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Abstract. Possibilistic logic is a well-known framework for deal-
ing with uncertainty and reasoning under inconsistent or prioritized
knowledge bases. This paper deals with conditioning uncertain infor-
mation where the weights associated with formulas are in the form
of sets of uncertainty degrees. The first part of the paper studies
set-valued possibility theory where we provide a characterization of
set-valued possibilistic logic bases and set-valued possibility distri-
butions by means of the concepts of compatible possibilistic logic
bases and compatible possibility distributions respectively. The sec-
ond part of the paper addresses conditioning set-valued possibility
distributions. We first propose a set of three natural postulates for
conditioning set-valued possibility distributions. We then show that
any set-valued conditioning satisfying these three postulates is nec-
essarily based on conditioning the set of compatible standard pos-
sibility distributions. The last part of the paper shows how one can
efficiently compute set-valued conditioning over possibilistic knowl-
edge bases.

1 INTRODUCTION

Possibilistic logic is a well-known framework for dealing with
uncertainty, reasoning under inconsistent and prioritized knowledge
bases and partial knowledge [25]. Many extensions have been
proposed for possibilistic logic to deal for instance with impre-
cise certainty degrees [4, 5], symbolic certainty weights [6, 7],
multi-agent beliefs [2], temporal and uncertain information [15],
uncertain conditional events [10, 9, 11], generalized possibilistic
logic [8, 19, 21], reasoning with justified beliefs [22], etc.

This paper proposes a new extension of possibilistic logic where
the weights associated with formulas are in the form of sets of
uncertainty degrees. Standard possibilistic logic expressions are
propositional logic formulas associated with positive real degrees
belonging to the unit interval [0, 1]. However, in practice it may
be difficult for an agent to provide exact degrees associated with
formulas of a knowledge base. This paper proposes an extension
of standard possibility distributions and standard possibilistic bases
where a set of possibility/certainty degrees may be associated with
interpretations or formulas. A set of certainty degrees associated
with a formula may represent the reliability levels of different
sources that support the formula (see Example 1). Another important
issue dealt with in this paper is the one of updating or conditioning a
set-based knowledge base.
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Conditioning is an important task for updating the current uncer-
tain information when a new sure piece of information is received. A
conditioning operator is designed to satisfy some desirable properties
such as giving priority to the new information and ensuring minimal
change while transforming an initial distribution into a conditional
one. This paper deals with conditioning in a possibility theory and
possibilistic logic frameworks [8, 14, 19, 13]. Conditioning in stan-
dard (single-valued) possibility theory has been addressed in many
works [24, 27, 18, 23, 17, 3]. There are two major definitions of
possibility theory: min-based (or qualitative) possibility theory and
product-based (or quantitative) possibility theory. At the semantic
level, these two theories share the same definitions, including the
concepts of possibility distributions, necessity measures, possibility
measures and the definition of normalization condition. However,
they differ in the way they define possibilistic conditioning. This
paper focuses on a so-called min-based conditioning [24] (or
qualitative-based conditioning) which is appropriate in situations
where only the ordering between events is important. In this case,
the unit interval [0, 1] is viewed as an ordinal scale where only the
minimum and the maximum operations are used for propagating and
updating uncertainty degrees.

The first contribution of this paper concerns the definition of
a set-valued possibility theory which generalizes both standard
possibility theory and interval-based possibility theory [4]. The
second contribution deals with conditioning in a set-valued possi-
bility theory setting. We first propose three natural postulates for
a set-valued conditioning. We show that any set-valued condition-
ing satisfying these postulates is necessarily based on applying
min-based conditioning on each compatible standard possibility
distribution. We also provide the exact set of possibility degrees
associated with min-based conditioning a set-valued distribution.
The last contribution concerns efficient and syntactic computations
of conditioning set-valued knowledge bases.

The rest of this paper is organized as follows: Section 2 provides
a brief refresher on the possibility theory and possibilistic logic set-
tings. Section 3 presents set-valued possibility theory and set-valued
possibilistic logic. In Section 4, we focus on set-valued conditioning
while Section 5 provides a syntactic computing of set-valued condi-
tioning. Section 6 provides concluding discussions.

2 BRIEF REMINDER ON POSSIBILITY
THEORY

Possibility distributions: Possibility theory [29, 20] is a well-known
uncertainty theory. It is based on the concept of possibility distribu-
tion π which associates every state ω of the world Ω (the universe
of discourse) with a degree in the interval [0, 1] expressing a partial

ECAI 2016
G.A. Kaminka et al. (Eds.)

© 2016 The Authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/978-1-61499-672-9-604

604



knowledge over the world. In this paper, Ω denotes the set of proposi-
tional interpretations. ω � φ means that ω is a model of (or satisfies)
φ in the sense of propositional logic. The degree π(ω) represents the
degree of compatibility (or consistency) of the interpretation ω with
the available knowledge. By convention, π(ω)=1 means that ω is
fully consistent with the available knowledge, while π(ω)=0 means
that ω is impossible. π(ω)>π(ω′) simply means that ω is more com-
patible than ω′. A possibility distribution π is said to be normalized
if there exists an interpretation ω such that π(ω)=1, it is said to be
subnormalized otherwise.

As it is already mentioned in the introduction, possibility degrees
are interpreted either i) qualitatively (in min-based possibility theory)
where only the ordering of the values matters, or ii) quantitatively (in
product-based possibility theory) where the possibilistic scale [0, 1]
is quantitative as in probability theory. Min-based or qualitative pos-
sibility theory refers to the possibilistic setting where only the order-
ing induced by possibility degrees is important. In this setting, only
the max and min operators are used for the reasoning and updating
tasks.
Min-based conditioning: In the standard possibilistic setting, condi-
tioning comes down to updating a possibility distribution π encoding
the current knowledge when a completely sure event called evidence
or observation, denoted by φ⊆Ω is received. This results in a con-
ditional possibility distribution denoted by π(.|φ). There are many
definitions of conditioning operators in the standard possibilistic set-
ting [24, 27, 18, 23, 17].
Hisdal [24] proposed that a definition of a conditioning operator in
the qualitative setting should satisfy the condition:

∀ω � φ, π(ω) = min(π(ω|φ),Π(φ)).

Where Π(φ) denotes the possibility measure of an event φ, defined
by:

Π(φ) = max{π(ω) : ω∈Ω, ω�φ}.

Dubois and Prade [16] proposed to select the largest conditional pos-
sibility distribution satisfying this condition, leading to the following
conditioning operator.

Definition 1 (min-based conditioning). Let π be a possibility distri-
bution, φ ⊆ Ω be a sure event. min-based conditioning of π by φ,
simply denoted by π(.|mφ), is defined as:

∀ω∈Ω, π(ω|mφ)=


1 if π(ω)=Π(φ) and ω∈φ;
π(ω) if π(ω)< Π(φ) and ω∈φ;
0 otherwise.

(1)

When Π(φ)=0, then by convention ∀ω∈Ω, π(ω|mφ)=1.
Possibilistic knowledge bases: A possibilistic formula is a pair
(ϕ, α) where ϕ is a propositional logic formula and α∈[0, 1] is
a certainty degree associated with ϕ. The higher the certainty de-
gree α is, the more important is the formula ϕ. A possibilistic base
K={(ϕi, αi), i = 1, ..., n} is simply a set of possibilistic formulas.

A possibilistic knowledge base is a well-known compact represen-
tations of a possibility distribution. Given a possibilistic base K, we
can generate a unique possibility distribution where interpretations ω
satisfying all propositional formulas in K have the highest possible
degree π(ω)=1 (since they are fully consistent), whereas the oth-
ers are pre-ordered with respect to the highest formulas they falsify.
More formally:

Definition 2. Let K be a possibilistic knowledge base. Then, the
corresponding possibility distribution πK is given by: ∀ω∈Ω,

πK(ω)=

{
1 if ∀(ϕ, α)∈K, ω � ϕ
1−max{αi : (ϕi, αi)∈K,ω 2 ϕi} otherwise.

(2)

The following lemma will be helpful for establishing proofs of
some propositions. It states that ’zero-weighted’ formulas can be
added or removed from possibilistic knowledge bases without chang-
ing theirs distributions.

Lemma 1. Let K be a possibilistic knowledge base K such that
(δ, 0)∈K. Let K′=K\{(δ, 0)}. Then ∀ω∈Ω, πK(ω)=πK′(ω).

This lemma can be easily shown since if a formula δ has a
certainty degree equal to 0, then if there is an interpretation ω that
falsifies only the formula δ then, according to Definition 2, the
possibility degree associated to ω will be 1−0=1.

An important notion that plays a central role in the inference
process and conditioning is the one of α-cut. Let α be a positive
real number. An α-cut is a set of propositional formulas defined by
K≥α={ϕ : (ϕ, β)∈K and β≥α}.

The concept of α-cut can be used to provide the syntactic coun-
terpart of conditioning a possibilistic knowledge base with a propo-
sitional formula:

Definition 3. Let K be a possibilistic knowledge and φ be a sure
piece of information. The result of conditioning K by φ, denoted Kφ

is defined as follows:

Kφ ={(φ, 1)}∪
{(ϕ, α) : (ϕ, α) ∈ K and K≥α ∧ φ is consistent.}

Namely, Kφ is obtained by considering φ with a certainty degree
’1’, plus weighted formulas (ϕ, α) of K such that their α-cut is con-
sistent with φ. It can be checked that:

∀ω ∈ Ω, πKφ(ω) = πK(ω|mφ),

where πK and πKφ are given using Definition 2 and πK(.|mφ) is
obtained using Definition 1.

Next section generalizes standard possibility theory and possibilis-
tic logic into a set-valued setting.

3 SET-VALUED POSSIBILITY THEORY AND
SET-VALUED POSSIBILISTIC LOGIC

Let us first start with a short example to motivate our extension.

Example 1. Suppose we are interested in the amenities and facili-
ties of a hotel in Paris to organize a conference. For this, we posted
a question on a specialized Internet platform. To simplify, the ques-
tion was about the presence of a large conference room in the hotel
(represented by the variable c) and if the hotel has a great restaurant
(represented by a the variable r) to host the gala dinner. We also
asked people to specify how certain of the answers they are, using a
unit scale [0, 1]. Assume that we got three answers of three people:
p1 is a former hotel employee, the second, p2, is an employee of the
Paris tourism office and the third, p3, is a client of the hotel. The cer-
tainty levels of these people with respect to different scenarios3 are
summarized as follows:

3 In this example, the scenario cr means that the hotel has a conference room
and has a great restaurant while the scenario c¬r means that the hotel has
a conference room but does not have a great restaurant .
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Table 1. Example of multiple sources information

p1 p2 p3

cr 1 1 1
¬cr 1 1 1
c¬r .3 .2 .4
¬c¬r .4 .4 .4

In this example, the confidence degrees provided by the respon-
ders can be viewed as possibility degrees. Now, suppose that we got
hundreds or thousands of answers or suppose that there is a large
number of variables, then it will be interesting to find a compact
way to encode the obtained answers and more importantly to reason
with them (answer any request of interest and update the available
information when new sure information is obtained). Set-valued
possibility theory is especially tailored to this type of information.

Let us now introduce the concept of set-valued possibility distri-
bution.

3.1 Set-valued possibility distributions

In the set-valued possibilistic setting, the available knowledge is en-
coded by a set-valued possibility distribution Sπ where each state ω
is associated with a finite set Sπ(ω) of possible values of possibility
degrees π(ω).

If S is a set, then we denote by S and S the maximum and
minimum values of S respectively. When all S’s associated with
interpretations (or formulas) are singletons (meaning that S = S),
we refer to standard distributions (resp. standard possibilistic bases).
Here, Sπ(ω) (resp. Sπ(ω)) denotes the minimum (resp. maximum)
of the possibility degrees of ω.

Clearly, set-valued possibility theory is also an extension of
interval-based possibility theory [4], where the set is denoted as an
interval of possible values. Therefore, we now consider sets of de-
grees and we define a set-valued possibility distribution as follows:

Definition 4 (Set-valued possibility distribution). A set-valued pos-
sibility distribution Sπ is a mapping Sπ : Ω→S from the universe of
discourse Ω to the set S of all sub-sets included in the interval [0, 1],
with the normalization property requiring that maxω∈Ω Sπ(ω)=1.

The information corresponding to Example 1 could be compactly
encoded as follows:

Example 2. (Example 1 cont’d.) Let us represent the available
knowledge from Example 1 as a set-valued possibility distribution
given in Table 2.

Table 2. Set-valued distribution corresponding to the multiple source
information of Table 1.

Sπ
cr {1}
¬cr {1}
c¬r {.2, .3, .4}
¬c¬r {.4}

As in an interval-based possibility theory [4], we also interpret a
set-valued possibility distribution as a family of compatible standard
possibility distributions defined by:

Definition 5. Let Sπ be a set-valued possibility distribution. A nor-
malized possibility distribution π is said to be compatible with Sπ if
and only if ∀ω∈Ω, π(ω)∈Sπ(ω).

As shown in Example 3, compatible distributions are not unique.
We denote by C(Sπ) the set of all possibility distributions compati-
ble with Sπ.

Example 3. Let Sπ be a set-valued possibility distribution described
in the Table 3.

Then following Definition 5, the possibility distributions π1 and
π2 (from Table 3) are compatible with Sπ.

However, π3 is not compatible with Sπ since
π3(cr)=.46∈Sπ(cr)={1}.

Table 3. Example of set-valued possibility distribution Sπ, compatible
possibility distributions π1 and π2 and a non compatible one π3.

ω∈Ω Sπ ω∈Ω π1 π2 π3

cr {1} cr 1 1 .4
¬cr {1} ¬cr 1 1 1
c¬r {.2, .3, .4} c¬r .3 .4 .2

¬c¬r {.4} ¬c¬r .4 .4 .4

Let us now see how to generalize standard possibilistic logic into
a set-valued setting.

3.2 Set-valued possibilistic logic

Contrary to standard possibilistic logic where the uncertainty is de-
scribed with single values, set-valued possibilistic logic uses sets.
The syntactic representation of set-valued possibilistic logic gener-
alizes the notion of a possibilistic base to a set-valued possibilistic
knowledge base as follows:

Definition 6. A set-valued possibilistic knowledge base, denoted by
SK, is a set of propositional formulas associated with sets:

SK = {(ϕ, S), ϕ∈L and S is a set of degrees in [0, 1]}

In Definition 6, ϕ∈L denotes again a formula of a propositional
language L.

A set-valued possibilistic base SK can be viewed as a family of
standard possibilistic bases called compatible bases. More formally:

Definition 7 (Compatible possibilistic base). A possibilistic base K
is said to be compatible with a set-valued possibilistic base SK if and
only if K is obtained from SK by replacing each set-valued formula
(ϕ, S) by a standard possibilistic formula (ϕ, α) with α ∈ S.

In other words, each compatible possibilistic base is such that
K = {(ϕ, α) : (ϕ, S)∈SK and α∈S}.

We also denote by C(SK) the finite set of all compatible possi-
bilistic bases associated with a set-valued possibilistic base SK.

Example 4. In the following, we will use this set-valued possibilistic
knowledge base to illustrate our propositions. Let SK be a set-valued
possibilistic knowledge base such that:

SK = {(¬c ∨ r, {.4, .7, .8}), (r, {.6})}.

An example of a compatible possibilistic knowledge base is:

K = {(¬c ∨ r, .4), (r, .6)}.

As in standard possibilistic logic, a set-valued knowledge base SK
is also a compact representation of a set-valued possibility distribu-
tion SπSK .
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3.3 From set-valued possibilistic bases to
set-valued possibility distributions

Let us go one step further with the contribution on how to compute
the set-valued possibility distribution from a set-valued base.

Let SK={(ϕi, Si): i=1, ..., n} be a set-valued possibilistic
knowledge base. A natural way to define a set-valued possibility dis-
tribution, associated with SK and denoted by SπSK , is to consider
all standard possibility distributions associated with each compatible
knowledge base. Namely:

Definition 8. Let SK be a set-valued possibilistic knowledge base.
The set-valued possibility distribution SπSK associated with SK is
defined by:

∀ω ∈ Ω, SπSK(ω) = {πK(ω) : K ∈ C(SK)}.

Recall that C(SK) is the set of compatible knowledge bases (given
in Definition 7) and πK is given by Definition 2.
Similar to the single valued possibilistic logic setting, we can get
rid of some formulas of a set-valued knowledge base without any
information loss. More precisely, we can ignore any formula of SK
attached with only one certainty degree equal to zero, as stated in the
following lemma.

Lemma 2. Let SK be a set-valued possibilistic base such
that (δ, {0}) ∈ SK. Let SK′=SK \ {(δ, {0})}. Then ∀ω∈Ω,
SπSK(ω)=SπSK′(ω).

Lemma 2 is again useful for establishing proofs of some propo-
sitions. The idea behind this lemma stands in the definition of
compatible bases and Lemma 1. Indeed, in the case where SK is
such that (δ, {0}) ∈ SK, then in every compatible base K, we have
(δ, 0) ∈ K, therefore, as stated in Lemma 1, the weighted formula
(δ, 0) can be ignored from K without changing its associated
distributions, and this can be generalized to the set-valued formula
(δ, {0}).

Let us now characterize SπSK . The following proposition pro-
vides the conditions under which the highest possibility degree ’1’
belongs to SπSK(ω):

Proposition 1. Let SK be a set-valued possibilistic knowledge base.
Let ω be an interpretation. Then:

1∈SπSK(ω) iff ω �
∧
{ϕ : (ϕ, S) ∈ SK and S > 0}

Namely, 1 ∈ SπSK(ω) if and only if ω satisfies all formulas hav-
ing a strictly positive certainty degree.

Proof. Recall that 1∈SπSK(ω) means that there exists a com-
patible possibilistic base K ∈ C(SK) such that πK(ω) = 1.
Now, formulas of K having a certainty degree equal to ’0’ can be
removed, thanks to Lemma 1, without changing πK . The fact that
πK(ω) = 1 implies that ω is a model of {ϕ : (ϕ, α) ∈ K,α > 0}.
This also means that ω is also a model of {ϕ, (ϕ, S) ∈ SK, S > 0}.

Let us now show the converse. Assume that ω is a model of
{ϕ, (ϕ, S) ∈ SK, S > 0}. Let K be a compatible possibilistic
knowledge base obtained from SK by replacing each set-valued S
by its lower bound S. Clearly, {ϕ : (ϕ, S) ∈ K} is satisfied by ω.
Hence, 1 ∈ SπSK(ω).

Example 5. (Example 4 cont’d) Let us continue with the knowledge
base from Example 4. Recall that

SK = {(¬c ∨ r, {.4, .7, .8}), (r, {.6})}

Following Proposition 1, interpretations cr and¬cr will have among
their possibility degrees the degree 1 (namely 1∈SπSK(cr) and
1∈SπSK(¬cr)) since these interpretations are models of all the for-
mulas of SK attached only to strictly positive degrees.

We now study under which conditions a possibility degree (1−α)
belongs to SπSK(ω), with α∈[0, 1]. Clearly, if (1−α)∈Sπ(ω)
then there exists a compatible base K such that πK(ω)=1−α.
Hence, there exists (ϕ,α)∈K such that ω 2 ϕ. Then there exists
(ϕ, S)∈SK such that ω2ϕ and α∈S.

To determine the possible values of SπSK(ω), it is enough to
browse all certainty degrees associated with formulas of SK falsified
by ω and check whether their inverse will belong or not to SπSK(ω).

This is precisely specified by the following proposition:

Proposition 2. Let ω be an interpretation. LetA =
⋃
{S : (ϕ, S) ∈

SK, ω 2 ϕ}. Let a ∈ A∪{0}. Then,

(1− a)∈SπSK(ω) iff ω � {ϕ : (ϕ, S) ∈ SK, S > a}

Proof. Proposition 2 recovers Proposition 1 in case where a=0.
Hence, we only focus on the case a>0. To see the proof, assume
that a>0 and (1−a)∈SπSK(ω). This means that there exists a
compatible possibilistic knowledge base K ∈ C(SK), such that
πK(ω)=1−a.

This means that {ϕ : (ϕ, b), b > a} is consistent and satisfied
by ω. Since {ϕ : (ϕ, S), S > a} ⊆ {ϕ : (ϕ, b), b > a}, this also
means that {ϕ : (ϕ, S), S > a} is consistent and satisfied by ω.

Let us show the converse. Assume that ω � {ϕ : (ϕ, S), S>a} ∧
ω. Clearly, if A=∅ (namely, a=0) or A={0} then whatever is
the compatible base K, ω will satisfy each formula in K, hence
πK(ω)=1, and (1− a) ∈ SπSK(ω). Assume that a ∈ A and a > 0.
Let (ϕ1, S1) be a formula of SK such that a ∈ S1 and ω 2 ϕ1. Let
K be a compatible base defined by:

K = {(ϕ, S) : (ϕ, S) ∈ SK, ϕ 6= ϕ1} ∪ {(ϕ1, a)}.

Namely, K is obtained from SK by replacing S by S for each for-
mula in SK, except for ϕ1 where a is used instead of S. It is easy
to see that K is compatible with SK, namely K ∈ C(SK). It is also
easy to see that πK(ω) = 1 − a, since {ϕ : (ϕ, b) ∈ K, b > a} is
satisfied by ω, {ϕ : (ϕ, b) ∈ K, b > a} ∪ {(ϕ1, a)} is falsified by
ω. Therefore (1− a) ∈ SπSK(ω).

Let us continue our example, and illustrate Proposition 2.

Example 6. (Example 4 cont’d) We need to check which degrees
belong to SπSK(ω). For each interpretation, we first compute A =⋃
{S : (ϕ, S) ∈ SK, ω 2 ϕ}. For instance, let us consider ω=c¬r

then A={.4, .7, .8, .6}. Now, let us analyse each value a of A∪{0},

• For a=0, c¬r 2 {¬c ∨ r, r}, then 1 6∈ SπSK(c¬r);
• For a=.4, c¬r 2 {r}, then .6 6∈ SπSK(c¬r);
• For a=.7, ∅ ∧ c¬r is consistent, then .3∈SπSK(c¬r);
• For a=.8, ∅ ∧ c¬r is consistent, then .2∈SπSK(c¬r)
• Finally, for a=.6, ∅ ∧ c¬r is consistent, then .4∈SπSK(c¬r).

Then we can conclude that SπSK(c¬r)={.2, .3, .4}.
Let us take another interpretation, for instance ω=¬c¬r. Then

A = {.6} and for each a∈A∪{0},
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• For a=0, ¬c¬r 2 {¬c ∨ r, r}, then 1 6∈ SπSK(¬c¬r);
• And for a=.6, ∅ ∧ ¬c¬r is consistent, then .4 ∈ SπSK(¬c¬r).

We can conclude that SπSK(¬c¬r)={.4}.
The whole distribution is exactly the one given in Example 2.

Let us now deal with the issue of conditioning a set-valued possi-
bilistic base. The following section extends min-based conditioning
to set-valued possibility distributions.

4 CONDITIONING SET-VALUED
POSSIBILISTIC INFORMATION

Before providing our extension of min-based conditioning to the set-
valued setting, let us first focus on the natural properties that a set-
valued conditioning operator should fulfill.

4.1 Three natural requirements for the set-valued
conditioning

The first natural requirement (called recovering standard condition-
ing) is that in the degenerate case, namely when each set Sπ(ω) con-
tains exactly one single degree π(ω), the result of the new condition-
ing procedure should coincide with the result π(.|mφ) of the orig-
inal conditioning procedure (Definition 1). For each possibility dis-
tribution π, by {π(ω)} we denote its set-valued representation, i.e.,
a set-valued possibility distribution for which, for every ω∈Ω, we
have Sπ(ω)={π(ω)}. In these terms, the above requirement takes
the following form:

S1. If for every ω∈Ω, we have Sπ(ω)={π(ω)}, then
Sπ(ω|φ)={π(ω|mφ)} for all ω and φ.

The second requirement (called specificity) is related to the fact
that we do not know the precise values Sπ(ω) since we only have
partial information about them. In principle, if we can get some ad-
ditional information about these values, then this would lead, in gen-
eral, to narrower sets (indeed, the cardinality of a set captures the
ignorance regarding the exact value of π(ω)). Let us define the con-
cepts of specificity between set-valued possibility distribution:

Definition 9. Let Sπ and Sπ′ be two set-valued possibility dis-
tributions. Then Sπ is said to be more specific than Sπ′, denoted
Sπ⊆Sπ′, if Sπ(ω)⊆Sπ′(ω) holds for all ω∈Ω.

S2. If Sπ(ω)⊆Sπ′(ω) for all ω, then Sπ(ω|φ)⊆Sπ′(ω|φ) for all ω.

Of course, these two postulates are not sufficient. For example, we
can take Sπ(.|φ)={π(.|mφ)} for degenerate set-valued possibility
distributions and Sπ(ω|φ)=[0, 1] for any other set-valued distribu-
tion Sπ. To avoid such extensions, it is reasonable to impose the
following minimality condition:

S3. There does not exist a conditioning operation ’|1’ that satisfies
both properties S1–S2 and for which:

• Sπ(ω|1φ) ⊆ Sπ(ω|φ) for all Sπ, ω, and φ,
• Sπ(ω|1φ) 6= Sπ(ω|φ) for some Sπ, ω, and φ.

S3 is called minimality condition. The following theorem provides
one of our main results where we show that there is only one set-
valued conditioning satisfying S1-S3 and where the set conditional
possibility degree Sπ(ω|φ) is defined as the closure of the set of all
π(.|mφ), where π is compatible with Sπ.

Theorem 1. There exists exactly one set-valued conditioning, also
denoted by Sπ(.|φ) for sake of simplicity, that satisfies the properties
S1–S3, and which is defined by: ∀ω ∈ Ω,

Sπ(ω|φ) = {π(ω|mφ) : π ∈ C(Sπ)} (3)

where |m is the min-based conditioning given in Definition 1.

Proof. 1◦. Let us denote the corresponding set-based conditioning
by Sπ(.|φ). We need to prove:

• that this closure Sπ(.|φ) satisfies the properties S1–S3, and
• that every operation Sπ(.|1φ) that satisfies the properties S1–S3

coincides with the set-conditioning Sπ(.|φ).

2◦. One can easily see that the operation Sπ(.|φ) satisfies the prop-
erties S1–S2.

3◦. Let us now prove that if an operation Sπ(.|1φ) satisfies the prop-
erties S1–S2, then for every Sπ and φ, we have Sπ(.|φ) ⊆ Sπ(.|1φ).

Then, for every distribution π∈C(Sπ), we have {π} ⊆ Sπ and
thus, due to the postulate S2, we have {π}(.|1φ) ⊆ Sπ(.|φ). By the
property S1, we have {π}(ω|1φ) = {π(ω|mφ)}. Thus, the above
inclusion means that π(.|mφ) ∈ Sπ(.|1φ).

The set Sπ(ω|1φ) therefore contains all the values π(ω|mφ) cor-
responding to all possible π∈C(Sπ):

{π(ω|mφ) : π ∈ C(Sπ)} ⊆ Sπ(ω|1φ).

Thus, we conclude that Sπ(ω|φ) ⊆ Sπ(ω|1φ) for all ω.
The statement is proven.

4◦. We can now prove that Sπ(.|φ) also satisfies the property S3.
Indeed, if there is some other operation |1 that satisfies S1 and

S2, and for which Sπ(ω|1φ) ⊆ Sπ(ω|φ) for all ω, then, since we
have already proven the opposite inclusion in Part 3 of this proof, we
conclude that Sπ(ω|1φ) = Sπ(ω|φ) for all ω, so indeed no narrower
conditioning operation is possible.

5◦. To complete the proof, let us show that if some Sπ(.|1φ) satisfies
the properties S1–S3, then it coincides with Sπ(.|φ).

Indeed, by Part 3 of this proof, we have Sπ(ω|φ) ⊆ Sπ(ω|1φ)
for all ω. If we had Sπ(ω|φ) 6= Sπ(ω|1φ) for some ω and φ,
this would contradict the minimality property S3. Thus, indeed,
Sπ(.|φ) = Sπ(.|1φ). Uniqueness is proven, and so is for the the-
orem.

4.2 Analyzing set-based conditioning

Now, we can go one step beyond Theorem 1 and provide the exact
contents of the conditioned set Sπ(.|mφ). Let us first start with the
following lemma which delimits the set of possible values associated
with models of φ after the conditioning operation.

Lemma 3. Let Sπ be a set-valued possibility distribution. Let φ⊆Ω.
Then ∀ω∈Ω,

• If ω 2 φ, Sπ(ω|φ) = {0},
• And if ω � φ, Sπ(ω|φ) ⊆ Sπ(ω)∪{1}.

The proof of this lemma is immediate. Indeed, if π is a standard
possibility distribution, then by definition π(ω|mφ) is either equal to
π(ω) or to 1 for models of φ. Hence, the only admissible values for
Sπ(ω|φ) are those in Sπ(ω) and the value 1. For counter-models of
φ (namely, ω 2 φ), then clearly Sπ(ω|φ) = {0} since π(ω|mφ) = 0
for each compatible distributions π.

Given this lemma, we need to answer two questions:
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• Under which conditions does the fully possibility degree 1 belong
to Sπ(ω|φ)?

• Under which conditions will a given possibility degree a ∈ Sπ(ω)
still belong to Sπ(ω|φ)?

The answer to these questions is given in the following proposi-
tion:

Proposition 3. Let Sπ be a set-valued possibility distribution. Let
φ ⊆ Ω.

i) 1 ∈ Sπ(ω|φ) iff ∀ω′ 6=ω, Sπ(ω) ≥ Sπ(ω′).
ii) Let a ∈ Sπ(ω) (with a 6= 1). Then a ∈ Sπ(ω|φ) iff ∃ω′ 6= ω,

Sπ(ω′) > a.

Proof. For item (i) assume that 1 ∈ Sπ(ω|φ). This means that there
exists a compatible distribution π of Sπ such that π(ω|mφ) = 1.
This also means that ∀ω′ 6= ω, π(ω) ≥ π(ω′). Since, Sπ(ω) ≥
π(ω), and π(ω′) ≥ Sπ(ω′), hence we have ∀ω′ 6= ω, Sπ(ω) ≥
Sπ(ω′). For the converse, assume that ∀ω′, Sπ(ω) ≥ Sπ(ω′).
Let π be a compatible distribution such that π(ω) = Sπ(ω) and
∀ω′ 6= ω, π(ω′) = Sπ(ω). Clearly, ∀ω′ 6= ω, π(ω) > π(ω′).
Hence π(ω|mφ) = 1 and 1 ∈ Sπ(ω|φ).

For item (ii), let a∈Sπ(ω) where a6=1. Assume that ∃ω′ 6=ω,
such that Sπ(ω′)>a. Consider a compatible distribution π where
π(ω′)=Sπ(ω′) and π(ω)=a. Then clearly, π(ωm|φ)=a∈Sπ(ω|φ).
For the converse, assume that a∈Sπ(ω|φ) and a6=1. This means that
there exists a compatible distribution π such that π(ω|mφ)=a<1.
Hence, ∃ω′, π(ω)=a<π(ω′). Since π(ω′)≤Sπ(ω′) this means that
Sπ(ω′)>a.

Example 7. In this example, we deal with conditioning a set-valued
possibility distribution. Therefore, let us continue Example 2 and as-
sume that the manager of the hotel tells us that the restaurant of the
hotel has closed down definitively a few weeks ago. Then we need to
condition with the new piece of information φ=¬r. Let us run the
conditioning operation step by step. For every interpretation model
of φ,

• For ω=c¬r,

i) since, with ω′=¬c¬r, .4≥.4, then 1 ∈ Sπ(c¬r|¬r);

ii) For a=.2, since, Sπ(¬c¬r)=.4>.2, then .2∈Sπ(c¬r|¬r).
For a=.3, since, Sπ(¬c¬r)=.4>.2, then .3∈Sπ(c¬r|¬r).
For a=.4, since, Sπ(¬c¬r)=.4≯.4, then .46∈Sπ(c¬r|¬r).

• For the interpretation ω=¬c¬r, we follow the same computation
steps.

• For counter-models of ¬r, we have Sπ(ω|φ) = {0}.

Given the distribution in Table 2, we sum up the result of conditioning
this distribution in Table 4.

Table 4. Set-valued distribution Sπ of Example 2 conditioned by φ=¬r.

Sπ(.|φ)
cr {0}
¬cr {0}
c¬r {.2, .3, 1}
¬c¬r {1}

5 SYNTACTIC COUNTERPART OF
SET-VALUED CONDITIONING

Let us first consider again conditioning a standard possibilistic
knowledge base K and rewrite the result of conditioning K. Recall
that K≥a={ϕ : (ϕ, α) ∈ K and α ≥ a} be a set of propositional
formulas from K having a weight greater or equal to a. Then, the
result of conditioning K by φ, denoted by Kφ, given by Definition 3
can be rewritten as:

Kφ = {(φ, 1)}
∪ {(ϕ, α) : (ϕ, α) ∈ K≥α ∧ φ is consistent }
∪ {(ϕ, 0) : (ϕ, α) ∈ K≥α ∧ φ is inconsistent }.

The only difference with Definition 3 is that ’0’ weighted formulas
have been added. This has no influence thanks to Lemma 1. Namely,
Kφ is obtained fromK by adding φ with a fully certainty degree and
ignore some formulas fromK. By ignoring some formulas, we mean
the certainty degrees of these formulas are set to ’0’.

SK

Set-valued possibilistic base

KnK1 K2

K1φ
K2φ Knφ

SK′

Figure 1. Compatible-based conditioning

The aim of this section is to provide syntactic computation of
set-valued conditioning when set-valued possibility distributions are
compactly represented by set-valued possibilistic knowledge bases.
As illustrated in Figure 1, the input is an initial set-valued knowledge
base SK and a formula φ. The output is a new set-valued knowl-
edge base SK′ that results from conditioning the set of all com-
patible bases of SK with φ. This new set-valued knowledge base
SK′ is obtained by considering the set of all compatible possibilistic
knowledge bases, Ki ∈ C(SK). More precisely, it is done in three
steps:

• First, from SK we generate the set of compatible bases
K1,K2, ...,Kn

• then, we condition each compatible base Ki with φ. The result is
Kiφ and obtained using Definition 3.

• Lastly, we define SK′ by associating with each formula ϕ of SK
the set of degrees present in at least one conditioned Kiφ .

Namely: SK′ = {(ϕ, S) : S =
⋃
{αk : (ϕ, αk) ∈ Kφ,K ∈

C(SK)}}.
Hence, a naive algorithm for computing SK′ is given.
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Algorithm 1 Naive computation of SK′

Input: SK: a set-valued knowledge base
φ: a propositional formula

Output: SK′: the result of conditioning SK with φ
SK′ ←− {(φ, 1)}
foreach (γ, S) ∈ SK do
S′ ←− ∅
foreach K compatible with SK do

Compute Kφ

S′ ←− S′ ∪ {α : (γ, α) ∈ Kφ}
end foreach
SK′ ←− SK′ ∪ {(γ, S′)}

end foreach
return SK′

Clearly, this algorithm is not satisfactory since the number of com-
patible bases may be exponential.

Our aim is then to equivalently compute SK′ without exploiting
the set of all compatible possibilistic knowledge bases.

It is easy to show that ∀ω∈Ω, πK′(ω)=πK(ω|φ). Now, in the set-
valued setting, conditioning SK comes down first to apply standard
conditioning on each compatible base then gathering all certainty de-
grees. Clearly, SK′ is obtained from SK by ignoring some weight.
The conditions under which a weight should be ignored is given by
the following proposition:

Proposition 4. Let SK be a set-valued knowledge base, φ be a
propositional formula. Let (γ, S) ∈ SK and a ∈ S. Let S′ be the
new set associated with γ in SK′. Then:

a ∈ S′ iff φ ∧ {ϕ : (ϕ, S) ∈ SK,S ≥ a} ∧ γ is consistent.

Proof. The proof is as follows. Assume that a ∈ S′. This means
that there exists a compatible base K such that (γ, a) ∈ K′. Since
{ϕ : (ϕ, α) ∈ K′} is consistent, and (γ, a) ∈ K′ and (φ, 1) ∈
K′ then trivially φ ∧ γ ∧ {ϕ : (ϕ, b) ∈ K′} is consistent. Hence,
φ ∧ γ ∧ {ϕ : (ϕ, b) ∈ K′, b ≥ a} is consistent and φ ∧ γ ∧ {ϕ :
(ϕ, S) ∈ SK, S ≥ a} is consistent.

Now, assume that φ∧γ∧{ϕ : (ϕ, S) ∈ SK, S ≥ a} is consistent.
Let K be a compatible base, where each (ϕ, S) such that ϕ 6= γ is
replaced by (ϕ, S) and (γ, S) is replaced by (γ, a). Clearly, K is
a compatible. Besides, (γ, a) ∈ K′ since K≥a ∧ φ is consistent.
Hence, a ∈ S′.

Based on the above propositions, we propose an algorithm (Algo-
rithm 2) to compute the result of conditioning SK with φ. It consists
in browsing all the degrees of SK and checking whether each degree
should be replaced by 0 or not.

In Algorithm 2, the costly task is checking consistency of the state-
ment marked by (#). Hence, the complexity of computing SK′ is
O(|SK| ∗ n ∗ SAT ) where n is the number of different certainty
levels in SK (namely, n = |

⋃
{S : (ϕ, S) ∈ SK}|). This is stated

in the following proposition.

Proposition 5. Let SK be a set-valued possibilistic knowledge base
and φ be the new evidence. Let SK′ be a set-valued possibilistic
knowledge base computed using Algorithm 2. Then computing SKφ

is in O(|SK| ∗ n ∗ SAT ) where SAT is a satisfiability test of a set
propositional clauses and n is the number of different weights in SK.

Example 8. Let us illustrate Algorithm 2. To do so, we continue
Example 4 where SK = {(¬c ∨ r, {.4, .7, .8}), (r, {.6})} and with
the new information φ = ¬r. For each pair (ϕ, S),

Algorithm 2 Syntactic set-valued conditioning
Input: SK: a set-valued knowledge base

φ: a propositional formula
Output: SK′: the result of conditioning SK with φ

SK′ ←− {(φ, 1)}
foreach (γ, S) ∈ SK do
S′ ←− ∅
foreach a ∈ S do

if (#) φ∧γ∧{ϕ : (ϕ, S) ∈ SK,S ≥ a} is consistent then
S′ ←− S′ ∪ {a}

else
S′ ←− S′ ∪ {0}

end if
SK′ ←− SK′ ∪ {(γ, S′)}

end foreach
end foreach
return SK′

• First let us take (¬c ∨ r, {.4, .7, .8}) then:

– For a = .4, {r,¬c ∨ r} ∧ {¬r} ∧ {¬c ∨ r} is not consistent
then, 0∈S′;

– For a = .7, ∅ ∧ {¬r} ∧ {¬c ∨ r} is consistent then, .7∈S′;
– We use the same reasoning for a=.8, then, .8∈S′.

• Now for the second pair (r, {.6})} we have:

– For a=.6, {r} ∧ {¬r} ∧ {r} is not consistent so 0∈S′;

The new base is SK′={(¬r, {1}), (¬c∨r, {0, .7, .8}), (r, {0})}.
Thanks to Lemma 2, we can exclude the pair (r, {0}), this is our
new base: SK′={(¬r, {1}), (¬c ∨ r, {0, .7, .8})}. The correspond-
ing set-valued possibility distribution according Definition 8 is given
in Table 5.

Table 5. Set-valued distribution corresponding to set-valued knowledge
base SK′.

SπSK′

cr {0}
¬cr {0}
c¬r {.2, .3, 1}
¬c¬r {1}

6 RELATED WORKS AND DISCUSSIONS

This paper dealt with representing and reasoning with qualitative in-
formation in a possibilistic setting and it provided three main contri-
butions:

• The first one is a new extension of possibilistic logic called set-
valued possibilistic logic particularly suited for reasoning with
qualitative and multiple source information. We provided a natural
semantics in terms of compatible possibilistic bases and compati-
ble possibility distributions.

• The second main contribution deals with a generalization of the
well-known min-based or qualitative conditioning to the new set-
valued setting. The paper proposes three natural postulates ensur-
ing that any set-valued conditioning satisfying these three postu-
lates is necessarily based on the set of compatible standard possi-
bility distributions.
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• The third main contribution concerns the syntactic characteriza-
tion of set-valued conditioning. Efficient procedures are proposed
to compute the exact set-valued possibility distributions and their
syntactic counterparts. Interestingly enough, the proposed setting
generalizes standard possibilistic and conditioning does not re-
quire extra computational cost with respect to the standard sin-
gle valued possibilistic setting. We provide an algorithm which
does not generate explicitly the set of all compatible possibilistic
knowledge bases.

Many extensions have been proposed to generalize possibilistic
logic. The closest one to set-valued possibilistic logic, proposed in
this paper, is interval-based possibilistic logic [4, 11, 5]. The two set-
tings view a knowledge base (resp. possibility distribution) as a fam-
ily of compatible bases bases (resp. distributions). Of course, inter-
vals are particular sets. However, in [5] conditioning operator deals
only with quantitative interpretation of possibility theory [5] while
set-valued possibilistic logic deals with qualitative possibility theory.
Besides, the rational postulates given in [5] does not characterise the
uniqueness of conditioning operator while in this paper, this three
postulates S1, S2, and S3 guarantee the uniqueness of the condition-
ing operation.

Among the other extensions, symbolic possibilistic logic [6, 7]
deals with a special type of uncertainty where the available uncertain
information is in the form of partial knowledge on the relative
certainty degrees (symbolic weights) associated with formulas. In
[2], a multiple agent extension of possibilistic logic is proposed.
This extension associates sets of agents to sets of possibilistic logic
formulas and aims to reason on the individual and mutual beliefs of
the agents. Note that no form of conditioning the whole knowledge
is proposed for this setting.

Note that the idea of compatible-based conditioning in the
interval-based possibilistic setting is somehow similar to condi-
tioning in credal sets [1, 26] and credal networks [12] where the
concept of convex set refers to the set of compatible probability
distributions composing the credal set. Regarding the computational
cost, conditioning in credal sets is done on the set of extreme
points (edges of the polytope representing the credal set) but
their number can reach N ! where N is the number of interpreta-
tions [28]. In this paper, our set-valued conditioning operator has a
complexity close to the one of standard possibilistic knowledge base.

Clearly, many of the qualitative extensions of possibilistic logic
mentioned in this section could benefit from our conditioning oper-
ators as far as they can be encoded as set-valued possibilistic bases.
This will be our main track for future works.
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