). The corresponding Taiinp(X) CNF formula aims at
forbidding the interpretations which do not correspond to any el-
ementary assignment. Thus, there is no such constraint (i.e., it is
equivalent to T) when the cardinality of the domain of X is a power
of 2.

As to the parameter variables and the parameter clauses, our trans-
lation function T4;:np is reminiscent to 74. However, there are some
important differences. First, log encoding is used to define the indi-
cator variables within the parameter clauses. Second, one parameter
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variable Or per R is kept implicit once R has been compressed; it
is selected as one of those 6; such that w4(6;) # 0 is one of the
most frequent weight in R once compressed. Then we take the scal-
ing factor (waiinp)o to be equal to the product of all the weights
w4(0r) when R varies in R, and we replace the weight w4(6;)
of all the remaining parameter variables 6; associated with R by
Watinp(0;) = w1(9;)/wy(oR). The benefits achieved by this scal-
ing come from the fact that there is no need to add any clause into
Tatinp (R) for the assignments a such that R(a) = wa4(fr). More
formally, for each R € R, R is first compressed as in ENC4; then
we define 74140 (R) as a CNF formula, consisting of the conjunction
for each a € Dom(R) such that R(a) # w4(0r) of the following
clauses:

V(X,d)ea ~Tarinp (X, d)) if R(a) =0,

V (x.ayea "Tatinp (X, d)) V 0; if R(a) # 0.

Here —741inp((X, d)) is the clause which is obtained as the disjunc-
tion of the negations of all literals occurring in T41inp (X, d)).

Finally, considering the same weight distribution wajinp, = w4 as
the one considered in ENC4 would not make the translation faithful;
in order to ensure it, we now assign a specific weight to the negative
parameter literals, so that Waiinp(—0;) = 1 — Warinp(6;) for every
parameter variable 6; considered in the parameter clauses of R, for
every R € R.

As we will show it later, no minimization step is mandatory with
Talinp; furthermore, this translation is modular (like 74 but unlike
74™); more importantly, we obtain as a side effect that any weighted
model counter can be considered downstream (unlike 74, which re-
quires a minimization step).

Example 3 (Example 1 continued) Forthe WCN considered in Ex-
ample 1, one just needs to consider two indicator variables for en-
coding the elementary assignments associated with X1 (let us say,
XY and \}) and one indicator variable for encoding the elementary
assignments associated with Xo (A2). The correspondances between
elementary assignments and their representation as terms over the
indicator variables are as follows for X :

X; | Al 0
1 0 1

2 1 0

and for X, A2 corresponds to (X2, 1) (thus, =2 corresponds to
(X2,0)). We have Tajinp(X1) = =AM v =02 and 7(X2) = T. The
most frequent value achieved by R(a) is w4(0r) = 8/30. Since R =
{R}, we get that (Warinp)o = 8/30. Tarinp(R) consists of the two
following clauses:

AV ALV g, ALV =22 v,

The first clause aims at ensuring that the weight corresponding to
the full assignment {(X1,0), (X2,0)} is 0. The purpose of the sec-
ond clause is to enforce the parameter variable 01 to be true when
any assignment extending {(X1,1)} is considered. We finally have
Warinp (01) = 3/8 and warinp (—61) = 5/s, while every other literal
has weight 1. ¥41inp contains only 3 clauses, over 4 variables.
Table 2 makes precise for each interpretation over the variables
)\(1), )\%, A2, and 01 the corresponding full assignment of WCN over
{X1, X2} (if any) and the associated weight waiinp.

Proposition 1 744, is faithful.

-

(M TxelalXx X

0 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 1 0 0 1 1/6
0 0 1 1 0 1 1/10
0 1 0 0 1 0 0
0 1 0 1 1 0 1/10
0 1 1 0 1 I 0
0 1 1 1 1 1 1/10
1 0 0 0 2 0 1/6
1 0 0 1 2 0 1/10
1 0 1 0 2 1 1/6
1 0 1 1 2 1 1/10
T T 0 0 - - 0
T T 0 1 0
T T T 0 0
T T T T 0

Table 2: The full assignment of WCN over {X1, X2} and the the
weight wainp associated with each interpretation over the variables
of 24“‘»,1;7 .

Proof: By definition of log encoding, every (partial) assignment a
of WCN over a subset S of X is associated with a term Tazinp (@)
over Aywen = U Xex A x . Furthermore, every full assignment s of
WCN is associated in a bijective way with a term T4iinp(s) over
Awear which implies /\XeX Tatinp (X).

Let us recall that the weight of any full assignment s is
wwen(s) = 0 when s is not a solution of WCN and is
wwen (s) = lIrer R(s[scope(R)]) otherwise.

Assume first that wyyear(s) = 0. Then either s is not a solution of
WCN or s is such that R(s[scope(R)]) = 0 for at least one R € R.
Hence there exists R € R such that either s[scope(R)] € Dom(R)
or R(s[scope(R)]) = 0. Subsequently, there exists a clause in
Y 4tinp such that 74;:np (s) falsifies it. This implies that every inter-
pretation over Ayyea UO g which extends Taiinp (s) falsifies Xazinp.
Accordingly, Waiinp (Tatinp(s)) = 0 as expected.

Assume now that s is such that wyear(s) # 0. By construc-
tion, for every R € R, the contribution of R to wwen (s) is equal
to the factor R(s[scope(R)]). Suppose that k parameter variables
01,...,0; have been introduced in T41inp(R). Then there are two
cases to be considered: (1) R(s[scope(R)]) = wa(fr) and (2)
R(s[scope(R)]) # wa(Or).

In case (1), by construction, Taiinp(s) satisfies every clause of
Tatinp(R). Hence each of the 2 canonical terms extending T4zinp (s)
over the k parameter variables implies 74i:np (R). Therefore, the con-
tribution of R t0 Warinp (Tarinp(s)) is equal to the sum, for each
canonical term, of the products of the parameter literals occurring in
it. But this sum is also equal to TT¥_, (Watinp (0;) Fwarinp(—0;)) =1
= wal0R)fwy (o) = R(slscone(R)) uy (0 7).

In case (2), by construction, there is a clause
—Tatinp (s[scope(R)]) V 0; in T41inp (R), so that the parameter vari-
able 0; is set to true in every model of X.4;:1,p, extending Tazinp(s). As
above, each of the 2"~ canonical terms extending T4inp (s) over the
k — 1 remaining parameter variables (i.e., all of them but 6;) implies
Tatinp (R). Therefore, the contribution of R t0 Waiinp(Tatinp(s))
is equal to the sum, for each canonical term, of the products of
the parameter literals occurring in it. But this sum is also equal to
R(S[SCOPE(R>])/W4(9R) X Hf:u#j (w4lmp(9i) + w4lmp(ﬁ9i)) =
R(s[scope(R)]) fw, (0 ).

Whatever the case (1) or (2), since (warinp)o is equal
to IIrerwa(Or), the factor w4(6r) of this product balances
the denominator of the ratio w4(9r)/w,(6g), so that finally,
Watinp (Tatinp (s)) = Irer R(s[scope(R)]) = wwen(s) as ex-
pected. |

Our purpose was also to compare the efficiency of T4;inp W.I.t. the
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efficiency of 74, where the efficiency is measured as the number of
variables and/or as the number of clauses in the corresponding CNF
encodings >41inp and X4. We obtained that 744y, is more efficient
than 74 for both measures:

Proposition 2 Given WCN = (X, D, R), let a(WCN) = (24,
wa, (wa)o), and Taring(WCN) = (Zatinp, Watinp, (Watinp)o)-
Then we have:

o Hvar(Laiinp) < Fvar(Xs),
o F#cl(Barinp) < #cl(Xa).

Proof:

e F#var. When the cardinality of Dy is k, 74(X) uses k indicator
variables, while 747, (X ) requires only [log2 (k)] indicator vari-
ables. As to the parameter variables, by construction, T4in(R)
requires one variable less than 74 (R).

e #cl. By construction, 74 (X ) contains k x (k—1)+1 clauses when
k is the cardinality of Dx. Contrastingly, Ta;inp(X ) contains at
most k — 2 "blocking clauses” (this worst case is obtained when
k = 2'+1 for some 1). Hence, the number of clauses in 74;inp(X)
is strictly lower than the number of clauses in 74(X). Further-
more, by construction, Ta;inp(R) contains at least one clause less
than 74 (R) (this worst case situation is obtained when all the val-
ues w(6;) # 0 of the parameter variables 6; considered by 74(R)
are distinct).

S EXPERIMENTS

Our benchmarks consist of 1452 WCNs downloaded from
http://www.hlt.utdallas.edu/~vgogate/uaild-
competition/index.html and http://reasoning.
cs.ucla.edu/ace/. Those instances correspond to Bayesian
networks or random Markov fields in the UAI competition format.
They are gathered into 6 data sets, as follows: Diagnose (100), UAI
(377), Grids (320), Pedigree (22), Promedas (238), Relational (395).

We translated each input WCN into a WPROP, using both the
74 and the 744y, translation function. Downstream to the encoding,
we took advantage of the C2D compiler which targets the Decision-
DNNF language [12, 15] to compute, for each instance, a minimized
Decision-DNNF representation of the CNF formula generated by 74,
and a Decision-DNNF representation of the CNF formula generated
by Taiinp. C2D has been run with its default parameters. Note that we
could also consider a model counter (like Cachet, which supports
weights) downstream to the CNF encoding produced by 74inp. For
space reasons, we refrain from reporting the corresponding empirical
results here because C2D performs often much better that Cachet
on CNF instances issued from graphical models (the dtree computed
to guide the Decision-DNNF computation achieved by C2D has a ma-
jor positive impact on the process).

Our experiments have been conducted on a Quad-core Inte]l XEON
X5550 with 32GiB of memory. A time limit of 900s for the compila-
tion phase (including the translation time and the minimization time
when 74 has been used*), and a total amount of 8GiB of memory
for storing the resulting Decision-DNNF representations have been

4 Minimization can be achieved in linear time on d—-DNNF representations
[12]. It may have a valuable reduction effect on the size of the compiled
form.

considered for each instance. Both the instances used in our ex-
periments, the run-time code of our translator bn2Cnf implement-
ing the 74 encoding scheme and the 74;:,p, encoding scheme, and
some detailed empirical results are available on line from http:
//www.cril.fr/KC.

In order to figure out the reductions in the number of variables and
in the number of clauses done by 74;:», compared to 74, we com-
puted the number of variables #wvar and the number of clauses #cl
of X41inp and X4 for each instance. Some of our empirical results are
depicted using scatter plots with logarithmic scales. Thus, the scatter
plots (a) and (b) from Figure 1 report respectively the relative per-
formances of 74 and 74;inp W.I.t. the measurements #var and #cl.
They cohere with Proposition 2 and show that 744, leads in prac-
tice to CNF encodings which are exponentially smaller w.r.t. both the
number of variables and the number of clauses than those produced
by T4.

The two scatter plots (c) and (d) from Figure 1 report respectively
the CPU times (in seconds) needed to compute the Decision-DNNF
representations associated with the input WCNs (for each of the two
encoding schemes 74 and 74;:,,p) and make precise the sizes (in num-
ber of arcs) of those Decision-DNNF representations.

Table 3 presents a selection of the results available from http:
//www.cril.fr/KC and used in the scatter plots from Figure 1.
The columns of the table make precise, from the leftmost one to the
rightmost one:

e data about the input instance, namely:

— the family of the input WCN, among the six families considered
in the experiments;

— the type of the instance (Bayes net or Markov net);
— the name of the instance;

— the number of variables of the instance;

— the number of tables of the instance;

— the cardinality of (one of) the largest domain(s) of a variable of
the instance;

— the arity of (one of) the relations of the instance, of largest arity;

— the total number of tuples in the instance (i.e., the sum of the
cardinalities of the relations);

— the sum of the cardinalities of the domains of the variables;

e and for each of the two encoding schemes 74 and 74;:n, under
consideration:

— the number of variables in the CNF encoding of the instance;
— the number of clauses in the CNF encoding of the instance;

— the time (in seconds) required to generate the CNF encoding,
plus the time needed by C2D to generate a Decision-DNNF rep-
resentation from it (and to minimize it when 74 has been used);

— the size (in number of arcs) of the resulting Decision-DNNF
representation produced by C2D (after minimization when 74
has been used).

Clearly enough, the scatter plots (c) and (d) from Figure 1 as well
as Table 3 illustrate the benefits that can be achieved by consid-
ering Tujinp instead of 74 when C2D is used downstream. Indeed,
Talinp led most of the time to improved compilation times and im-
proved compilation sizes. To be more precise, as to the compilation
times, Taiinp proved strictly better than 74 for 911 instances (while
T4 proved strictly better than 74,4, for 87 instances). As to the sizes
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Figure 1: Comparing T4inp With 74.

Instance T4 Talinp
Family Name Type #var #Rel max dom. max ari. #tuples #values| #var  #cl time C2D size C2D| #var  #cl time C2D size C2D
Promedas or_chain_96.fg MARKOV 719 719 2 3 4260 T438 3058 4663  216.4 3058 1620 1942 1115 1620
Promedas or_chain_223.fg MARKOV 988 988 2 3 5754 1976 ? ? ? ? 2268 2639 14274 2268
Promedas or_chain_178.fg MARKOV 1021 1021 2 3 5936 2042 ? ? ? ? 2314 2715  816.3 2314
Promedas or_chain_132.fg MARKOV 723 723 2 3 4058 1446 3009 4522  95.6 3009 | 1563 1818  199.6 1563
Promedas or_chain_86.fg MARKOV 892 891 2 3 5020 1784 | 3789 5602  499.6 3789 ? ? ? ?
Pedigree pedigree23 MARKOV 402 402 5 4 5025 784 | 1479 2933 5254 1479 | 737 1276 1744 737
Pedigree pedigree30 MARKOV 1289 1289 5 5 12819 2491 | 4802 8860 1836.2 4802 |2468 3802 1282.6 2468
Pedigree pedigreel8 MARKOV 1184 1184 5 5 12198 2291 | 4407 8252  927.7 4407 2262 3560 11409 2262
Grids 50-20-8 BAYES 400 400 2 3 3042 800 |2556 3428  872.8 2556 | 1756 1887 1073.0 1756
Grids 90-46-1 BAYES 2116 2116 2 3 16562 4232 ? ? ? ? 3503 6727 879 3503
Grids 90-42-2 BAYES 1764 1764 2 3 13778 3528 | 6228 13756  57.2 6228 |2700 5513  48.6 2700
Grids 90-50-7 BAYES 2500 2500 2 3 19602 5000 | 9222 19846 420.3 9222 ? ? ? ?
Grids 90-50-8 BAYES 2500 2500 2 3 19602 5000 ? ? ? ? 4131 8048 1457 4131
Grids 75-26-4 BAYES 676 676 2 3 5202 1352 | 3020 5446  496.7 3020 | 1668 2468  376.4 1668
Diagnose 3073 BAYES 329 329 6 12 34704 763 |1695 3436  151.5 1695 | 1020 741 27.0 1020
UAI 404.wesp MARKOV 100 710 4 3 4538 258 | 1678 3421 1653.5 1678 | 839 1037  777.1 839
UAI moissac4.pre BAYES 462 462 3 3 7308 1386 |2593 7338 39.7 2593 | 1669 3585 325 1669
UAIL linkage 21 MARKOV 437 437 5 4 6698 941 |1722 3638 11364 1722 ? ? ? ?
UAI prob005.pddl MARKOV 2701 29534 2 6 125726 5402 ? ? ? ? 2701 29534 249.7 2701
UAI log-1 MARKOV 939 3785 2 5 16266 1878 | 5663 13393  45.0 5663 | 939 3785 11.4 939
UAI CSP_13 MARKOV 100 710 4 3 4538 258 ? ? ? ? 839 1037 4689 839
Relational ~ blockmap_15_03-0003 BAYES 18787 18787 2 3 132436 37574 (56451 141138 4732 56451 (18877 51827 1524 18877
Relational  blockmap_20_01-0009 BAYES 39297 39297 2 3 278138 78594 | ? ? ? ? 39334 108649 303.5 39334
Relational  blockmap_22_02-0006 BAYES 56873 56873 2 3 405240 113746 ? ? ? ? 56955 157979 6258 56955
Relational mastermind_10.08_03-0004 BAYES 2606 2606 2 3 18658 5212 | 8250 19699 277.7 8250 |3038 7446 176.5 3038
Relational ~ blockmap_20_01-0008 BAYES 39297 39297 2 3 278138 78594 | ? ? ? ? 39334 108649 364.7 39334
Relational  blockmap-22_03-0008 BAYES 59404 59404 2 3 423452 118808 ? ? ? ? 59533 165085  490.0 59533

Table 3: Comparing T41inp With 74. Each *?

means that the process aborted with a time-out or a memory-out.
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of the compiled representations, T4;inp proved strictly better than 74
for 759 instances (while 74 proved strictly better than 745, for 239
instances). Using the 74 encoding scheme, C2D has been able to gen-
erate a Decision-DNNF for 903 instances over 1452 within the time
and memory limits. Contrastingly, when equipped with 74;45.p, C2D
has been able to generate a Decision-DNNF for 1007 instances using
the same computational resource bounds.

In order to evaluate the impact of the two “ideas” used in our
encoding, we also performed a differential evaluation. Table 4 re-
ports the number of instances for which the whole process — encod-
ing+compilation+minimization (when needed) — terminated before
the time limit, when the input encoding scheme is, respectively, 74,
741 (log encoding of the indicator variables), T4in, (implicit encoding
of the most frequent probability value per table), and T4zinp.

T4 903

T4l 975
Thinp 982
Talinp | 1007

Table 4: Number of instances compiled within a time limit of 900s.

The cactus plot given at Figure 2 makes precise for each of those
four encodings, the number of instances processed successfully de-
pending on the allocated time. Both Table 4 and Figure 2 show that
each of the two “ideas” used in our encoding has a positive influence
on the time needed to “compile” the input WCN.3
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Figure 2: Number of instances compiled depending on the allocated
time.

Finally, we also compared the performance of C2D empowered by
our encoding scheme with those of ACE (version 3.0), a package that
compiles a graphical model into an arithmetic circuit (AC) and then
uses the AC to answer multiple queries with respect to the model, see
http://reasoning.cs.ucla.edu/ace. Inour experiments,
logical model counting is used as a basis for compilation (we used the

5 The computation times reported for 74; are lower bounds, since they do not
include the times required for achieving the minimization step w.r.t. the pa-
rameter variables. Indeed, this step has not been implemented. Especially,
given that min(Xy;) # ming(34;), it was not possible to take advan-
tage of the “global cardinality minimization” functionality offered by C2D
to compute ming(24;). Nevertheless, since cardinality minimization of a
specific subset of variables is feasible efficiently from a Decision-DNNF
representation, the approximation done does not question the conclusions
drawn about the impact of the two “ideas” used in our encoding.

—forceC2d option of ACE for ensuring it). In this case, compilation
proceeds by encoding the model into a propositional formula, com-
piling it into Decision-DNNF (using the C2D knowledge compiler),
and extracting the AC from the compiled Decision-DNNF'.

ACE is mainly based on ENC4, but incorporates several improve-
ments; thus, exactly_one constraints (alias Eclauses) are generated in
the encoding used by C2D (so that this encoding is not exactly a CNF
encoding); such constraints are useful for representing the domains
of the variables (they can replace the indicator clauses); furthermore,
no parameter variable and no parameter clause are introduced for the
a € Dom(R) such that R(a) = 1.

Like in the previous experiments reported in the paper, the com-
parison between T4;inp+C2D and ACE —forceC2d mainly con-
cerns the generation (using C2D) of a Decision-DNNF representation
from an input WCN. However, there is a fundamental difference: in
the previous experiments, nothing changed but the encoding under
consideration; for this reason, it was possible to draw firm conclu-
sions about the relative efficiency of the encodings; in the compar-
ison with ACE, the situation is different because the input of C2D
when run within ACE does not simply consist of the encoding of the
given WCN. Indeed, a dtree derived from the input WCN (using the
well-known minfil1l heuristic) is considered as well for guiding
the compilation process. This dtree may easily be distinct from the
one considered by C2D when computed from the encoding, only, and
may lead to improved compilation times and compilation sizes. Ac-
cordingly, one must keep in mind that the empirical protocol used
for comparing 74inp+C2D with ACE ~forceC2d is not favorable
t0 T41inp+C2D.

The scatter plots (a) and (b) from Figure 3 show respectively
the compilation times and the compiled form sizes obtained by
using T4;inp+C2D on the one hand, and ACE —-forceC2d on
the other hand. As to the compilation times, 74;inp+C2D proved
strictly better than ACE —forceC2d for 335 instances (while ACE
—forceC2d proved strictly better than 74;inp+C2D for 667 in-
stances). As to the sizes of the compiled representations, T4;inp+C2D
proved strictly better than ACE —~forceC2d for 676 instances (while
ACE —forceC2d proved strictly better than 74;,,+C2D for 326
instances). Overall, ACE —~forceC2d has been able to generate a
Decision-DNNF for 922 instances over 1452 within the time and
memory limits. Contrastingly, T4;:n,+C2D has been able to generate
a Decision-DNNF for 1007 instances using the same computational
resource bounds.

Empirically, ACE —forceC2d appeared as a better performer
than 747in,+C2D W.r.t. the compilation times. Here are two possible
explanations for it. Firstly, the dtree computed derived from the in-
put WCN can lead to a better decomposition, as explained above (this
looks particularly salient for instances from the “Relational” family).
Secondly, there are numerous instances for which ACE ~forceC2d
terminated within 10s, while T475n,,+C2D did not. This can be ex-
plained by the fact that each reported time actually covers all the
computation time required by the process starting from the input
WCN and finishing with the generation of the resulting Decision-
DNNF representation. Especially, it includes the time required to
generate the dtree used by C2D, and this dtree generation time can
be much smaller when the generation process exploits the structure
of the given WCN than when its input is just an encoding of the
WCN. On the other hand, the combination 74;i,,+C2D solved more
instances than ACE —forceC2d within the time and memory lim-
its and led to significantly smaller compiled representations in many
cases. This is a further illustration of the practical benefits which can
be achieved by taking advantage of our encoding T41inyp.-
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6 OTHER RELATED WORK

Interestingly, the key ideas used in 74;inp are not specific to the
CNF encoding pointed out, but could also be exploited to define a
CDNF encoding (i.e., a conjunction of DNF representations), which
can serve as an input to the bottom-up SDD compiler [17]. This can
prove useful since bypassing intermediate representations in CNF can
lead in some cases to a more efficient compilation algorithm (some-
times by orders of magnitude) [11].

Let Taiinp—sad be the translation leading to the WPROP
(E4linpfsdd7w4linpfsdd7(w4linpfsdd)0) where Z:4linpfsdd -
Axecx Tatinp—saa(X) AN Apcg Tatinp—saa(R).  We  define
Tatinp—sdd(X) = Talinp(X) for every X € X. Then for ev-
ery R € R, Talinp—sdd(R) is a simplified DNF formula computed
from the compressed representation of R as the disjunction of all
terms Tuzinp—sdd(a) fora € Dom(R) such that R(a) = w(fr), and
all terms Taiinp—sdad(a) A 05 for a € Dom(R) such that R(a) # 0
and R(a) # w(fgr). The simplification step is achieved using
Quine/McCluskey algorithm.® Let us finally define Walinp—sdd aS
Watinp (And (Walinp—sdd)o = (Walinp)o).

Proposition 3 74inp—sda is faithful.

Proof: The result comes easily from the fact that 74;4r is faithful and
that under \ y ¢ y Tatinp—sda(X) (equivalent to A y 5 Tarinp (X)),
each DNF formula 74;inp—sad(R) is equivalent to the CNF formula
Talinp (R) . | |

Example 4 (Example 1 continued) 74i;5,p—sad(R) is computed by
considering first the DNF representation reported in the next table
(left part), where the last line corresponds to a don’t care.

ALY 6 ALY X 6
0 0 I 0 I

1 0 1

0 1 1 1 1
1 1

This DNF representation is then simplified, leading to the DNF repre-
sentation reported in the table (right part), equivalent to

AV EATAX) V(A A6

6 Terms conflicting with /\XEscnpe(R) Talinp—sdd(X) can also be added

as don’t cares prior to the simplification step; this may lead to smaller DNF
representations.

This DNF  representation is  also under

/\XEX T4lmp(X) = ﬁ)\% V ﬁA(l) to

equivalent
Tating(R) = (A} VAT VA2) A(AT V =AT V 61).

7 CONCLUSION

We have presented a new CNF encoding scheme T4;:n, for reducing
probabilistic inference from a graphical model to weighted model
counting. This scheme takes advantage of log encodings of the ele-
mentary variable/value assignments and of the implicit encoding of
the most frequent probability value per conditional probability table.
We have proved that T4;:rp is faithful. Experiments have shown that
Talinp can be useful in practice; especially, the C2D compiler em-
powered by it performs in many cases significantly better than when
ENC4 is used, or when ACE is considered instead.

This work opens several perspectives for further research. From
the practical side, we set a time limit to 900s in our experiments and
we did not repeat the computations with C2D because the number
of instances considered (1452) was large. However, default settings
of C2D uses randomization to generate dtrees, which guide the com-
pilation process and may have a huge impact on the total process.
Thus we plan to repeat the experiments a few times with a greater
time limit, averaging the obtained results to minimize the effect of
randomization. On a different, yet empirical perspective, we plan
also to compare the performances of 74;i,,+C2D with those of ACE
—forceC2d, when C2D is guided in both cases by a dtree derived
from the input network.

On the other hand, instead of associating specific weights with the
negative parameter literals, it would be enough to ask (via the intro-
duction of a further constraint) that at most one parameter variable
for any relation R € R is set to true. Our preliminary investigation
showed that, empirically, this approach is less efficient than T4inp
when one considers the compilation times obtained by C2D used
downstream, but also that it leads to compiled representations which
are typically of smaller sizes. It would be interesting to look for a
trade-off by taking advantage of the two approaches (introducing
specific weights for negative parameter literals for some R and intro-
ducing at_most_one constraints for other R). In the future, we plan
also to evaluate in practice the benefits offered by such approaches
when Decision-DNNF is targeted, and by the T4;inp—saqd translation
when SDD is targeted.
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