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Abstract. This work addresses active learning for multi-class
classification. Active learning algorithms optimize classifier perfor-
mance by successively selecting the most beneficial instances from
a pool of unlabeled instances to be labeled by an oracle. In this
work, we study the influence of the following factors for active learn-
ing: (1) an instance’s impact, (2) its posterior, and (3) the reliabil-
ity of this posterior. To do so, we propose a new decision-theoretic
approach, called multi-class probabilistic active learning (McPAL).
Building on a probabilistic active learning framework, our approach
is non-myopic, fast, and optimizes a performance measure (like accu-
racy) directly. Considering all influence factors, McPAL determines
the expected gain in performance to compare the usefulness of in-
stances. For this purpose, it calculates the density weighted expecta-
tion over the true posterior and over all possible labeling combina-
tions in a closed-form solution. Thus, in contrast to other multi-class
algorithms, it considers the posterior’s reliability which improved the
performance. In our experimental evaluation, we show that the com-
bination of the selected influence factors works best and that McPAL
is superior in comparison to various other multi-class active learning
algorithms on six datasets.

1 INTRODUCTION

In supervised classification, prediction models are learned from la-
beled training data. In some applications, unlabeled data is avail-
able or easy to collect but the labeling (annotation) of this data is
expensive, time-consuming or exhausting. For such applications, ac-
tive learning methods provide solutions that optimize the labeling
process by selecting the most useful unlabeled instances to be passed
to an oracle for labeling. Thereby, active learning aims to achieve
high performance with as few labeled instances as possible [23].

A particular and little researched challenge [26] in active learning
is its generalization to multi-class settings, with multinomial rather
than binary labels. The few works that have addressed this task so
far mostly use either uncertainty sampling for active learning with
support vector machines, thereby concentrating on instances close to
the anticipated decision boundary [6, 12, 29], optionally extended
by information about density or diversity [4, 14]. Others use ex-
pected error reduction by simulating the impact of a label acquisition
on the whole dataset to determine the expected performance [13].
Both approaches have known limitations [7, 15]: the former fast,
information-theoretic heuristic often fails in exploring the dataspace,
the latter decision-theoretic method has high computation time.
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We contribute a multi-class active learning approach that com-
bines the advantages of the approaches mentioned above, i.e. opti-
mizing expected performance directly while being nearly as fast as
uncertainty sampling. Following the recently proposed probabilistic
active learning framework [17], the key idea is to compute the expec-
tation over the true posterior by incorporating the number of labels in
a neighborhood of the label candidate as a proxy for the posterior’s
reliability. The resulting score is weighted with the density which we
use as a proxy for the new label’s impact on the whole dataset. We
compare our approach with the most relevant state-of-the art methods
from the literature and present experiments on six datasets.

In addition, we expose the three influence factors that are used in
our method: the posterior, the reliability of that posterior, and the im-
pact of a labeling candidate. We explain their role in active learning
and evaluate their effect experimentally. To the best of our knowl-
edge, we are the first that use the number of labels inside a candi-
date’s neighborhood for multi-class active learning, which we show
to has a strong impact on the learner’s performance. Furthermore,
by adding another decision-theoretic method to propositions in the
comparative study of [14], we contribute to the important research
question on how to combine the posteriors of many classes into one
comparable score.

The next section summarizes the related work by introducing the
basic approaches of multi-class active learning. The main section
presents our new approach including an analysis of its characteris-
tics, and is followed by our experimental evaluation. The paper is
concluded with a summarizing discussion.

2 RELATED WORK

Active learning aims to optimize the annotation of unlabeled in-
stances (candidates), by selecting the ones that improve a given clas-
sifier’s performance the most [23]. As active learning in general is far
more researched than multi-class active learning, we concentrate on
the most relevant work before summarizing multi-class approaches.

Most active learning techniques define a usefulness score for each
label candidate. A simple but common information-theoretic heuris-
tic is to use the instances with highest uncertainty [18]. This uncer-
tainty sampling method chooses instances near the classifier’s current
decision boundary, i.e. instances with a posterior probability near the
decision threshold (for binary cases 0.5). Related approaches like us-
ing the posteriors’ entropy have been addressed in [23]. In contrast,
the decision-theoretic expected error reduction approach estimates a
candidate’s usefulness by simulating its label’s realizations and mea-
suring the resulting model’s performance on a representative set of
evaluation instances [21]. This computationally expensive calcula-
tion of the expected performance over all possible labels and the in-
stances of the representative set builds the usefulness score [3].
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Krempl et al. [16] argue that using posterior estimates directly in
the expectation step leads to inaccuracies. They observed that these
posterior estimates are highly unreliable especially having only few
labeled instances. Probabilistic active learning [17] therefore tries to
overcome these difficulties by introducing label statistics that include
the posterior of the positive class (they only consider binary classi-
fication tasks) and the number of nearby labels as a proxy for reli-
ability. The usefulness score is calculated with the expectation over
the true posterior as well as over the possibly appearing labels. Other
approaches aim to reduce the classification variance by using an en-
semble of classifiers and request instances where the ensemble’s dis-
agreement is high [24].

For active learning with multiple classes, the main challenge is
the mapping of posterior values into a comparable score to select
the most useful labeling candidate. Körner and Wrobel [14] ana-
lyzed different heuristics that have been also used by other papers:
(1) usual confidence-based uncertainty sampling chooses the in-
stance with the lowest posterior for the best decision, which is com-
parable to selecting the instances near the decision boundary (see
also [5, 11, 28, 29]), (2) entropy-based sampling chooses the in-
stance with highest posterior entropy (see also [30]), (3) Best-vs-
Second-Best (BvsSB) sampling (also called margin-based) uses the
difference between the posterior of the best and the second best class
(see also [5, 12]), and (4) sampling using a specific disagreement that
combines margin-based disagreement with the maximal probability4.

Expected error reduction-based methods have also been consid-
ered for multi-class active learning. Joshi et al. [13] proposed an al-
gorithm called Value of Information (VoI) that estimates the expected
misclassification costs plus the expected labeling costs. They com-
pare the performance of the current classifier and each hypothetical
classifier which are evaluated for each labeling candidate and each
class on an evaluation set. As these algorithms take long for execu-
tion, the authors propose three approximations for speedup. For mu-
sic annotation applications, Chen et al. [4] developed a method that
finds a set of instances to be labeled based on a volume criterion (sim-
ilar to SVM volume reduction [25]), a density score that favors dense
regions and a diversity score that enforces diversity among instances
from the labeling set. More recently, Guo and Wang [6] developed
a stepwise method consisting of an initial selection of instances to
be labeled (via random, clustering or discrepancy), followed by an
active learning step. This is based on the characteristics of One-
versus-Rest (OvR) Support Vector Machines (SVMs) where a label-
ing candidate can belong to one class with support from zero, one or
more than one OvR SVMs. To choose the next instance for labeling,
they define a rejection score, a compatibility score and an uncertainty
score, and propose rules on how these score have to be considered.
Wang et al. [26] propose an ambiguity-based multi-class approach
that uses possibilistic membership from One-vs-Rest SVMs. These
membership values are between 0 and 1 but do not necessarily sum
up to one like posteriors. Their ambiguity measure is based on fuzzy
logic operations and has a parameter γ which has to be optimized and
is not known in advance. A more theoretical work on cost-sensitive
multi-class active learning is given by [1]. He analyzed the regret
and label complexity for data with labels that are generated with a
generalized linear model.

Some approaches consider settings with different costs for mis-
classifying an instance of a specific class [5, 13]. Additionally, [13]
also includes annotation cost, i.e. the cost of labeling one instance.

4 Note, that the selection of instance based on confidence and BvsSB would
be exactly the same in a two-class problem but is different for multiple
classes (see [23]).

The acquisition of instances can be done in a successive manner or
in form of instance batches. Most approaches choose to acquire in-
stances one-by-one, except for [4, 30]. Besides SVMs (often used
with a probabilistic version), [14] used an ensemble of trees, [11]
proposed a probabilistic version of the k-nearest-neighbor (pKNN)
classifier, [5] tested their algorithms on a random forest, and [30]
used random walks over a markov chain.

3 OUR METHOD

In this section, we propose probabilistic active learning for mul-
tiple classes, an extension of the binary version proposed in
[16]. In the first subsection, we present the active learning
framework and explain our influence factors. Next, we propose
our Multi-class Probabilistic Active Learning (McPAL) approach,
followed by the derivation of a closed-form solution. Finally, we con-
clude our results and compare its behavior to existing approaches in
an analytical way.

3.1 AL framework and influence factors

In an active, multi-class classification tasks with C different classes,
each instance has a feature vector �x and a label y ∈ {1, . . . , C},
which is unknown at the beginning. As shown in Fig. 1, the active
learner successively selects the most useful instances �x∗ from the
candidate pool U and requests its label y from the oracle. After re-
training the classifier with the new labeled set L ∪ (�x∗, y), this pro-
cedure is repeated until the budget b is consumed. In our setting, the
active component’s decision is based on outputs (posteriors and dis-
tribution of labeled instances) of a generative probabilistic classifier
[19], which is updated according to the contents of L.

function al_framework(U){
L = {}
cl = init_classifier()
for(i=1; i<=b; i++){
x* = active_learning(U, cl, L)
y = ask_oracle(x*)
U = remove(U, {x*})
L = append(L, {x*, y})
cl = train_classifier(L)

}
}

Figure 1. Pseudocode of the active learning framework

Throughout our research on active learning, we identified different
influence factors that affect active learning positively. The labeling
candidate’s class posterior P̂ (y | �x) is the most commonly used one,
as it indicates the probability of an instance �x to be classified as y.
For simplicity, we denote �̂p as the vector of estimated posterior prob-
abilities, i.e. p̂i = P̂ (y = i | �x), 1 ≤ i ≤ C. If the posteriors for all
classes are similar, this indicates a high uncertainty of the classifier
at the instance’s location �x. Here, we have to distinguish between the
aleatoric uncertainty that is caused by high Bayesian error, and the
epistemic uncertainty, which is caused by a lack of information [22].
We are not able to reduce the aleatoric uncertainty, but we can ac-
quire more labels to reduce the epistemic uncertainty in the currently
considered neighborhood.

Measuring the number of nearby labels n as a proxy for the reli-
ability of the class posterior enables the separation of the aleatoric
and the epistemic uncertainty. The higher this number is, the more
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likely it is for the observed posterior p̂ to be close to the unknown
true posterior.

The third influence factor is the impact on the whole dataset.
Weighting the usefulness score by the instances’ density as a proxy
for its impact prefers instances in dense regions over those in sparse
ones. We assume that it is more beneficial to focus on regions with
high density as more future classification decision benefit from the
information increment there.

One of the most important questions in multi-class active learn-
ing is how to combine the different posteriors to one comparable
score [14]. In binary situations, this function p̂ �→ R is only one-
dimensional as p̂2 = 1 − p̂1 and can be easily visualized. Three-
class problems typically are visualized with ternary plots (see also
[14, 23]). In Fig. 2, we show a ternary heatmap plot where the
darker shades indicate higher usefulness. This is a barycentric coor-
dinate system, where each position stands for one specific posterior
probability. The figure shows the usefulness values for confidence-
based sampling (Conf), and for the Best-vs-Second-Best (BvsSB)
approach. The entropy-based score has a more circular shape (not
shown here) [23].
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Figure 2. Ternary heatmap plot of the usefulness of confidence-based
(Conf) and Best-vs-Second-Best (BvsSB) sampling. Dark color indicates

high usefulness of a posterior in that barycentric coordinate system.

In the next section, we propose our method, which combines all
three influence factors in a decision-theoretic way. Then, we visu-
alize the behavior of McPAL (without the density weight) also with
ternary plots, and evaluate our theory of influence factors experimen-
tally comparing their effects on active learning performance in Sec.
4.2. Our mathematical symbols are summarized in Tab. 1.5

C - Number of classes
Y = {1, . . . , C} - Vector of all possible labels
L - Set of labeled instances (x, y)
U - Set of unlabeled instances (x, .)
�p = (p1, . . . , pC) - Vector of true posteriors
�k = (k1, . . . , kC) - Vector of frequency estimates
n =

∑
ki - Number of observed labels (reliability)

�̂p = �k/n - Vector of observed posteriors
�d = (d1, . . . , dC) - Decision vector (see Eq. 8)
m ∈ N - Number of hypothetically considered labels
�l = (l1, . . . , lC) ∈ N

C - Vector representing the number of hypo-
thetic labels per class (

∑
li = m)

Table 1. Overview of used mathematical symbols.

3.2 Multi-class probabilistic active learning

In probabilistic active learning for two classes, it is assumed that the
appearance of a label of class y is a Bernoulli experiment [17]. A
label of class i in the neighborhood of an instance �x appears with

5 All unspecified iterators start at i = 1 and end at C.

a probability of P (y = i | �x) =: pi building the vector of true
posteriors �p. For multiple classes, we naturally generalize the 2-class
Binomial distribution to a Multinomial one. The probability of ob-
serving a specific labeling situation �k given the true posterior �p is
then calculated according to Eq. 1. Each entry ki in the vector �k
represents the number of instances with label i, 1 ≤ i ≤ C in the
neighborhood of �x. This vector also indicates the number of observed
labels n =

∑
ki, which is used as the reliability proxy (�k = n · �̂p).

We use the generalized multinomial coefficient for non-integer argu-
ments containing the Γ function by Legendre [20].

P (�k | �p) = Multinomial�p(�k) =

( ∑
ki

k1, . . . , kC

)
·
∏(

pki
i

)
(1)

=
Γ ((
∑

ki) + 1)∏
(Γ (ki + 1))

·
∏(

pki
i

)
(2)

In the active learning setting, we do not know the true posteriors
�p, but we are able to estimate the number of observations �k. To de-
termine a probability distribution for the true posterior, we take the
normalized likelihood function [16] as given in Eq. 3-5.

L(�p | �k) = P (�k | �p) (3)

P (�p | �k) = L(�p | �k)∫
�p′ L(

�p′ | �k) d�p′
=

Γ (
∑

(ki + 1))

Γ ((
∑

ki) + 1)
· L(�p | �k) (4)

=
Γ (
∑

(ki + 1))∏
(Γ (ki + 1))

·
∏(

pki
i

)
(5)

The density function P (�p | �k) has its maximum for �p = �̂p and the
variance decreases by increasing n =

∑
ki.

Given a performance measure like accuracy, a Bayesian optimal
classifier [16] selects the most probable class ŷ (based on its ob-
served frequency kŷ) according to Eq. 6. The true posterior pŷ of this
selected class corresponds to the resulting accuracy, as expressed by
the performance function in Eq. 7.

ŷ = arg max
y∈{1,...,C}

(ky) (6)

perf
(
�k | �p) = pŷ (7)

=
∏

pdii di =

{
1 if i = ŷ

0 if i �= ŷ
(8)

Given such a performance function, we calculate the expected cur-
rent performance for the neighborhood around �x with observed fre-
quencies in �k:

expCurPerf
(
�k
)
= E

�p

[
perf

(
�k | �p)] (9)

=

∫
�p

P (�p | �k) · perf (�k | �p)d�p (10)

The goal of our approach is (1) to estimate the gain of performance
resulting from an upcoming label based on the set of unlabeled data
U and of labeled data L and (2) to choose the candidate with the
maximal gain (see Eq. 11). Having chosen a generative, probabilistic
classifier cl like the Parzen window classifier [3] or the probabilistic
k-nearest-neighbor [11], we are able to count the number of labeled
occurrences per class given a kernel function K (see Eq. 12). The
kernel function is a similarity score with K(�x, �x) = 1. Finally, we
define our active learning score as the density weighted performance
gain given in Eq. 13.
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�x∗ = arg max
�x∈U

(alScore
(
�x | L,U)) (11)

�k = cl
(
�x | L); ki =

∑
{(�x′,y′)∈L : y′=i}

K(�x, �x′) (12)

alScore
(
�x | L,U) = P (�x | L ∪ U) · perfGain

(
cl
(
�x | L)) (13)

We determine the performance gain in Eq. 14 by the difference be-
tween the expected performance considering m new labels and the
expected current performance. The latter is simply calculated as in
Eq. 9, the more general expected performance (see Eq. 15) con-
siders multiple possibilities of a labeling. Therefore, we addition-
ally calculate the expectation value over these possible labelings
�l = (l1, . . . , lC) ∈ N

C . Given a number of hypothetical labels that
are allowed to be acquired m ∈ N,

∑
li = m in one step, the label-

ing vector represents the change of observations that would be added
to the �k vector if this labeling would be obtained. Hence, after re-
ceiving a labeling �l, the classifier output changes to �k + �l. Note that
this calculation is exact for m = 1, but only an approximation for
m > 1, as it is unlikely to have another instance �x′ at exactly the
same location as the current label candidate �x (similarity of �x and �x′

should be 1 to be exact). However, as we only select one instance for
labeling at each step, this effect is negligible. Finally, we divide the
gain by m to have the average gain per label acquisition.

perfGain
(
�k
)
= max

m≤M

(
1

m

(
expPerf

(
�k,m

)− expCurPerf
(
�k
)))

(14)

expPerf
(
�k,m

)
= E

�p

[
E
�l

[
perf

(
�k +�l | �p)]] (15)

The labeling �l is multinomial distributed given the true posterior:

P (�l | �p) = Multinomial�p(�l) =
Γ ((
∑

li) + 1)∏
(Γ (li + 1))

·
∏(

plii

)
(16)

With help of these equations it is possible to determine the next best
instance for labeling as given in Eq. 13 numerically. Achieving a
good numerical performance would be computationally expensive
and highly dependent on the number of classes C as well as the step
width for integrating the true posterior �p.

Hence, we propose a closed-form solution for this approach in the
following section that reduces the computational cost seriously.

3.3 Fast closed-form solution

To get rid of numerical integration, it is sufficient to simplify the ex-
pected performance, as the expected current performance is a special
case of the former (see Eq. 17ff.).

expCurPerf
(
�k
)
= expPerf

(
�k, 0
)

(17)

expPerf
(
�k,m

)
= E

�p

[
E
�l

[
perf

(
�k +�l | �p)]] (18)

=

∫
�p

P (�p | �k) ·
∑
�l

P (�l | �p) · perf (�k +�l | �p)d�p (19)

=
∑
�l

∫
�p

P (�p | �k) · P (�l | �p) · perf (�k +�l | �p)d�p (20)

=
∑
�l

∫
�p

Γ (
∑

(ki + 1))∏
(Γ (ki + 1))

·
∏(

pki
i

)

· Γ ((
∑

li) + 1)∏
(Γ (li + 1))

·
∏(

plii

)
· perf (�k +�l | �p) d�p (21)

=
∑
�l

Γ (
∑

(ki + 1))∏
(Γ (ki + 1))

· Γ ((
∑

li) + 1)∏
(Γ (li + 1))

·
∫
�p

∏(
pki+li
i

)
· perf (�k +�l | �p) d�p (22)

After separating the normalization factors from the integral, we
simplify the integral by inserting the performance from Eq. 8 and by
calculating the definite integral as above in Eq. 4.

∫
�p

∏(
pki+li
i

)
· perf (�k +�l | �p) d�p (23)

=

∫
�p

∏(
pki+li
i

)
·
∏

pdii d�p (24)

=

∫
�p

∏(
pki+li+di
i

)
d�p =

∏
Γ (ki + li + di + 1)

Γ (
∑

(ki + li + di + 1))
(25)

Reinserting the integral into Eq. 22 and sorting the terms yields
the following equations.

expPerf
(
�k,m

)
=
∑
�l

Γ (
∑

(ki + 1))∏
(Γ (ki + 1))

· Γ ((
∑

li) + 1)∏
(Γ (li + 1))

·
∏

Γ (ki + li + di + 1)

Γ (
∑

(ki + li + di + 1))
(26)

=
∑
�l

Γ (
∑

(ki + 1))

Γ (
∑

(ki + li + di + 1))

·
∏

Γ (ki + li + di + 1)∏
(Γ (ki + 1))

· Γ ((
∑

li) + 1)∏
(Γ (li + 1))

(27)

The first and second factors are simplified as follows.

Γ (
∑

(ki + 1))

Γ (
∑

(ki + li + di + 1))
(28)

=
Γ (
∑

(ki + 1))

Γ (
∑

(ki + 1) + (
∑

li) + (
∑

di)))
(29)

=

⎛
⎜⎝
(∑

(ki+li+di+1)
)
−1∏

j=
∑

(ki+1)

1

j

⎞
⎟⎠ Γ (

∑
(ki + 1))

Γ (
∑

(ki + 1))
(30)

=

(∑
(ki+li+di+1)

)
−1∏

j=
∑

(ki+1)

1

j
(31)

∏
Γ (ki + li + di + 1)∏

(Γ (ki + 1))
=
∏ Γ (ki + li + di + 1)

Γ (ki + 1)
(32)

=
∏ (∏ki+li+di

j=ki+1 j
)
Γ (ki + 1)

Γ (ki + 1)
=
∏⎛
⎝ki+li+di∏

j=ki+1

j

⎞
⎠ (33)

Using Eq. 27, 31 and 33, we get the fast version of the expected
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performance, a value within [0, 1].

expPerf
(
�k,m

)
=
∑
�l

⎛
⎜⎝
(∑

(ki+li+di+1)
)
−1∏

j=
∑

(ki+1)

1

j

⎞
⎟⎠

·
∏⎛
⎝ki+li+di∏

j=ki+1

j

⎞
⎠ · Γ ((

∑
li) + 1)∏

(Γ (li + 1))
(34)

Now, the final McPAL usefulness score from Eq. 13 is calculated
using Eq. 14 and Eq. 34.

As an example, we calculate the expected performance for m = 0
which is equivalent to the expected current performance. As men-
tioned before, ŷ = arg maxy∈{1,...,C}(ky).

expPerf
(
�k, 0
)
=
∑
�l

⎛
⎝(

∑
(ki+1)+(

∑
li)+(

∑
di))−1∏

j=
∑

(ki+1)

1

j

⎞
⎠

·
∏⎛
⎝ki+li+di∏

j=ki+1

j

⎞
⎠ · Γ ((

∑
li) + 1)∏

(Γ (li + 1))
(35)

=

⎛
⎝

∑
(ki+1)+0+1−1∏
j=

∑
(ki+1)

1

j

⎞
⎠ · (kŷ + 1) · 1 =

kŷ + 1∑
(ki + 1)

(36)

3.4 Characteristics of McPAL

As briefly discussed in Sec. 3.1, there are different ways to combine
the posterior estimates �̂p from the classifier to determine a useful-
ness score. The examples in Fig. 2 show different shapes that lead to
different behavior, which is evaluated in Sec. 4.

Fig. 3 shows the ternary heatmap plots for the performance gain
function of the McPAL algorithm, i.e. the active learning score with-
out the density weight. In contrast to all other multi-class active
learning approaches, McPAL does not only consider the observed
probability �̂p but also includes the reliability n =

∑
ki, which is

summarized in the frequency vector �k = n · �̂p. This extends the
ternary plot by an additional degree of freedom. Therefore, we pro-
vide two exemplary figures, one showing the behavior for n = 1,
and one for n = 2.

The left plot of Fig. 3 shows a similar but not identical shape
as the confidence based (Conf in Fig. 2). While contour lines for
confidence-based sampling are linear, these of McPAL are slightly
concave. The highest gain is in the center, which represents regions
of absolute uncertainty as the posteriors are equal. The lowest gains
are in the corners of the triangle. An increase of reliability n de-
creases the gain (see right plot), as the epistemic uncertainty (caused
by lack of information) decreases. This means that there are situa-
tions where instances with a non-equal posterior vector are preferred
over those with equal posteriors if there is more evidence that the
equal posteriors are more likely to be correct.

The number of hypothetical label acquisitions M in the neighbor-
hood of a labeling candidate is bounded by the globally available
budget. In the beginning, it is sufficient to have M = 1, as one in-
stance has the highest average benefit for the classification task. Over
time, we need more hypothetical labels to achieve this benefit. In our
experiments, it was sufficient to set M = 2. Applications with more
labels should adjust the M to greater values accordingly.

From a decision-theoretic view, it is more reasonable to prefer con-
fidence based active learning over entropy or best-vs-second-best, but

Figure 3. Ternary plot for performance gain for situations with
n =

∑
ki = 1 (left) and n = 2 (right).

the reliability makes a huge difference in the performance as the next
section will show.

4 EVALUATION

The goals of our evaluation are twofold: on the one hand, we show
the advantage of combining our previously defined impact factors,
and on the other hand we compare our multi-class probabilistic active
learning approach with state-of-the-art methods. All experiments are
conducted based on the setup explained in the following subsection.

4.1 Experimental setup

The proposed method and several other active learning strategies are
tested on six datasets, labeling instances successively until the avail-
able budget of b = 60 label acquisitions has been exhausted. This is
done on multiple, seed-based splits of the datasets into independent
training and test subsets (training 67%, test 33% of the data) where
the number of different training-test-splits for the smaller datasets
(ecoli, glass, iris, wine) is 100 and for the large datasets (vehicle,
yeast) is set to 50 due to execution time. All experiments are re-
ported by its mean and standard deviation of misclassification cost
across all splits. Additionally, we compared each algorithm on all
datasets against our method McPAL to determine if our method is
significantly better. Therefore, we used a Wilcoxon signed rank test
[27] at a p-value of 0.05 and performed the Hommel procedure [10]
to prevent the results from errors induced by multiple testing.

The most used visualization of evaluation results are learning
curves, which plot the performance in comparison to the number of
acquired labels. Our learning curves in Fig. 4 and 5 show the classi-
fication error of each active learner on the y-axis, the standard devi-
ation of the error across all splits indicated as an error bar, and the
number of instances sampled for the labeled set on the x-axis. In ad-
dition to these plots, the results are given in Tab. 4, showing the error
and standard deviation of the different active learning methods for all
used datasets. The tables show the learner’s performance at three dif-
ferent steps, i.e. after 20, 40 and 60 labels have been acquired. Since
60 is the maximum number of sampled instances in the experiments,
these steps show the performance in the beginning, intermediate and
end phase of the learning process. All results are reported separately
for each classifier and dataset. We computed our experiments on a
computer cluster running the Neurodebian [8] system.

Besides the proposed method of this paper, six other active
learning strategies are used. The McPAL method is executed with
M = 2, as higher M just increased the execution time but
did not change the performance. As a standard baseline, we use
a randomly sampling method (Rand). Confidence-based sampling
(Conf) selects the instance with the lowest maximal posterior (x∗ =
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arg minx∈U maxy∈Y p̂y) [11]. The next approach uses the shan-
non entropy to model the uncertainty of an instance (Entr) [13].
Best-vs-Second-Best (BvsSB) samples this instance of the unlabeled
set that minimizes the difference of the posterior probabilities of
the most probable and the second most probable class [12, 13, 14].
Maximum-Expected-Cost (MaxECost) determines the value of an
instance based on the expected cost associated with the misclassifica-
tion of that instance. Consequently, the learner samples the instance
tied to this score [5]. The last strategy belongs to the expected error
reduction based methods. The original Value of Information (VoI)
criterion as suggested by Joshi et al. [13] selects the instance �x that
minimizes a risk measure defined by them. It has to be mentioned
that the computational effort of this algorithm forced us to exclude
it from the experiments on the vehicle and yeast datasets, since they
possess a large number of instances and/or classes, leading to infea-
sible execution times.

Active learning algorithms require robust classifiers for robust use-
fulness estimation. Therefore, we choose generative classifiers [19],
namely the Parzen window classifier (PWC) [3], and a probabilis-
tic variant of the k-nearest-neighbor classifier (pKNN, with k = 9;
received good results for our classification tasks (between 3 and 9
classes)) proposed by Jain and Kapoor [11]. These classifiers can be
used with any arbitrary similarity function. As the optimization of the
overall performance level is not the scope of this paper, we choose to
simply standardize each attribute (z-standardization) and use an uni-
variate Gaussian kernel with fixed standard deviation of σ = 0.7 for
all datasets and active learning algorithms. This ensures fair compa-
rability that is independent of a classifier bias.

Table 2. Datasets with the number of instances, the number of attributes
and the class frequencies.

Dataset #Inst. #Attr. #Instances per class

Ecoli 336 8 143, 77, 52, 35, 20, 5, 2, 2
Glass 214 10 70, 76, 17, 13, 9, 29
Iris 150 4 50, 50, 50
Vehicle 846 18 212, 217, 218, 199
Wine 178 13 59, 71, 48
Yeast 1484 8 463, 429, 244, 163, 51, 44, 35, 30, 20

We evaluate our algorithm on six multi-class datasets from the
UCI repository [2]. The distribution of classes and the number of
instances and attributes are summarized in Tab. 2. The ecoli dataset
was originally used for predicting protein localization sites in eu-
karyotic cells. The attributes describe properties of proteins. Glass
was originally generated for classification of types of glass left at
a crime scene. The attributes describe chemical ingredients to pre-
dict for example whether the glass is from a car window or a win-
dow of a building. The iris dataset classifies the type of an iris plant,
the features describe measures of the plant. Vehicle contains features
of car models for predicting the manufacturer. The attributes of the
wine dataset describe the chemical ingredients of a wine instance.
The class values are derived from three different cultivars. The yeast
dataset is also used for predicting the localization site of protein in
bacteria. The first column, which held the sequence name, was re-
moved.

The complete results together with an implementation are avail-
able at our companion website6.

6 http://kmd.cs.ovgu.de/res/mcpal/

4.2 Impact of influence factors

In Sec. 3.1, we introduced three different influence factors that are
considered in McPAL. Fig. 4 shows learning curves on selected
datasets and classifiers of McPAL variants with different input pa-
rameters using the previously described experimental setup. Thereby,
we aim to measure the importance of the different influence factors
posterior, reliability, and impact. In addition to the original McPAL
algorithm, we show variants that exclude information either (1) about
the reliability by normalizing the �k vector to

∑�k = n = 1 (denoted
w/o reliability), or (2) about the posterior by replacing the
kernel frequency estimate with a uniform one ki = n/C, 1 ≤ i ≤ C
(denoted w/o posterior), or (3) about the density by setting it
to a constant (denoted w/o impact).

Our selection in Fig. 4 shows that the combination of all influence
factors works best. In some cases, the variant without impact is better
than the McPAL method. We explain this behavior with the fact that
the density, which is used as a proxy for the impact of a label on the
complete dataset, gets inaccurate. Especially when there are many
labels added to the dataset, this estimate gets worse as the influence
also depends on the explicit label situation on the dataset. Neverthe-
less, the density improved the overall performance although leaving
it out is less critical than leaving out one of the other factors.

Especially the results on yeast with the PWC are interesting. Here,
leaving out the reliability or the posterior leads to no performance
improvement, but unifying these approaches (McPAL) achieves the
lowest error.

4.3 Competitiveness of our method

Fig. 5 shows the learning curves of the experiment results with the
pKNN classifier, Tab. 4 shows the results using the PWC. As shown
in Tab. 4 the McPAL algorithm outperforms its competitors consis-
tently on 4 of the 6 datasets (best performance highlighted in bold
text), for the first 20 sampled instances even on 5 out of 6. Using the
PWC, our method is only the second best by a close margin after 40
and 60 samples on the vehicle data. After 20 samples random sam-
pling performed best. On the wine dataset, our method scores best
at 20 sampled instances but falls behind Entr later. As wine data is
easy to learn, it is important to mention that the performance almost
converged at 30 labels. In general the BvsSB and Entr algorithms
seem to be the most consistent competitors to McPAL in the experi-
ments, the former being the best scoring on the vehicle dataset after
40 samples and the latter outperforming McPAL on the wine dataset
after 40 samples.

A good active learning algorithm is characterized by a fast con-
vergence to a good final performance. As can be seen in Fig. 5, our
proposed method manages to reduce the classification error quicker
than its competitors, in some cases even starting out with a lower
error (e.g. ecoli, glass, yeast). Over all datasets, McPAL reduces the
error quicker than the other algorithms in the early steps. On top of
that, the McPAL algorithm shows a lower standard deviation across
all trials compared its competitors (indicated by the error bars in the
plots and the brackets in Tab. 4), making it not only the best perform-
ing but also the most stable method in the experiments.

For another perspective on the results, the performance of the al-
gorithms in comparison to randomly sampling instances (Rand, grey
dotted line) should be considered. In case of both the vehicle and
yeast dataset McPAL’s competitors surpass random instance sam-
pling only late in the learning process in terms of classification error.
Even on the iris dataset Conf, BvsSB and VoI struggle to perform
better than random selection.
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Figure 4. Learning curves of mean misclassification cost (including standard deviation as error bars) different variants of the McPAL algorithm on all six
datasets. The upper plots show results from the pKNN classifier, the lower ones with the PWC.

Table 3. Mean execution time for each algorithm for choosing one
instance for labeling on the specified dataset in s (sorted by dataset size)

Dataset McPAL BvsSB MaxEC. Conf Entr VoI Rand

Iris 0.363 0.085 0.083 0.097 0.092 15.94 0.001
Wine 0.584 0.145 0.148 0.153 0.147 36.22 0.001
Glass 1.794 0.200 0.205 0.204 0.204 136.1 0.001
Ecoli 4.590 0.306 0.317 0.313 0.308 518.5 0.001
Vehicle 2.128 0.389 0.394 0.385 0.386 NA 0.001
Yeast 28.06 1.175 1.207 1.171 1.186 NA 0.001

In Tab. 3, we summarized the mean execution time of all algo-
rithms on every dataset. Our proposed method does require more
time to sample an instance than its competitors with exception of the
VoI algorithm, which takes much longer than any other algorithm
used in the experiments. Due to the higher complexity of the McPAL
method in comparison to more simple methods like uncertainty-
based ones, a longer execution time is to be expected. Considering
the performance and stability of McPAL mentioned before, the in-
creased time requirement is still a good trade off. In contrast to the
fast methods, McPAL has an additional factor which is the sum over
each labeling that is dependent on the m value.

5 CONCLUSION

This paper addresses active learning for multiple classes. This chal-
lenging topic opens up different aspects like the combination of

the posterior vector into one comparable score. In this paper, we
proposed a new multi-class probabilistic active learning method
(McPAL) that addresses this problem in a decision-theoretic way. To
this end, we developed a generalized probabilistic model that com-
bines all of our mentioned influence factors impact, posterior, and
the reliability of the posterior. Our approach directly optimizes a per-
formance measure like accuracy, is non-myopic and fast. We showed
how the influence factors depend on each other in our probabilistic
framework and evaluated their behavior in multiple experiments. Es-
pecially the combination of the posterior and its reliability makes a
huge difference. Our experimental comparison with the most relevant
multi-class active learning approaches shows that McPAL is superior
in most cases or at least comparable. We suggest that our approach
can still be optimized by replacing the proxies of our influence fac-
tors by even more appropriate ones, which will be part of our future
research. The complete results together with an implementation are
available at our companion website7.
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Figure 5. Learning curves of mean misclassification cost (including standard deviation as error bars) of McPAL and its competitors on all six datasets using
the pKNN classifier.

Table 4. Mean misclassification cost and its standard deviation of the all algorithms on all six datasets using the Parzen window classifier. We report the
results after 20, 40, and 60 acquired labels. The best method is printed in bold numbers. Results showing significant superiority of McPAL against other

algorithms are indicated with *.

20 samples ecoli glass iris vehicle wine yeast

McPAL 22.70 (± 4.45) 30.17 (± 4.22) 3.94 (± 1.97) 149.14 (± 11.94) 2.66 (± 1.43) 275.24 (± 26.35)
BvsSB 24.75 (± 4.84) * 35.95 (± 5.57) * 12.63 (± 7.06) * 148.68 (± 18.25) 2.80 (± 1.67) 289.90 (± 23.13) *
MaxECost 25.42 (± 6.63) * 33.33 (± 5.09) * 8.23 (± 6.24) * 155.98 (± 17.71) 2.95 (± 1.88) 294.20 (± 32.95) *
Conf 24.64 (± 7.07) * 33.93 (± 5.02) * 12.48 (± 7.32) * 156.52 (± 17.19) 2.90 (± 1.79) 292.92 (± 34.42) *
Entr 26.94 (± 8.01) * 33.04 (± 5.50) * 14.61 (± 3.17) * 153.44 (± 18.82) 3.41 (± 1.76) * 298.60 (± 32.63) *
VoI 40.14 (± 9.59) * 38.20 (± 3.98) * 16.55 (± 2.67) * NA 2.89 (± 2.68) NA
Rand 32.52 (± 7.89) * 36.69 (± 5.00) * 9.91 (± 4.47) * 145.38 (± 13.27) 4.35 (± 3.04) * 300.12 (± 23.56) *

40 samples ecoli glass iris vehicle wine yeast

McPAL 19.15 (± 4.06) 29.14 (± 4.22) 2.85 (± 1.58) 125.88 (± 8.99) 1.78 (± 1.06) 258.36 (± 24.40)
BvsSB 21.02 (± 4.42) * 32.28 (± 4.36) * 11.78 (± 7.78) * 122.90 (± 14.43) 1.92 (± 1.26) 273.52 (± 22.95) *
MaxECost 20.80 (± 4.10) * 29.70 (± 4.46) 7.70 (± 6.44) * 131.82 (± 14.44) 1.90 (± 1.16) 274.54 (± 30.65) *
Conf 19.60 (± 4.30) 29.79 (± 4.87) 11.69 (± 7.79) * 133.56 (± 14.90) * 1.94 (± 1.19) 276.36 (± 32.40) *
Entr 23.55 (± 4.80) * 30.64 (± 4.61) * 13.88 (± 3.49) * 139.02 (± 18.57) * 1.77 (± 1.14) 284.38 (± 28.05) *
VoI 41.46 (± 7.22) * 38.06 (± 3.78) * 16.74 (± 2.58) * NA 1.92 (± 1.89) NA
Rand 29.80 (± 6.57) * 34.57 (± 5.18) * 8.28 (± 4.03) * 129.88 (± 13.31) 2.65 (± 1.61) * 281.84 (± 25.48) *

60 samples ecoli glass iris vehicle wine yeast

McPAL 18.41 (± 3.69) 27.08 (± 3.95) 5.81 (± 2.54) 115.26 (± 7.60) 1.63 (± 1.06) 244.12 (± 20.71)
BvsSB 19.69 (± 4.44) * 29.71 (± 4.22) * 12.71 (± 7.64) * 113.42 (± 9.95) 1.76 (± 1.13) 259.68 (± 22.66) *
MaxECost 20.29 (± 4.55) * 27.99 (± 4.25) 8.12 (± 5.62) * 120.06 (± 12.42) * 1.66 (± 1.03) 257.60 (± 26.75) *
Conf 19.91 (± 4.29) * 28.46 (± 4.59) * 12.40 (± 7.59) * 122.34 (± 13.39) * 1.62 (± 1.12) 259.98 (± 25.76) *
Entr 22.54 (± 4.55) * 31.65 (± 4.91) * 11.94 (± 4.07) * 126.06 (± 14.60) * 1.53 (± 1.00) 272.44 (± 24.93) *
VoI 34.20 (± 5.78) * 37.22 (± 4.72) * 15.06 (± 3.49) * NA 1.54 (± 1.22) NA
Rand 28.32 (± 5.65) * 33.55 (± 5.17) * 6.92 (± 2.76) * 123.28 (± 13.26) * 2.30 (± 1.43) * 276.42 (± 26.98) *
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