
Budgeted Multi–Armed Bandit in Continuous Action
Space

Francesco Trovò, Stefano Paladino, Marcello Restelli, Nicola Gatti1

Abstract. Multi–Armed Bandits (MABs) have been widely con-
sidered in the last decade to model settings in which an agent wants
to learn the action providing the highest expected reward among a
fixed set of available actions during the operational life of a system.
Classical techniques provide solutions that minimize the regret due
to learning in settings where selecting an arm has no cost. Though,
in many real world applications the learner has to pay some cost for
pulling each arm and the learning process is constrained by a fixed
budget B. This problem is addressed in the literature as the Budgeted
MAB (BMAB). In this paper, for the first time, we study the prob-
lem of Budgeted Continuous–Armed Bandit (BCAB), where the set
of the possible actions consists in a continuous set (e.g., a range of
prices) and the learner suffers from a random reward and cost at each
round. We provide a novel algorithm, named B–Zoom, which suffers

a regret of Õ(B
d+1
d+2), where d is the Zooming dimension of the prob-

lem. Finally, we provide an empirical analysis showing that, despite
a lower average performance, the proposed approach is more robust
to adverse settings as compared to existing algorithms designed for
BMAB.

1 Introduction

In a Multi–Armed Bandit (MAB) problem [3], an agent, called
learner, is allowed to select a single option, called arm, from a fi-
nite number of available options and to observe the corresponding
stochastic reward. The techniques developed for a MAB problem
minimize the loss, called regret, incurred during the learning process
and provide theoretical guarantees about convergence to the optimal
arm. Most regret–minimization algorithms available in the literature
provide solutions to the case in which there is a constraint over the
maximum number of rounds the agent is allowed to pull arms. How-
ever, in many applications, an agent is subject to different constraints.
A very common case is when the learner has a fixed budget which she
uses to pay a stochastic cost associated with the pulling of a specific
arm. Simply, the constraint over the budget reduces to the constraint
over the maximum number of rounds when each arm has a fixed uni-
tary cost.

In this setting, known as Budgeted MAB (BMAB) [10], the learner
is given a fixed budget in advance and she is allowed to pull arms
until the budget has been totally spent. The BMAB is able to model
a wide range of concrete applications. For instance, bidding in Spon-
sored Search Auctions (SSA) [6] when an advertiser has no infor-
mation neither about the probability of being clicked (usually called
click–through rate) nor about the cost of being clicked is a BMAB

1 Politecnico di Milano, Italy, email: {francesco1.trovo, stefano.paladino,
marcello.restelli, nicola.gatti}@polimi.it.

problem. In the same field, the problem of optimizing an advertis-
ing campaign presents a similar model. Another application that can
be modeled by means of a BMAB problem consists in determining
the optimal sensor to interrogate in a wireless sensor network sce-
nario [16, 18]. More precisely, when we retrieve information from
a sensor, we gain information about the monitored process and, at
the same time, we spend budget in terms of energetic costs. Also the
problem of a service provider trying to balance the costs of the em-
ployed resources and the revenues gained by the provided services
fits the BMAB model [2].

In many applications, the use of a finite set of arms provides an ex-
tremely raw model of the situation one studies, potentially forcing the
learner to pull only suboptimal arms and thus to suffer a linear regret
over time (or budget). Natural examples of spaces of continuous arms
are prices and costs. In this paper, to the best of our knowledge, we
study the first generalization of the BMAB to continuous arm spaces,
named the Budgeted Continuous–Armed Bandit (BCAB). In order to
cope efficiently with continuous space, we need additional assump-
tions over the regularity of the average reward and cost functions.
In particular, as customary in the literature on Continuous–Armed
Bandits (CAB), we assume Lipschitz continuity over the expected
reward and cost functions. Such an assumption is largely supported
by real–world scenarios, e.g., in SSAs similar bids have similar ex-
pected rewards and payments.

Related works A number of recent results on sequential learning
settings whose stopping time depends on a fixed budget can be found
in the literature. Some of them consider fixed costs [1, 7, 11, 17],
while others assume to have stochastic ones [10, 19, 20]. There is a
wide literature studying settings in which exploration and exploita-
tion phases are separate and only the exploration phase is subject
to costs [1, 7, 11]. Only few works consider settings with determin-
istic costs without separating exploration and exploitation phases. In
particular, in [17], the authors tackle the problem by relying on an ap-
proximated optimization technique of the unbounded knapsack prob-
lem, which hardly generalizes to the setting with stochastic costs.
[5, 10, 19, 20] consider the BMAB problem with stochastic rewards
and costs over a discrete space of arms. In [10], the authors propose a
frequentist approach that relies on UCB–like bounds [3] achieving an
O(logB) regret for a generic instance of the BMAB having budget
B. This approach has been extended to consider also linear bandits
in [19].2 [20] considers the Thompson sampling algorithm to solve
the budgeted MAB in the same setting having the same theoretical
upper bound by relying on a Bayesian framework. Finally in [5], an
algorithm providing a distribution–free bound of Õ(

√
B) has been

2 In linear bandit problems, the reward function is forced to be linear.

ECAI 2016
G.A. Kaminka et al. (Eds.)

© 2016 The Authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/978-1-61499-672-9-560

560

proposed.3

The literature provides a large number of results analyzing the
CAB setting without costs and budget [4, 8, 9, 12, 13, 14, 15]. The
CAB problem is arbitrarily hard in the general setting in which the re-
ward function can be arbitrary, presenting Θ(T) regret over a horizon
of T rounds. Positive results can be obtained when the reward func-
tion exhibits some structure. Under the assumption of Lipschitzianity
of the expected reward functions, the lower bound over the regret is
Ω(T 2/3) for the one dimensional version of the problem [14]. The
former techniques for the CAB problem are based, initially, on the
discretization of the action space by exploiting the structure of the
problem and, subsequently, on the adoption of MAB techniques over
the discretized problem [4, 9, 15] (let us notice that the application
of MAB algorithms to any “blind” discretization may lead to a regret
Ω(T)). Recently, new techniques adopting a different, more efficient,
approach which changes the set of arms during time on the basis of
the observed performance of the arms previously chosen have been
developed. One of the most promising techniques for this setting is
the Zooming algorithm [12, 13]. This algorithm is designed for CAB
problems in metric spaces and, differently from most of the previ-
ous works, that consider a uniform discretization of the space which
is fixed in advance, it starts from a single arm and, if needed, auto-
matically adds arms over time in the domain. Moreover, it provides

an upper bound on the regret of Õ(T
d+1
d+2), where d is the Zooming

dimension associated with the reward function (in the single dimen-
sion version d = 1 and therefore the Zooming algorithm matches
the lower bound). Another algorithm designed for the same setting is
called HOO [8]. It is based on the idea of using a search tree to find
the best arm. Although it assures an upper bound comparable to the

Zooming one of Õ(T
p+1
p+2), where p is the packing dimension, it may

have higher computational complexity.

Original contributions Our original contributions are as follow.
We design the first algorithm, named B–Zoom, able to work in the
BCAB setting; the B–Zoom algorithm extends the Zooming algo-
rithm to the case with budget. We provide a theoretical regret analysis

of the B–Zoom algorithm, showing that it suffers a regret Õ(B
d+1
d+2)

matching the regret of the Zooming algorithm in the case in which
the BCAB setting reduces to the CAB one (i.e., B = T and unitary
cost for all the arms). We experimentally evaluate B–Zoom compar-
ing its performance w.r.t. that of a number of frequentist algorithms.

2 Problem formulation

We denote by A ⊆ [0, 1] the space of the available actions, also
called arms, and by x a generic arm. In the BCAB setting, at each
round t ∈ N

+, a learner is allowed to choose an arm xt ∈ A.
She receives a reward rt(xt) and incurs a cost ct(xt). Rewards
rt(x) are realizations of i.i.d. random variables Rt(x) ∼ Dr([0, 1]),
where Dr([0, 1]) is a generic probability density function (pdf) over
support [0, 1], and expected value E[Rt(x)] = μr(x) with μr :
A → [0, 1]. Costs ct(x) are realizations of i.i.d. random variables
Ct(x) ∼ Dc([0, 1]), where Dc([0, 1]) is a generic pdf over support
[0, 1], and expected value E[Ct(x)] = μc(x) with μc : A → [λ, 1].
Here λ > 0 is a known lower bound on the average cost of an action,
needed to exclude the case with costless actions.4

3 We write un = Õ(vn) when un = O(vn) up to a logarithmic factor.
4 Without loss of generality, we considered from now on the setting in which

the arms are selected in A ≡ [0, 1] and average reward μr(x) and cost
functions μc(x) have images in [0, 1] for each x ∈ A. In the case that

A fixed budget B > 0 is available to the learner at the beginning
of the learning process. We denote by B(t) := B −∑t−1

i=1 ci(xi)
the residual budget available at round t due to the costs incurred in
having pulled the arms during the previous t− 1 rounds. As custom-
ary in the previous works on budget, in the case the learner is not
able to pay at t for the cost of the chosen arm xt, she is forced to
stop and does not gain any reward due to xt. Moreover, we assume
that the reward function μr(x) and cost function μc(x) are Lipschitz
with known constant Lr and Lc, respectively. These assumptions are
usual in Lipschitz bandits and here required to solve our problem.

A generic policy U for a BCAB problem is an algorithm able to de-
cide the arm xt to pull at round t, on the basis of the history in terms
of previous realizations of the rewards {r1(x1), . . . , rt−1(xt−1)},
costs {c1(x1), . . . , ct−1(xt−1)} and pulled arms {x1, . . . , xt−1}.
We define the stopping time ta of a generic policy U which chooses
arm xt at round t the longest t such that B(t) ≥ 0. Notice that ta
is a random variable depending on the costs Ct(x) and the initial
budget B.

In a BCAB problem, a policy should be able to select a sequence
of arms that minimizes the amount of budget spent and maximizes
the reward collected during the process. The loss of a generic policy
U in a BCAB problem with budget B is represented by the pseudo–
regret R(B):

R(B) = R∗(B)− Er,c

[
ta∑
t=1

rt(xt)

]
, (1)

where, R∗(B) is the optimal expected total reward when the distri-
bution of rewards Dr([0, 1]) and costs Dc([0, 1]) are known, i.e., the
one which solves the following stochastic optimization problem:

max
U

E

[
ta∑
t=1

rt(xt)

]
, s.t.

ta∑
t=1

ct(xt) ≤ B,

where the expected value E[·] is taken w.r.t. the randomness associ-
ated to the policy U, the rewards, and the costs.

3 The proposed method

In what follows, we introduce our algorithm named B–Zoom to
tackle the BCAB problem. The B–Zoom algorithm is based on the
idea of the Zooming algorithm and is its extension to the case where
a fixed budget B is available and the learner incurs a stochastic cost
Ct(x) in pulling arm x at round t. After a brief description of its main
features, we provide its theoretical analysis, giving an upper bound
over the pseudo–regret R(B).

3.1 The B–Zoom algorithm

Initially, we introduce the following function on which our algorithm
is based:

Definition 1. Given an average reward function μr(x) and an aver-
age cost function μc(x), we define the expected reward–to–cost ratio
function μ : A → [0, 1

λ

]
as:

μ(x) =
μr(x)

μc(x)
.

the space and the average functions are over different domains, a rescaling
procedure should be performed so they have values and images in [0, 1].

F. Trovò et al. / Budgeted Multi–Armed Bandit in Continuous Action Space 561

Algorithm 1 The B–Zoom Algorithm
1: Input: Budget B, Minimum average cost λ, Arm support setA
2: iph = 0
3: B(0)← B
4: t← 0
5: while B(t) > 0 do

6: iph ← iph + 1
7: X(iph)← ∅
8: for t ∈ {2iph−1, . . . , 2iph − 1} do

9: if B(t− 1) > 0 then

10: C ← ∪x∈X(iph)B(Et−1(x), x)

11: NC ← A \ C
12: if NC �≡ ∅ then
13: Randomly pick x ∈ NC
14: X(iph)← X(iph) ∪ {x}
15: r̄t(x)← 0
16: c̄t(x)← 0
17: nt(x)← 0
18: ut(x)← +∞
19: Et(xt)← +∞
20: Play arm xt s.t.: xt = argmaxx∈X(iph) ut(x)

21: Suffer cost ct(xt)
22: B(t)← B(t− 1)− ct(xt)
23: if B(t) ≥ 0 then

24: Gain reward rt(xt)
25: nt(xt)← nt−1(xt) + 1

26: r̄t(xt)← (nt(xt)−1)r̄t−1(xt)

nt(xt)
+

rt(xt)
nt(xt)

27: c̄t(xt)← (nt(xt)−1)c̄t−1(xt)

nt(xt)
+

ct(xt)
nt(xt)

28: Et(xt)← 1
λ

(
1 + 1

λ

)√ 8iph+ln(4)

nt(xt)

29: ut(x)← r̄t(x)
max{λ,c̄t(x)} + 2Et(x)

We can show that function μ(x) is Lipschitz when both μr(x) and
μc(x) are Lipschitz.

Lemma 1. Given an average reward function μr : A → [0, 1], Lr–
Lipschitz, and an average cost function μc : A → [λ, 1], λ > 0,
Lc–Lipschitz, the average reward–to–cost ratio function μ(x) is L′–
Lipschitz with L′ ≤ Lc+Lr

λ2 .

Proof. Thanks to the Lipschitz assumption over functions μr(x) and
μc(x), we have:

|μr(x1)− μr(x2)| ≤ Lr|x1 − x2| ∀x1, x2 ∈ [0, 1]

|μc(x1)− μc(x2)| ≤ Lc|x1 − x2| ∀x1, x2 ∈ [0, 1]

thus:

|μ(x1)− μ(x2)| =

=

∣∣∣∣μr(x1)

μc(x1)
− μr(x2)

μc(x2)

∣∣∣∣ = |μr(x1)μc(x2)− μr(x2)μc(x1)|
μc(x1)μc(x2)

≤ 1

λ2
|μr(x1)μc(x2)− μr(x1)μc(x1)+

+ μr(x1)μc(x1)− μr(x2)μc(x1)|
≤ 1

λ2
(μr(x1)|μc(x2)− μc(x1)|+ |μr(x1)− μr(x2)|μc(x1))

≤ Lc + Lr

λ2
|x1 − x2| ≤ L′|x1 − x2|.

From now on, without loss of generality, we assume L′ = 1 Lips-
chitz constant for the function μ(·). Indeed, a scaling procedure can
be always performed to obtain L′ = 1.

The B–Zoom algorithm pseudo–code is presented in Algorithm 1.
The functioning of the algorithm is split into temporal phases, where
the i–th phase is denoted by iph and the length of phase iph is 2iph−1

rounds. Each phase iph is associated with a (potentially different)
subset of arms X(iph) ⊂ A named active arms, which is initially
empty and is incrementally populated over the phase iph. Further-
more, each active arm x ∈ X(iph) is associated with an open ball
B(Et(x), x) with radius Et(x) and centered in x, where Et(x) is a
confidence radius defined as follows:

Et(x) =

{
1
λ

(
1 + 1

λ

)√ 8iph+ln(4)

nt(x)
if nt(x) > 0

+∞ otherwise
,

where nt(x) =
∑t

i=1 I{xi = x} is the number of rounds an arm x
has been pulled up to round t and I{·} is the indicator function. The
confidence radius Et(x) varies over time, reducing as the number of
rounds an arm x has been pulled increases. Notice that, if an active
arm x has never been pulled, its ball B(Et(x), x) contains entirely
A, the radius Et(x) being infinite independently of t.

At time t, we define the covering set of the active arms C =
∪x∈X(iph)B(Et−1(x), x) as the union of the balls of all the active
arms. We say that a set A is covered by C if and only if C ⊇ A.
The covering of a set A by C can be easily checked by means of a
covering oracle (as we discuss below for the sake of presentation);
we denote by NC := A\ C the subset of A that is not covered by C.

At each round t, the first task accomplished by the B–Zoom algo-
rithm is to decide whether or not to add new active arms. The ratio-
nale whereby such a decision is taken follows. If at round t the arm
space A is not covered by the covering set C of active arms X(iph),
the algorithm randomly draws an arm x ∈ NC with an arbitrary
probability distribution and add it to the active arm set X(iph). No-
tice that, independently of the shape of NC, no more than one active
arm is added at each round t. Indeed, once an active arm has been
added, the radius of its ball is, by definition, infinite and therefore the
new covering set C covers the whole arm space A.

At each round t, once the coverage of A by C has been evaluated
and, potentially, a new active arm has been introduced in X(iph), the
B–Zoom algorithm plays the arm xt ∈ X(iph) having the maximum
upper bound ut(xt) defined as:

ut(x) =
r̄t(x)

max {λ, c̄t(x)} + 2Et(x), (2)

where r̄t(x) =
∑t

i=1 ri(x)I{xi=x}
nt(x)

and c̄t(x) =
∑t

i=1 ci(x)I{xi=x}
nt(x)

are the estimated average reward and cost for arm x, respectively.
The idea behind the computation of ut(x) is that we want to upper
bound (in high probability) the average reward–to–cost ratio func-
tion μ(x) with the first term in the r.h.s. of Equation 2 plus a radius
Et(x) and we consider another radius Et(x) to be able to bound
μ(x̃) for all arms x̃ ∈ B(Et(x), x) by relying on the Lipschitzianity
of the function μ(x). Once the arm xt has been played, the B–Zoom
algorithm pays a cost ct(xt) and, in the case there is still enough
budget remaining B(t) > 0, it gains reward rt(xt) and updates
the necessary statistics r̄t(xt), c̄t(xt) and nt(xt) corresponding to
arm xt, otherwise the algorithm stops. Notice that, in ut(x), we use
max {λ, c̄t(x)} in place of the unbiased estimator c̄t(x) since for
some realizations it could happen that c̄t(x) < λ, but we a priori
know that μc(x) ≥ λ.

The B–Zoom algorithm does not require the setting of any param-
eter, but it requires information about the Lipschitz constant L′ (or
equivalently of the constants Lr and Lc related to the average re-
wards and costs, respectively) and of the minimum average cost λ.
Moreover, it requires also a covering oracle. In the case the arm space
A is one dimensional, we can state the following (the complexity in
higher dimensional spaces might be higher [8]).

F. Trovò et al. / Budgeted Multi–Armed Bandit in Continuous Action Space562

Theorem 1. A covering oracle for the B–Zoom algorithm over A ⊂
R has computational complexity O(n), where n = |X(iph)| and | · |
is the cardinality operator.

Proof. Let us suppose that at a given round t we are storing in
a list s for each arm x ∈ X(iph) an interval [pt(x), qt(x)] =
[x − Et−1(x), x + Et−1(x)] and we ordered them w.r.t. ascending
values of pt(x). At each new round, we have either to insert a new
arm or modify the confidence radius of an existing one. In the case
we introduce a new arm xj in the set of active arms X(iph), we need
to insert the interval [pt(xj), qt(xj)] in the ordered list s. This op-
eration requires a computational cost of O(log2(n)) (binary search).
Otherwise, if an existing arm x is selected, we have to delete the
old interval [pt−1(x), qt−1(x)] from the list s and insert the new one
[pt(x), qt(x)], which has a total computational cost of O(log2(n)).

After that, we need to form the covering set C. Let us
assume that the list of intervals is s = {I1, . . . , In} =
{[pt(x1), qt(x1)], . . . , [pt(xn), qt(xn)]} (with pt(x1) ≤ . . . ≤
pt(xn)). At first, we have C1 = I1. For each i ∈ {2, . . . , n} we
perform Ci = Ci−1 ∪ Ii. If Ci is still an interval, i.e., if we have
cM ≥ pt(xi) with Ci−1 = [cm, cM], we continue the procedure,
otherwise we can say that the set A is not covered by C. If we reached
the n–th interval and Cn = C ⊇ A, then A is covered by C. This pro-
cedure consists in a maximum of n interval union operations, whose
cost is constant. Thus, the computation of the covering set has re-
quires a computational cost of O(n). By considering an empty list s
at the first round and by using an inductive argument, we complete
the proof.

At each round t, the B–Zoom algorithm has a computational com-
plexity of O(n) with n ≤ t due to the complexity of the covering or-

acle. Moreover, notice that n is upper bounded by O
(

λ4

(λ+1)2
t

ln(t)

)
and therefore in practice n � t. For comparison, the HOO algorithm
[8], in its general formulation requires O(t) at turn t.

3.2 Theoretical analysis

Considering the problem formulation described in Section 2, we can
show that:

Theorem 2. The regret R(B) over a generic BCAB problem of the
B–Zoom algorithm is:

R(B) ≤ C̃ · (ln(B))
1

d+2 ·B d+1
d+2 ,

where d is the Zooming dimension of the Lipschitz MAB problem
(A, l, μ), with l(x, y) = L′|x−y|, and C̃ is an appropriately defined
constant.

Proof. At first, by defining the arm with largest expected reward–to–
cost ratio x∗ ∈ A as:

x∗ := argmax
x∈A

μ(x) = argmax
x∈A

μr(x)

μc(x)
,

we are able to decompose regret R(B) defined in Equation (1) into
two parts:

R(B) =R∗(B)− Er,c

⎡
⎣ t∗a∑

t=1

rt(x
∗)

⎤
⎦

︸ ︷︷ ︸
R1

+

+ Er,c

⎡
⎣ t∗a∑

t=1

rt(x
∗)

⎤
⎦− Er,c

[
ta∑
t=1

rt(xt)

]
︸ ︷︷ ︸

R2

,

where R1 is the component considering that the best possible strat-
egy is not the one choosing always x∗ until t∗a (the stopping round of
action x∗), and R2 is the component considering the loss due to the
process of finding the arm x∗.

Regret R1 can be bounded by trivially extending the result dis-
cussed in [20] for BMAB to the case of BCAB:

Lemma 2. Given any instance of the BCAB problem we have:

R1 ≤ 2μ(x∗) = 2
μr(x

∗)
μc(x∗)

≤ 2

λ
.

Instead, bounding R2 is not trivial. For sake of clarity, we divide
the proof into three steps. In the first step, we define an auxiliary Lip-
schitz CAB problem (A, l, μ), i.e., a CAB problem without budget
or, equivalently, in which each arm has unitary cost and the budget
corresponds to a temporal deadline. We show that the execution of
the B–Zoom algorithm up to t = ta to problem (A, l, μ) is equiva-
lent to the execution of a modified version of the Zooming algorithm.
We use this relation to bound the regret of this problem with RΔ(t)
over a generic horizon t ≤ ta. In the second step, we show that R2

is bounded by RΔ(ta). In the third step, we derive the relationship
between the stopping round ta and the budget B of a BCAB problem
and use it to formulate the bound over R2 in terms of the budget B.

Step 1. Since Lemma 1 holds, the instance of the CAB problem
(A, l, μ), with l(x, y) = L′|x − y|, is a Lipschitz MAB problem
[13]. The regret of the B–Zoom algorithm executed over the Lips-
chitz problem (A, l, μ) at round t ≤ ta is defined as:

RΔ(t) :=

log2(t)∑
iph=1

∑
x∈X(iph)

(
μr(x

∗)
μc(x∗)

− μr(x)

μc(x)

)
nt(x)

=

log2(t)∑
iph=1

∑
x∈X(iph)

(μ(x∗)− μ(x))nt(x).

By verifying that the bounds used in the B–Zoom algorithm satisfy
the properties required in Lemma 4.15 in [13] we are able to resort
on the regret bound results presented in the same work. More specifi-
cally we require that the following two properties are satisfied by the
B–Zoom algorithm:

Property 1. Consider an instance of the Lipschitz CAB problem
(A, l, μ) and a generic algorithm U considering estimates μ̂(x) and
confidence radius bt(x) for the arm x in phase iph. A phase iph is
clean with probability δ if for each t s.t. 2iph ≤ t ≤ 2iph+1 − 1 and
for each arm x ∈ A:

|μ̂(x)− μ(x)| < rt(x)

holds with probability at least 1− δ.

Property 2. Consider the instance of the Lipschitz CAB problem
(A, l, μ) and a generic algorithm U considering estimates μ̂(x) and
confidence radius bt(x) for the arm x in phase iph. The radius bt(x)
is (c0, β)–good if there exist c0 > 0 and β > 0, at a given phase
iph s.t. for all x ∈ X(iph) if μ(x∗) − μ(x) < Et(x) then nt(x) ≤
c0(μ(x

∗)− μ(x))−βiph.

F. Trovò et al. / Budgeted Multi–Armed Bandit in Continuous Action Space 563

At first, we want to show that both these properties are satisfied by
the B–Zoom algorithm when applied to problem (A, l, μ).

Lemma 3. Each phase iph of the B–Zoom algorithm applied to
Lipschitz CAB problem (A, l, μ) is clean with probability at least
1− 4−iph .

Proof. The proof will show that the probability of the phase iph of
not being clean is smaller than t−4. Since the B–Zoom algorithm
considers estimates μ̂(x) := r̄t(x)

c̄t(x)
and radius bt(x) := Et(x), we

have that:

P

[∣∣∣∣ r̄t(x)c̄t(x)
− μ(x)

∣∣∣∣ > Et(x)

∣∣∣∣x = xj

]

= P

[∣∣∣∣ r̄t(x)c̄t(x)
− μr(x)

μc(x)

∣∣∣∣ > Et(x)

∣∣∣∣x = xj

]

= P

⎡
⎢⎢⎢⎣ r̄t(x)c̄t(x)

− μr(x)

μc(x)
> Et(x)︸ ︷︷ ︸

e1

∣∣∣∣∣∣∣∣∣
x = xj

⎤
⎥⎥⎥⎦+

+ P

⎡
⎢⎢⎢⎣ r̄t(x)c̄t(x)

− μr(x)

μc(x)
< −Et(x)︸ ︷︷ ︸

e2

∣∣∣∣∣∣∣∣∣
x = xj

⎤
⎥⎥⎥⎦ .

The event e1 implies that at least one of the following two inequal-
ities holds:

• r̄t(x) ≥ μr(x) + εt(x),
• c̄t(x) ≤ μc(x)− εt(x),

where εt(x) =
√

8iph+ln 4

nt(x)
. In fact, if r̄t(x) ≤ μr(x) + εt(x) ∧

c̄t(x) ≥ μc(x)− εt(x) and since c̄t(x) ≥ λ, ∀x ∈ A, we have:

r̄t(x)

c̄t(x)
− μr(x)

μc(x)
=

r̄t(x)μc(x)− μr(x)c̄t(x)

c̄t(x)μc(x)

±μc(x)μr(x)
=

[r̄t(x)− μr(x)]μc(x) + [μc(x)− c̄t(x)]μr(x)

c̄t(x)μc(x)

≤ εt(x)μc(x) + εt(x)μr(x)

c̄t(x)μc(x)
=

=
εt(x)

c̄t(x)
+

εt(x)μr(x)

c̄t(x)μc(x)
≤ εt(x)

λ
+

εt(x)

λ2

=
1

λ

(
1 +

1

λ

)
εt(x) = Et(x).

The event e2 implies that at least one of the following two inequal-
ities holds:

• r̄t(x) ≤ μr(x)− εt(x),
• c̄t(x) ≥ μc(x) + εt(x).

In fact, if r̄t(x) ≥ μr(x)− εt(x)∧ c̄t(x) ≤ μc(x)+ εt(x) we have:

r̄t(x)

c̄t(x)
− μr(x)

μc(x)
=

r̄t(x)μc(x)− μr(x)c̄t(x)

c̄t(x)μc(x)

±μc(x)μr(x)
=

[r̄t(x)− μr(x)]μc(x) + [μc(x)− c̄t(x)]μr(x)

c̄t(x)μc(x)

≥ −εt(x)μc(x)− εt(x)μr(x)

c̄t(x)μc(x)
=

= −εt(x)

c̄t(x)
− εt(x)μr(x)

c̄t(x)μc(x)
≥ −εt(x)

λ
− εt(x)

λ2

= − 1

λ

(
1 +

1

λ

)
εt(x) = −Et(x)

Thus, we can write:

P

[∣∣∣∣ r̄t(x)c̄t(x)
− μ(x)

∣∣∣∣ > Et(x)

∣∣∣∣x = xj

]
≤

P [r̄t(x) ≥ μr(x) + εt(x)] + P [c̄t(x) ≤ μc(x)− εt(x)] +

+ P [r̄t(x) ≤ μr(x)− εt(x)] + P [c̄t(x) ≥ μc(x) + εt(x)] .

We can provide a bound to each single term in the r.h.s. of the previ-
ous inequality by means of the Hoeffding’s bound:

P

[∣∣∣∣ r̄t(x)c̄t(x)
− rt(x)

ct(x)

∣∣∣∣ > Et(x)

∣∣∣∣x = xj

]

≤ t−4

4
+

t−4

4
+

t−4

4
+

t−4

4
= t−4

with εt(x) =
√

8iph+ln 4

nt(x)
.

Taking the union bound over all the nt(x) < t, integrating over
xj ∈ [0, 1] and taking the union bound over i ∈ [0, t] concludes the
proof.

Lemma 4. The radius Et(x) of the B–Zoom algorithm applied to
Lipschitz CAB problem (A, l, μ) is (c0, β)–good with c0 = 10(1+λ)2

λ4

and β = 2.

Proof. By using the definition of Et(x) in the B–Zoom algorithm
and by defining Δ := μ(x∗)− μ(x):

Δ < Et(x)

Δ <
1

λ

(
1 +

1

λ

)√
8iph + ln 4

nt(x)√
8iph + ln 4

nt(x)
>

λ2Δ

1 + λ

10iph
nt(x)

>
λ4Δ2

(1 + λ)2

nt(x) <
10(1 + λ)2

λ4
Δ−2iph

thus, taking c0 = 10(1+λ)2

λ4 and β = 2 concludes the proof.

Since both Lemmas 3 and 4 hold, it is possible to use Lemma 4.15
in [13] to bound the regret RΔ(t) of the B–Zoom algorithm applied
to the Lipschitz CAB problem (A, l, μ).

Theorem 3. Consider the instance of the Lipschitz MAB problem
(A, l, μ). Fix any c > 0 and let d be the Zooming dimension with
multiplier c [13]. The regret RΔ(t) of the B–Zoom algorithm satis-
fies:

RΔ(t) ≤ C̄(ln(t))
1

d+2 · t d+1
d+2 ,

for any t > 0, where C̄ is an appropriate constant (depending on c).

F. Trovò et al. / Budgeted Multi–Armed Bandit in Continuous Action Space564

Step 2. In what follows, we bound R2 in terms of RΔ(ta). It can
be observed that, by considering the arm xt selected by the B–Zoom
algorithm at round t, we have the guarantee that at each round t it
holds μ(x∗) − μ(xt) ≤ 3Et(xt). Notice that this inequality does
not represent a bound on the instantaneous regret μr(x

∗) − μr(xt).
Indeed, the limit of the difference μr(x

∗)− μr(xt) as 3Et(xt) goes
to zero may be a constant 1−λ (e.g., consider the case: μr(x

∗) = 1,
μc(x

∗) = 1, μr(xt) = λ − ε and μc(xt) = λ with ε � λ; we
have μ(x∗) − μ(xt) = ε

λ
while μr(x

∗) − μr(xt) = 1 − λ + ε),
and therefore the results described in [13] cannot be directly applied
to bound R2. Instead, to bound R2, we restate R2 as:

R2 = Er,c

⎡
⎣ t∗a∑

t=1

rt(x
∗)

⎤
⎦− Er,c

[
ta∑
t=1

rt(xt)

]
=

= Ec

⎡
⎣Er

⎡
⎣ t∗a∑

t=1

rt(x
∗)

⎤
⎦− Er

[
ta∑
t=1

rt(xt)

]⎤⎦ =

= Ec

⎡
⎣μr(x

∗)t∗a −
log2(ta)∑

iph

∑
x∈X(iph)

μr(x)niph(x)

⎤
⎦

︸ ︷︷ ︸
R2

,

where X(iph) is the set of active arms in phase iph and niph(x) is
the number of rounds we pull x during phase iph. Let us consider a
generic round t ≤ ta, with residual budget B(t) = B − B̄ ≥ 0.
With notation overload, we denote by B(x, iph) the amount of bud-
get spent by arm x in phase iph. Each arm x ∈ X(iph) spent
B(x, iph) = μc(x)niph(x) in the phase iph (in expectation w.r.t. the

reward) and
∑log2(t)

iph=1

∑
x∈X(iph) B(x, iph) = B̄. Let us define

t∗(x) :=
μc(x)niph

(x)

μc(x∗) for every x ∈ X(iph) and for every iph, i.e.,
the amount of rounds the arm x∗ should be pulled to spend a budget
of B(x, iph) = μc(x)niph(x). To bound R2, we need to consider

t = ta. It is easy to show that
∑log2(ta)

iph=1

∑
x∈X(iph) t

∗(x) = t∗.
Thus, we have:

R2 =

log2(ta)∑
iph=1

∑
x∈X(iph)

(
μr(x

∗)t∗(x)− μr(x)niph (x)
)

=

log2(ta)∑
iph=1

∑
x∈X(iph)

(
μr(x

∗)
μc(x)

μc(x∗)
niph (x)− μr(x)

μc(x)

μc(x)
niph (x)

)

=

log2(ta)∑
iph=1

∑
x∈X(iph)

(
μr(x∗)
μc(x∗)

− μr(x)

μc(x)

)
niph (x)μc(x)

≤
log2(ta)∑
iph=1

∑
x∈X(iph)

(
μr(x∗)
μc(x∗)

− μr(x)

μc(x)

)
niph (x) = RΔ(ta),

where the last inequality holds since μc(x) ≤ 1 for every x ∈ A.
Step 3. In this step we formulate the regret for the Lipschitz CAB

problem (A, l, μ), previously defined on the basis of ta, as depending
on B. Initially, we state:

Lemma 5. For each δ ∈ (0, 1), with probability at least 1 − δ, the
number of rounds t used to spend a budget of B̄ is:

t ≤ B̄

λ
+

2(1− λ)

λ
√
λ

√
B̄ ln(1/δ) +

(
1− λ

λ

)2

ln(1/δ).

Proof. Consider the unbiased estimator of the average cost

∑t
i=1 ci(xi)

t
until round t, we have:

P

(∑t
i=1 ci(xi)

t
≤ λ− ε

)

≤ P

(∑t
i=1 ci(xi)

t
≤
∑t

i=1 μc(xi)

t
− ε

)

since μc(x) > λ for every x ∈ A. Thus, we can bound the r.h.s. of
the previous equation by using the Hoeffding’s bound:

P

(∑t
i=1 ci(xi)

t
≤ λ− ε

)
≤ δ → ε =

√
ln(1/δ)(1− λ)2

2t

At round t and with probability at least 1− δ the budget spent is:

B̄ ≥ t

(
λ−
√

ln(1/δ)(1− λ)2

2t

)

2λt−
√

2 ln(1/δ)(1− λ)2t1/2 − 2B̄ ≤ 0

t1/2 ≤
√

2 ln(1/δ)(1− λ)2 +
√

2 ln(1/δ)(1− λ)2 + 16λB̄

4λ

t1/2 ≤
√

2 ln(1/δ)(1− λ)2 +
√

2 ln(1/δ)(1− λ)2 +
√
16λB̄

4λ

t ≤
(
4(1− λ)

√
ln(1/δ) + 4

√
λB̄

4λ

)2

t ≤
(√

B̄

λ
+

(1− λ)
√

ln(1/δ)

λ

)2

t ≤ B̄

λ
+

2(1− λ)

λ
√
λ

√
B̄ ln(1/δ) +

(
1− λ

λ

)2

ln(1/δ)

which concludes the proof.

Since the bound in Lemma 5 holds also for the stopping round
ta (when the budget spent is B), by considering δ = B−

1
d+2 and

ln(B) ≤ B we have:

ta ≤ B

λ
+

2(1− λ)

λ
√
λ

√
B ln(1/δ) +

(
1− λ

λ

)2

ln(1/δ)

ta ≤ B

λ
+

2(1− λ)

λ
√
λ
√
d+ 2

B +

(
1− λ

λ

)2
B

d+ 2

ta ≤ 6

λ2(d+ 2)
B

Finally, by taking the expectation over time (or over costs equiva-
lently), we have that there exists constant C̃ (depending on λ, d and
c) s.t.:

R(B) ≤ R1 + (1− δ)R2 + δB

≤ R1 + (1− δ)RΔ(ta) + δB

≤ 2

λ
+ (1− δ)C̄(ln(ta))

1
d+2 · t

d+1
d+2
a + δB

≤ 2

λ
+ C̄(ln(B))

1
d+2 ·B d+1

d+2) + δB

≤ C̃(ln(B))
1

d+2 ·B d+1
d+2

which concludes the proof.

F. Trovò et al. / Budgeted Multi–Armed Bandit in Continuous Action Space 565

4 Experimental analysis

In this section, we evaluate the empirical performance of the B–
Zoom algorithm. Our evaluation is twofold and it is based on the
comparison with other frequentist algorithms, ours being of this
class. In particular, we compare the performance of the B–Zoom al-
gorithm (denoted BZ for short) w.r.t. the one of the Zooming algo-
rithm [12] (denoted Z for short) suited for CAB problems, analyz-
ing empirically the impact of taking into account explicitly informa-
tion about budget and costs. We recall indeed that, in the worst–case
analysis, the Zooming algorithm performs arbitrarily worse than the
B–Zoom one if a budget constraint is present, since it is assured to
find the arm maximizing the expected reward, which in general is
different from the optimal reward–to–cost ratio optimal arm x∗. Fur-
thermore, we empirically analyze the impact of exploiting informa-
tion about the continuous structure of the arm space by comparing
the performance of the B–Zoom algorithm w.r.t. the UCBBV1 algo-
rithm [10], designed for BMAB problems, and the UCB1 [3] one,
designed for MAB problems, both applied to a finite set of arms ob-
tained by some discretization of the arm space A and kept fixed for
all the rounds. We recall that in the worst–case analysis the UCBBV1
and UCB1 algorithms applied to a finite set of arms randomly drawn
from the arm space perform arbitrarily worse than the B–Zoom al-
gorithm when expected reward and costs are Lipschitz. Indeed, con-
sider the case the reward–to–cost ratio μ(x) is flat except for a small–
supported peak in which there is the optimum. The UCBBV1 algo-
rithm might perform as good as a random choice when the finite set
of arms is such that all the arms are positioned in the flat part of μ(x).

In what follows, we consider the cumulative profit of a policy U
over a fixed budget B as figure of merit, defined as:

PU(B) =

ta∑
t=1

rt(xt).

Experimental setting To provide a thorough experimental eval-
uation of each algorithm, we consider different settings with
budget B ∈ {50, 000; 100, 000; 500, 000} and with λ ∈
{0.05; 0.10; 0.25; 0.50}. We select the average reward–to–cost ratio
functions μ(x) s.t. the average reward μr(x) and cost μc(x) are:

μr(x) = 0.05x+ 0.95,

μc(x) = λ+
1

5

(
1− e−500(x−x̃)2

)
,

where x̃ is the arm with the lowest expected cost. The value for the
arm x̃ is sampled for each of the experiments from a uniform dis-
tribution over [0, 1]. The instantaneous reward rt(x) and cost ct(x)
for pulling an arm x are sampled from Bernoulli distributions, i.e.,
Rt(x) ∼ Be(μr(x)) and Ct(x) ∼ Be(μc(x)), respectively. The
above functions are modeling a setting where the reward is linearly
increasing in the value x ∈ A of the arms and the cost is constant
except for a small area around x̃, where it is sensibly lower, which
generates a unimodal reward–to–cost ratio function. For each pair
of values of B and λ, we generate 100 different instances charac-
terized by potentially different reward–to–cost ratio functions. Given
the empirical profit obtained by an algorithm over the 100 instances,
we compute the empirical mean P̄ , the minimum m, the 25–th per-
centile Q1 (first quartile) and the 50–th percentile Q2 (second quar-
tile or median value).

For the UCBBV1 and UCB1 algorithms we use different numbers
of arms K ∈ {5, 10, 15} randomly placed over the arm space A.
For sake of comparison, we here adopt a version of the B–Zoom

Table 1 Results for the cumulative profit provided in thousand of re-
ward units. The highest cumulative profit for each row is highlighted
in bold.

PBZ PZ PUCBBV 1 PUCB1

K – – 5 10 15 5 10 15

λ
=

0
.0
5 m 203 199 198 199 199 198 199 198

Q1 212 200 200 203 204 201 207 203
Q2 215 201 204 215 213 206 216 209
P̄ 217 212 266 236 216 215 216 211

λ
=

0
.1

m 170 165 165 165 166 165 166 166
Q1 175 166 167 168 172 167 168 169
Q2 180 167 173 184 192 171 174 174
P̄ 181 173 230 224 219 178 176 176

λ
=

0
.2
5 m 113 110 110 111 110 110 110 111

Q1 117 111 111 112 118 111 112 112
Q2 119 111 114 129 144 112 114 115
P̄ 119 115 134 139 142 115 115 115

λ
=

0
.5

m 72 71 71 71 71 71 71 71
Q1 73 71 71 72 74 71 72 72
Q2 74 71 72 77 85 72 73 73
P̄ 74 74 78 80 83 73 73 73

B = 50, 000

λ
=

0
.0
5 m 413 397 398 398 400 397 397 398

Q1 428 400 400 405 414 400 410 411
Q2 442 401 408 429 459 413 432 423
P̄ 442 426 542 554 520 427 436 426

λ
=

0
.1

m 347 331 330 332 332 332 332 332
Q1 362 333 334 336 342 334 337 341
Q2 372 334 345 386 430 341 353 348
P̄ 374 351 463 476 494 353 353 352

λ
=

0
.2
5 m 232 221 221 221 221 221 222 221

Q1 242 222 223 224 236 223 225 226
Q2 246 222 231 263 311 225 231 230
P̄ 247 230 275 284 301 230 231 231

λ
=

0
.5

m 145 142 142 143 143 142 142 142
Q1 150 143 143 143 147 143 143 144
Q2 152 143 144 161 171 144 146 145
P̄ 152 147 156 164 168 146 146 146

B = 100, 000

λ
=

0
.0
5 m 2129 1995 1995 1997 1998 1996 1994 1995

Q1 2249 2001 2002 2037 2083 2001 2042 2060
Q2 2368 2005 2050 2999 2654 2088 2155 2123
P̄ 2376 2111 3383 4372 4022 2171 2162 2146

λ
=

0
.1

m 1923 1661 1662 1664 1666 1662 1664 1664
Q1 2120 1666 1667 1682 1788 1667 1687 1707
Q2 2308 1669 1700 2201 3076 1675 1757 1769
P̄ 2267 1725 2457 2758 3082 1756 1769 1768

λ
=

0
.2
5 m 1360 1107 1109 1110 1109 1108 1110 1109

Q1 1432 1111 1111 1187 1248 1112 1115 1124
Q2 1471 1112 1142 1599 1743 1123 1145 1142
P̄ 1461 1142 1343 1554 1608 1153 1152 1149

λ
=

0
.5

m 784 712 713 713 714 713 713 712
Q1 807 714 715 718 800 715 716 719
Q2 821 715 730 874 928 722 729 729
P̄ 816 724 808 845 890 735 730 731

B = 500, 000

and Zooming algorithms that do not consider exponentially long
phases iph, but we use a single phase and a confidence radius equal

to Et(x) = 1
λ

(
1 + 1

λ

)√ 8(lnB−lnλ)+ln 4
nt(x)

, where the term B
λ

is a
rough estimation of the average stopping time of the learning process.
The experiments here reported have been performed in MATLAB.

Results We report in Table 1 the results of our experiments. Ini-
tially, we focus on the empirical mean P̄ . The B–Zoom algorithm
outperforms the Zooming one for all the configurations, providing
a larger profit up to about 30%. This was expected since the B–
Zoom algorithm exploits more information than the Zooming al-
gorithm. Similar results can be observed when compared with the
UCB1. Unexpectedly, the UCBBV1 applied to a randomly gener-

F. Trovò et al. / Budgeted Multi–Armed Bandit in Continuous Action Space566

ated set of arms outperforms the B–Zoom algorithm for all the con-
figurations, providing a larger profit up to about 40%. In order to
understand the reasons behind such a behavior, we need to focus on
the other indices: m, Q1, and Q2. The B–Zoom algorithm in most
of the cases outperforms the other algorithms for the indices m and
Q1. More specifically, with B = 50, 000 all the minimum values m
provided by the B–Zoom algorithm are higher than the one achieved
by other algorithms and the difference in terms of cumulative profit
increases as the minimum average cost λ decreases. In this setting,
when λ = 0.05 and λ = 0.10 even the first quartile Q1 has higher
values. Conversely, in terms of median (Q2), the UCBBV1 algorithm
with K = 15 arms provides the largest profit in most of the settings,
despite being less robust to unfavorable cases. Similar results also
hold for the settings with B = 100, 000 and B = 500, 000. These
results suggest that the B–Zoom algorithm is the most robust algo-
rithm in the worst case, assuring the best performance for m and Q1,
but, in order to be robust, it must pay a cost in the average case (and
in some situations in the median case). This suggests also that, in our
experiments, the worst case occurs with low probability, otherwise
the B–Zoom algorithm would provide good performance also for the
empirical mean P̄ . This is clear by observing Figure 1, where we re-
port the boxplot for the case with B = 100, 000 and λ = 0.10: the
B–Zoom algorithm provides the best performance at m and Q1, but
it also presents a compact distribution with an extremely low vari-
ance. Instead, the performance of the UCBBV1 algorithm presents
a very large variance that allows it to have both poor and excellent
profits.

By analyzing how different values of initial budgets B affect the
performance of the algorithms, we can observe how the B–Zoom
algorithm is able to improve the minimum cumulative profit from
approximately 1% in the case B = 50, 000 scenario to more than
10% in the case B = 500, 000. This behavior was expected since
we have assurance of convergence to the optimal solution for the B–
Zoom algorithm, while an algorithm relying on a fixed discretization
of the space or considering a different minimization objective func-
tion (loss of cumulative reward) might not converge to the optimal
arm.

B
-Z
oo
m

Zo
om

in
g

U
C
B
-B
V
1

K
=
5

U
C
B
-B
V
1

K
=
10

U
C
B
-B
V
1

K
=
15 U

C
B
1

K
=
5

U
C
B
1

K
=
10

U
C
B
1

K
=
15

2

3

4

5
·106

Figure 1. Boxplots of PU(500, 000) for different algorithms with λ = 0.1

Summarily, the theoretical guarantee over the regret minimization
of the B–Zoom algorithm represents an intrinsic limit to outperform

Table 2 Results for the cumulative profit with fixed cost λ = 0.5,
provided in thousands of reward units. The highest cumulative profit
for each budget and row is highlighted in bold.

PZ PUCB1 PZ PUCB1 PZ PUCB1

K – 5 10 15 – 5 10 15 – 5 10 15

m 0.7 0.0 0.0 0.0 2.6 0.0 0.0 0.0 43.3 0.0 0.0 0.0
Q1 1.4 0.0 0.0 1.5 4.0 0.0 0.4 2.4 48.6 0.0 8.0 27.2
Q2 2.0 0.1 2.9 5.7 4.7 0.3 5.7 11.7 53.2 14.7 46.3 70.7
P̄ 1.9 2.2 3.4 4.7 5.0 4.6 7.2 9.3 51.9 32.3 48.6 60.1

B = 50, 000 B = 100, 000 B = 500, 000

other algorithms that do not have any theoretical guarantee in terms
of mean empiric profit. However, the B–Zoom algorithm is more ro-
bust w.r.t. the other algorithms in terms of the minimum m and first
quartile Q1 of cumulative profit. In principle, this makes the B–Zoom
algorithm more suitable for situations in which the learner is risk
averse.

Additional results On the basis of the results described above, we
investigate whether the poor performance in terms of empiric mean
profit of the B–Zoom algorithm is intrinsic in the need for being ro-
bust to the worst case with continuous arm space independently of
the presence of budget constraints or it is due exclusively to the pres-
ence of budget constraints in continuous arm space. To evaluate this
issue, we compare the performance of an algorithm suited for the
CAB case, i.e., the Zooming algorithm, versus the one provided by a
discrete MAB, i.e., the UCB1, once a random discretization of the
space is applied reducing the budget constraint to a time horizon
constraint. We consider a setting with fixed costs for all the arms
Ct(x) = λ, ∀x, t and rewards Rt(x) drawn from Bernoulli distribu-
tions with expected value μr(x) =

1
5
e−500(x−x̃)2 and x̃ is uniformly

drawn from [0, 1], where the optimal arm x̃ for the reward–to–cost
ratio function coincides with the optimal arm for the reward func-
tion. In this way, the BCAB problem reduces to a CAB problem with
T = B/λ. We repeat the experiments for 100 independent runs.

We report our experimental results in Table 2. Even in these ex-
periments the continuous approach is able to provide a risk–averse
alternative to the discretized ones, at the expense of loss in terms of
average performance. Again, the values for the minimum m is always
higher and the first quartile Q1 is higher in the case we have a larger
budget. This behaviour is explained by the fact that the Zooming
algorithm always adds arms over the whole space to cope with pos-
sible worst–case settings, which decreases its average performance.
The loss due to the introduction of such arms is balanced by the con-
vergence to the optimal arm, which asympotically provides higher
profits and at the same time is able not to reduce the losses in unfa-
vorable settings.

5 Conclusions and future works

In this paper, we present a new problem, the Budgeted Continuous–
Armed Bandit (BCAB), and an algorithm, the B–Zoom, specifically
suited for this setting. We study the proposed algorithm both in terms
of theoretical properties and empirical performances. While it suffers

a regret of Õ(B
d+1
d+2), it is able to provide empirical evidence that it

is more risk averse than the algorithms present in the literature of
BMAB.

Some of the most promising works for future research are: intro-
ducing a vector of costs and a stopping round dependent on a com-
bination of these costs. Moreover, we may explore the problem of
having a search space A with more than one dimension. Finally, it
could be interesting to extend other existing algorithms for the CAB
setting to the BCAB problem.

F. Trovò et al. / Budgeted Multi–Armed Bandit in Continuous Action Space 567

REFERENCES

[1] András Antos, Varun Grover, and Csaba Szepesvári, ‘Active learning in
multi-armed bandits’, in Proceedings of the International Conference
on Algorithmic Learning Theory, ALT, pp. 287–302. Springer, (2008).

[2] Danilo Ardagna, Barbara Panicucci, and Mauro Passacantando, ‘A
game theoretic formulation of the service provisioning problem in
cloud systems’, in Proceedings of the International Conference on
World Wide Web, WWW, pp. 177–186, (2011).

[3] Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer, ‘Finite-time analy-
sis of the multiarmed bandit problem’, Machine learning, 47(2-3), 235–
256, (2002).

[4] Peter Auer, Ronald Ortner, and Csaba Szepesvári, ‘Improved rates for
the stochastic continuum-armed bandit problem’, in Proceedings of the
Annual Conference on Learning Theory, COLT, pp. 454–468, (2007).

[5] Ashwinkumar Badanidiyuru, Robert Kleinberg, and Aleksandrs
Slivkins, ‘Bandits with knapsacks’, in Proceedings of the Annual Sym-
posium on Foundations of Computer Science, FOCS, pp. 207–216,
(2013).

[6] Christian Borgs, Jennifer Chayes, Nicole Immorlica, Kamal Jain, Omid
Etesami, and Mohammad Mahdian, ‘Dynamics of bid optimization
in online advertisement auctions’, in Proceedings of the International
Conference on World Wide Web, WWW, pp. 531–540, (2007).

[7] Sébastien Bubeck, Rémi Munos, and Gilles Stoltz, ‘Pure exploration
in multi-armed bandits problems’, in Proceedings of the International
Conference on Algorithmic Learning Theory, ALT, pp. 23–37, (2009).

[8] Sébastien Bubeck, Rémi Munos, Gilles Stoltz, and Csaba Szepesvari,
‘X-armed bandits’, The Journal of Machine Learning Research, 12,
1655–1695, (2011).

[9] Sébastien Bubeck, Gilles Stoltz, and Jia Yuan Yu, ‘Lipschitz bandits
without the lipschitz constant’, in Proceedings of the International Con-
ference on Algorithmic Learning Theory, ALT, pp. 144–158, (2011).

[10] Wenkui Ding, Tao Qin, Xu-Dong Zhang, and Tie-Yan Liu, ‘Multi-
armed bandit with budget constraint and variable costs’, in Proceedings
of the AAAI Conference on Artificial Intelligence, AAAI, pp. 232–238,
(2013).

[11] Sudipto Guha and Kamesh Munagala, ‘Approximation algorithms for
budgeted learning problems’, in Proceedings of the Symposium on The-
ory of Computing, STOC, pp. 104–113. ACM, (2007).

[12] Robert Kleinberg, Aleksandrs Slivkins, and Eli Upfal, ‘Multi-armed
bandits in metric spaces’, in Proceedings of the Symposium on Theory
of Computing, STOC, pp. 681–690, (2008).

[13] Robert Kleinberg, Aleksandrs Slivkins, and Eli Upfal, ‘Bandits and ex-
perts in metric spaces’, arXiv preprint arXiv:1312.1277, (2013).

[14] Robert D. Kleinberg, ‘Nearly tight bounds for the continuum-armed
bandit problem’, in Proceedings of Neural Information Processing Sys-
tems, NIPS, pp. 697–704, (2004).

[15] Stefan Magureanu, Richard Combes, and Alexandre Proutiere, ‘Lip-
schitz bandits: Regret lower bound and optimal algorithms’, in Pro-
ceedings of the Conference on Learning Theory, COLT, pp. 975–999,
(2014).

[16] Paritosh Padhy, Rajdeep K Dash, Kirk Martinez, and Nicholas R Jen-
nings, ‘A utility-based adaptive sensing and multihop communication
protocol for wireless sensor networks’, Transactions on Sensor Net-
works, 6(3), 27:1–27:39, (2010).

[17] Long Tran-Thanh, Archie Chapman, Alex Rogers, and Nicholas R
Jennings, ‘Knapsack based optimal policies for budget–limited multi–
armed bandits’, in Proceedings of the AAAI Conference on Artificial
Intelligence, AAAI, pp. 1134–1140, (2012).

[18] Long Tran-Thanh, Alex Rogers, and Nicholas R Jennings, ‘Long-
term information collection with energy harvesting wireless sensors: a
multi-armed bandit based approach’, in Proceedings of the Autonomous
Agents and Multi-Agent Systems, AAMAS, volume 25, pp. 352–394,
(2012).

[19] Yingce Xia, Wenkui Ding, Xu-Dong Zhang, Nenghai Yu, and Tao Qin,
‘Budgeted bandit problems with continuous random costs’, in Proceed-
ings of the Asian Conference on Machine Learning, ACML, pp. 317–
332, (2015).

[20] Yingce Xia, Haifang Li, Tao Qin, Nenghai Yu, and Tie-Yan Liu,
‘Thompson sampling for budgeted multi-armed bandits’, in Proceed-
ings of the International Joint Conference on Artificial Intelligence, IJ-
CAI, pp. 3960–3966, (2015).

F. Trovò et al. / Budgeted Multi–Armed Bandit in Continuous Action Space568

