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Abstract. In multiagent systems the capability of learning is impor-
tant for an agent to behave appropriately in face of unknown oppo-
nents and a dynamic environment. From the system designer’s per-
spective, it is desirable if the agents can learn to coordinate towards
socially optimal outcomes, while also avoiding being exploited by
selfish opponents. To this end, we propose a novel gradient ascent
based algorithm (SA-IGA) which augments the basic gradient-ascent
algorithm by incorporating social awareness into the policy update
process. We theoretically analyze the learning dynamics of SA-IGA
using dynamical system theory, and SA-IGA is shown to have lin-
ear dynamics for a wide range of games including symmetric games.
The learning dynamics of two representative games (the prisoner’s
dilemma game and coordination game) are analyzed in detail. Based
on the idea of SA-IGA, we further propose a practical multiagent
learning algorithm, called SA-PGA, based on the Q-learning update
rule. Simulation results show that an SA-PGA agent can achieve
higher social welfare than previous social-optimality oriented Con-
ditional Joint Action Learner (CJAL) and also is robust against indi-
vidually rational opponents by reaching Nash equilibrium solutions.

1 Introduction

In multiagent systems the ability of learning is important for an agent
to adaptively adjust its behaviours in response to coexisting agents
and unknown environments in order to optimize its performance.
Multiagent learning algorithms have received extensive attention in
the literature, and many learning strategies [6, 15, 4, 14, 17] have
been proposed to facilitate coordination among agents.

The multi-agent learning criteria proposed in [5] require that an
agent should be able to converge to a stationary policy against
some class of opponents (convergence) and the best-response policy
against any stationary opponent (rationality). If both agents adopt a
rational learning strategy in the context of repeated games and also
their strategies converge, then they will converge to a Nash equilib-
rium of the stage game. Indeed, convergence to Nash equilibrium has
been the most commonly accepted goal to pursue in multiagent learn-
ing literature. Until now, a number of gradient-ascent based multia-
gent learning algorithms [20, 5, 1, 24] have been subsequently pro-
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posed in order to converge to Nash equilibriums with improved con-
vergence performance and more relaxed assumptions (less informa-
tion is required). Another well-studied family of multiagent learning
strategies is based on reinforcement learning (e.g., Q-learning [23]).
Representative examples include distributed Q-learning in coopera-
tive games [11], minimax Q-learning in zero-sum games [12], Nash
Q-learning in general-sum games [10], and other extensions [13, 6],
to name just a few.

1’s payoff
2’s payoff

Agent 2’s actions

C D

Agent 1’s
actions

C 3/3 0/5

D 5/0 1/1

Table 1: The Prisoner’s Dilemma Game

All the aforementioned learning strategies pursue converging to
Nash equilibriums under self-play, however, Nash equilibrium solu-
tions may be undesirable in many scenarios. One well-known ex-
ample is the prisoner’s dilemma (PD) game shown in Table 1. By
converging to the Nash equilibrium (D,D), both agents obtain the
payoff of 1, while they could have obtained a much higher payoff
of 3 by coordinating on the non-equilibrium outcome (C,C). In sit-
uations like the PD game, converging to the socially optimal out-
come under self-play would be more preferred. To address this issue,
one natural modification for a gradient-ascent learner is to update its
policy along the direction of maximizing the sum of all agents’ ex-
pected payoff instead of its own. However, in an open environment,
the agents are usually designed by different parties and may have not
the incentive to follow the strategy we design. The above way of up-
dating strategies would be easily exploited and taken advantage by
(equilibrium-driven) self-interested agents. Thus it would be highly
desirable if an agent can converge to socially optimal outcomes un-
der self-play and Nash equilibrium against self-interested agents to
avoid being exploited.

In this paper, we first propose a new gradient-ascent based algo-
rithm (SA-IGA) which augments the basic gradient ascent algorithm
by incorporating social awareness into the policy update process. A
SA-IGA agent holds a social attitude to reflect its socially-aware de-
gree, which can be adjusted adaptively based on its relative perfor-
mance compared to its opponent. An SA-IGA agent seeks to update
its policy in the direction of increasing its overall payoff, which is de-
fined as the average of its individual and the social payoff, weighted
by its socially-aware degree. We theoretically show that for a wide
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range of games (e.g., symmetric games), the dynamics of SA-IGAs
under self-play exhibit linear characteristics. For general-sum games,
it may exhibit non-linear dynamics which can still be analyzed nu-
merically. The learning dynamics of two representative games (PD
game and coordination game) are analyzed in details. Like previous
theoretical multiagent learning algorithms, SA-IGA also requires to
know the opponent’s policy and the game structure.

To relax the above assumption, we then propose a practical gradi-
ent ascent based multiagent learning strategy, called Socially-aware
Policy Gradient Ascent (SA-PGA). SA-PGA relaxes the above as-
sumption by estimating the performance of itself and the oppo-
nent using Q-learning techniques. We empirically evaluate its perfor-
mance in different types of benchmark games and simulation results
show that SA-PGA agent outperforms previous learning strategies
in terms of maximizing the social welfare and Nash product of the
agents. Besides, SA-PGA is also shown to be robust against individu-
ally rational opponents and converges to Nash equilibrium solutions.

The remainder of the paper is organized as follows. Section 2 re-
views normal-form games and the basic gradient ascent approach.
Section 3 introduces the SA-IGA algorithm and analyzes its learn-
ing dynamics theoretically. Section 4 presents the practical multia-
gent learning algorithm SA-PGA in detail. In Section 5, we exten-
sively evaluate the performance of SA-PGA under various bench-
mark games. Lastly we conclude the paper and point out future di-
rections in Section 6.

2 Background

2.1 Normal-form games

In a two-player, two-action, general-sum normal-form game, the pay-
offs for each player i ∈ {r, c} can be specified by a matrix as follows,

Ri =

[
ri11 ri12
ri21 ri22

]

Each player i simultaneously selects an action from its action set
Ai = {1, 2}, and the payoff of each player is determined by their
joint actions. For example, if player r selects the pure strategy ac-
tion 1 while player c selects the pure strategy action 2, then player r

receives a payoff of rr
12 and player c receives the payoff of rc

12.
Apart from pure strategies, each player can also employ a mixed

strategy to make decisions. A mixed strategy can be represented as
a probability distribution over the action set and a pure strategy is
a special case of mixed strategies. Let pr ∈ [0, 1] and pc ∈ [0, 1]
denote the probability of choosing action 1 by player r and player
c respectively. Given a joint mixed strategy (pr, pc), the expected
payoffs of player r and player c can be specified as follows,

Vr (pr, pc) =rr
11prpc + rr

12pr (1− pc) + rr
21 (1− pr) pc

+ rr
22 (1− pr) (1− pc)

Vc (pr, pc) =rc
11prpc + rc

12pr (1− pc) + rc
21 (1− pr) pc

+ rc
22 (1− pr) (1− pc)

(1)

respectively.
A joint strategy is called a Nash Equilibrium (NE), if no player

can get a better expected payoff by changing its current strategy
unilaterally. Formally, (p∗r , p∗c ) ∈ [0, 1]2 is a NE, iff Vr (p

∗
r , p

∗
c ) ≥

Vr (pr, p
∗
c ) and Vc (p

∗
r , p

∗
c ) ≥ Vc (p

∗
r , pc) for any (pr, pc) ∈ [0, 1]2.

2.2 Gradient Ascent (GA)

When a game is played repeatedly, an individually rational player up-
dates its strategy in order to maximize its expected payoffs. A player
i employing GA-based algorithms updates its policy towards the di-
rection of its expected reward gradient, which can be shown in the
following equations.

Δp
(t+1)
i ← η

∂Vi

(
p(t)

)
∂pi

(2)

p
(t+1)
i ← Π[0,1]

(
p
(t)
i +Δp

(t+1)
i

)
(3)

where parameter η is the gradient step size, and Π[0,1] is the projec-
tion function mapping the input value to the valid probability range
of [0, 1], used to prevent the gradient moving the strategy out of the
valid probability space. Formally, we have,

Π[0,1] (x) = argminz∈[0,1] |x− z| (4)

To simplify the notations, let us denote ui = ri11+ri22−ri12−ri21,
ci = ri12−ri22 and di = ri21−ri22. For the two-player case, the above
way of GA-based updating in Equation 2 and 3 can be represented as
follows,

p(t+1)
r ← Π[0,1]

(
p(t)r + η

(
urp

(t)
c + cr

))
(5)

p(t+1)
c ← Π[0,1]

(
p(t)c + η

(
ucp

(t)
r + dc

))
(6)

In the case of infinitesimal gradient step size (η → 0), the learn-
ing dynamics of the players can be modeled as a system of differen-
tial equations and analyzed using dynamic system theory [20]. It is
proved that the agents will converge to a Nash equilibrium, or if the
strategies themselves do not converge, then their average payoffs will
nevertheless converge to the average payoffs of a Nash equilibrium.

Following [20], various GA-based algorithms have been proposed
to improve the convergence performance towards Nash equilibria and
representative examples include IGA-WoLF (Win or Learn Fast) [5],
Weighted Policy Learner (PWL) [1] and Gradient Ascent With Policy
Prediction (IGA-PP) [24]. In contrast, in this work, we seek to incor-
porate the social awareness into GA-based strategy update and aim to
improve social welfare of the players under self-play rather than pur-
suing Nash equilibrium solutions. Meanwhile, individually rational
behaviour is employed when playing against a selfish agent. Similar
idea of adaptively behaving differently against different opponents
was also employed in previous algorithms [13, 9, 16, 7]. However, all
the existing works focus on maximizing an agent’s individual payoff
against different opponents in different types of games, but do not di-
rectly take into consideration the goal of maximizing social welfare
(e.g., cooperate in the prisoner’s dilemma game).

3 Socially-Aware Infinitesimal Gradient Ascent
(SA-IGA)

In our daily life, people usually do not behave as a purely rational
entity that seeks to achieve Nash equilibrium solutions. For exam-
ple, when two persons play a PD game, reaching mutual cooperation
may be observed frequently. Similar phenomena have also been ob-
served in extensive human-based experiments in games such as the
Public Good game and Ultimatum game, in which human subjects
are usually found to obtain much higher payoffs by mutual cooper-
ation rather than pursuing Nash equilibrium solutions. If the above
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phenomenon is transformed into computational models, it indicates
that an agent may not only update its policy in the direction of maxi-
mizing its own payoff, but also take into consideration the payoff of
others. We call this type of agents socially-aware agents.

In this paper, we incorporate the social awareness into the
gradient-ascent based learning algorithm. As such, apart from learn-
ing to maximize its individual payoff, an agent is also equipped with
the social awareness such that it can (1) reach mutually cooperative
solutions faced with another socially-aware opponent (self-play); (2)
behave in a purely individually rational manner against a purely ra-
tional opponent.

Specifically, for each agent i ∈ {r, c},we distinguish two types of
expected payoffs, namely V idv

i and V soc
i . The payoff V idv

i (pr, pc)
and V soc

i (pr, pc) represent the individual and social payoff (the av-
erage payoff of both players) that agent i perceives under the joint
strategy (pr, pc) respectively. The payoff V idv

i (pr, pc) follows the
same definition as Equation (1) and the payoff V soc

i (pr, pc) can be
defined as follows,

V soc
i (pr, pc) =

1

2
[V idv

r (pr, pc) + V idv
c (pr, pc)], ∀i ∈ {r, c} (7)

Each agent i adopts a social attitude wi to reflect its socially-
aware degree. The social attitude intuitively models an agent’s so-
cially friendly degree towards its partner. Specifically, it is used as
the weighting factor to adjust the relative importance between V idv

i

and V soc
i , and agent i’s overall expected payoff is defined as follows,

Vi (pr, pc) = (1− wi)V
idv
i (pr, pc) + wiV

soc (pr, pc) (8)

where i ∈ {r, c}. Each agent i updates its strategy in the direction
of maximizing the value of Vi. Formally we have,

Δpi ← ηp
∂Vi (pr, pc)

∂pi
,

pi ← Π[0,1] (pi +Δpi)

(9)

where parameter ηp is the gradient step size of pi. If wi = 0, it means
that the agent seeks to maximize its individual payoff only, which is
reduced to the case of traditional gradient-ascent updating; if w = 1,
it means that the agent seeks to maximize the sum of the payoffs of
both players.

Finally, each agent i’s socially-aware degree is adaptively adjusted
in response to the relative value of V idv

i and V soc
i as follows. During

each round, if player i′s own expected payoff V idv
i exceeds the value

of V soc, then player i increases its social attitude wi, (i.e., it becomes
more social-friendly because it perceives itself to be earning more
than the average). Conversely, if V idv

i is less than V soc t, then the
agent tends to care more about its own interest by decreasing the
value of wi. Formally we have,

wi =

{
Π[0,1] (wi +Δwi) if V idv

i > V soc
i

Π[0,1] (wi −Δwi) if V idv
i < V soc

i
(10)

where Δwi is the adjustment step size of wi.

3.1 Theoretical Modeling and Analysis of SA-IGA

An important aspect of understanding the behaviour of a multiagent
learning algorithm is theoretically modelling and analyzing its un-
derlying dynamics [22, 18, 4, 2]. In this section, we first show that
the learning dynamics of SA-IGA under self-play can be modeled as
a system of differential equations.

Based on the adjustment rules in Eq (9) and (10), the learning dy-
namics of a SA-IGA agent can be modeled as a set of equations in
(11). For ease of exposition, we concentrate on unconstrained update
equations by removing the policy projection function which does
not affect our qualitative analytical results. Any trajectory with lin-
ear (non-linear) characteristic without constraints is still linear (non-
linear) when a boundary is enforced.

Δp
(t+1)
i ← ηp

∂Vi

(
p
(t)
r , p

(t)
c

)
∂pi

Δwt+1
i ← ηw(V

idv
i − V soc)

p
(t+1)
i ← p

(t)
i +Δp

(t+1)
i

w
(t+1)
i ← w

(t)
i +Δw

(t+1)
i

(11)

As ηp → 0 and ηw → 0, it is straightforward to show that the above
equations become differential. Substituting V idv

i and V soc
i by their

definitions (Eq. (1) and (7)). Thus the unconstrained dynamics of the
strategy pair and social attitudes as a function of time is modelled by
the following system of differential equations:

ṗr =
(
ur +

uc − ur

2
wr

)
pc +

cc − cr

2
wr + cr

ṗc =
(
uc +

ur − uc

2
wc

)
pr +

dr − dc

2
wc + dc

ẇr = ε [(ur − uc) prpc + (cr − cc) pr + (dc − dr) pc + e]

ẇc = −ε [(ur − uc) prpc + (cr − cc) pr + (dc − dr) pc + e]

(12)

where ui = ri11 + ri22 − ri12 − ri21, ci = ri12 − ri22,di = ri21 − ri22,
e = rr

22 − rc
22 with i ∈ {r, c} and ε = ηw

ηp
> 0.

Based on the above theoretical modelling, next we analyze the
learning dynamics of SA-IGA qualitatively as follows.

Theorem 1 SA-IGA has non-linear dynamics when ur �= uc.

Proof 1 From the system of differential equations in (12), it is
straightforward to verify that the dynamics of SA-IGA learners are
non-linear when ur �= uc due to the existence of wrpc, wcpr or prpc

in all equations.

Since SA-IGA’s dynamics are non-linear when ur �= uc, in gen-
eral we cannot obtain a closed-form solution, but we can still resort
to solve the equations numerically to obtain useful insight in the sys-
tem’s dynamics. Moreover, a wide range of important games fall into
the category of ur = uc, in which the system of equations become
linear. Therefore, it allows us to use dynamic system theory to sys-
tematically analyze the underlying dynamics of SA-IGA.

r’s payoff
c’s payoff

Agent c’s actions

action 1 action 2

Agent r’s
actions

action 1 a/a c/d

action 2 d/c b/b

Table 2: The General Form of a Symmetric Game

Theorem 2 SA-IGA has linear dynamics when the game itself is
symmetric.

Proof 2 A two-player two-action symmetric game can be repre-
sented in Table 2 in general. It is obvious to check that it satisfies
the constraint of ur = uc, given that ui = ri11 + ri22 − ri12 − ri21,
i ∈ {r, c}. Thus the theorem holds.
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3.2 Dynamics Analysis of SA-IGA

In the previous section we mainly analyzed the dynamics of SA-IGA
in a qualitative manner. In this section, we provide a detailed analy-
sis of SA-IGA’s learning dynamics in two representative games: the
Prisoner’s Dilemma game (Table 3) (as a symmetric game example )
and Coordination game (Table 4) (as an asymmetric game example).
Specifically we analyze the SA-IGA’s learning dynamics by identi-
fying the existing equilibrium points, which provides useful insights
into understanding the dynamics of SA-IGA.

Theorem 3 The dynamics of SA-IGA algorithm under Prisoner’s
Dilemma (PD) game have three types of equilibrium points:

1. (0, 0, w∗
r , w

∗
c ), where w∗

r , w
∗
c < min

{
2(T−R)
T−S

, 2(P−S)
T−S

}
;

2. (1, 1, w∗
r , w

∗
c ), where w∗

r , w
∗
c > max

{
2(T−R)
T−S

, 2(P−S)
T−S

}
;

3. (p∗, p∗, w∗, w∗), others

The first and second type of equilibrium points are stable, while the
last is not. We say that an equilibrium point is stable if once the
strategy starts ”close enough” to the equilibrium (within a distance
δ from it), it will remain ”close enough” to the equilibrium point
forever.

r’s payoff
c’s payoff

Agent c’s actions

C D

Agent r’s
actions

C R/R S/T

D T/S P/P

Table 3: The Prisoner’s Dilemma Game(where T > R > P > S)

Proof 3 Following the system of differential equations in Equations
(12), we can express the dynamics of SA-IGA in PD game as follows:

ṗr = (u) pc +
T − S

2
wr + S − P

ṗc = (u) pr +
T − S

2
wc + S − P

ẇr = ε (S − T ) (pr − pc)

ẇc = −ε (S − T ) (pr − pc)

(13)

where ε = ηw
ηp

> 0,u = R + P − S − T . We start by prov-
ing the last type of equilibrium points: If there exist an equilibrium
eq = (p∗r , p

∗
c , w

∗
r , w

∗
c )

T ∈ (0, 1)4, then we have ṗi (eq) = 0
and ẇi (eq) = 0, i ∈ {r, c}. By solving the above equations, we
have p∗r = p∗c = S−T

2u
w∗ + P−S

u
and w∗ = w∗

r = w∗
c . Since

p∗r , p
∗
c ∈ (0, 1), then we have,

wr, wc > min

{
2 (T −R)

T − S
,
2 (P − S)

T − S

}

wr, wc < max

{
2 (T −R)

T − S
,
2 (P − S)

T − S

}

Then eq = (p∗r , p
∗
c , w

∗
r , w

∗
c )

T is an equilibrium. The stability of
eq can be verified using theories of non-linear dynamics[19]. By ex-
pressing the unconstrained update differential equations in the form
of ẋ = Ax+B, we have

A =

⎡
⎢⎢⎣

0 u T − S 0
u 0 0 T − S

ε (S − T ) ε (T − S) 0 0
ε (T − S) ε (S − T ) 0 0

⎤
⎥⎥⎦

After calculating matrix A’s eigenvalue, then we have λ1 = 0, λ2 =
u, λ3 = −u

2
+ k and λ4 = −u

2
− k, where k is a constant. Since

there exist an eigenvalue λ > 0, the equilibrium eq is not stable.
Next we turn to prove the first type of equilibrium. In this case, we

need to put the projection function back since we are dealing with
boundary cases. If pi = 0, i ∈ {r, c}, according to the known con-

ditions, we have wr, wc < min
{

2(T−R)
T−S

, 2(P−S)
T−S

}
. Combined with

the unconstrained update differential equations, we have limpi ṗi <
0, then pi remains unchanged. And because pr = pc = 0, then for
∀wi ∈ [0, 1], ẇi ((0, 0, w

∗
r , w

∗
c )) = 0, then ((0, 0, w∗

r , w
∗
c )) is an

equilibrium.
Because wr, wc < min

{
2(T−R)
T−S

, 2(P−S)
T−S

}
, there exist a δ > 0,

and a set U (eq, δ) =
{
x ∈ [0, 1]4 | |x− eq| < δ

}
, that for ∀x ∈

U (eq, δ), limpi ṗi < 0. Thus p will stabilize on the point of 0. Also,
because

lim
t→0

ẇi = (S − T ) lim
t→0

(pr − pc) = (S − T ) lim
t→0

(0− 0) = 0

then w is also stable, and thus the equilibrium eq is stable.
The second type of equilibrium can be proved similarly, which is

omitted here.

Intuitively, for a PD game, from Theorem 3, we know that if both SA-
IGA players are initially sufficiently social-friendly (the value of w
is larger than a certain threshold), then they will always converge to
mutual cooperation of (C,C). In other words, given that the value of
w exceeds a certain threshold, the strategy point of (1, 1) (or (C,C))
in the strategy space is asymptotically stable. If both players start
with a low socially-aware degree (w is smaller than certain thresh-
old), then they will always converge to mutual defection of (D,D)
eventually. For the rest of cases, there exist infinite number of equi-
librium points in-between the above two extreme cases, all of which
are not stable.

Next we turn to analyze the dynamics of SA-IGA in a coordination
game by identifying all equilibrium points. The general form of a co-
ordination game is shown in Table 4. Intuitively, both Nash equilibria
(C, C) and (D, D) can be part of the equilibrium points depending on
the agents’ social-aware degrees. Formally we have,

r’s payoff
c’s payoff

Agent c’s actions

C D

Agent r’s
actions

C R/r S/s

D T/t P/p

Table 4: The General Form of a Coordination Game (where R >
T ∧ P > S and r > s ∧ p > t)

Theorem 4 The dynamics of SA-IGA algorithm under a coordina-
tion game have three types of equilibrium points:

1. (0, 0, w∗
r , w

∗
c ), with w∗

r = 1 ∧ w∗
c = 0 when P > p > s; w∗

r =
0 ∧ w∗

c = 1 when T < P < p; and
(
s−S
2

w∗
r < P − S

) ∧(
T−t
2

w∗
c < p− t

)
when P = p;

2. (1, 1, w∗
r , w

∗
c ), with w∗

r = 1 ∧ w∗
c = 0 when R > r > t; w∗

r =
0 ∧ w∗

c = 1 when T < R < r; and
(
T−t
2

w∗
r < R− T

) ∧(
S−s
2

w∗
c < r − s

)
when R = r;

3. others non-boundary equilibrium points (p∗r , p
∗
c , w

∗
r , w

∗
c )
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The first and second types of equilibrium points are stable, while
the last non-boundary equilibrium points are not. The definition of a
stable equilibrium point is the same as in Theorem 3.

Proof 4 Following the system of differential equations in Equations
(12), we can express the dynamics of SA-IGA in coordination game
as follows:

ṗr =
(
ur +

uc − ur

2
wr

)
pc +

cc − cr

2
wr + cr

ṗc =
(
uc +

ur − uc

2
wc

)
pr +

dr − dc

2
wc + dc

ẇr = ε [(ur − uc) prpc + (cr − cc) pr + (dc − dr) pc + e]

ẇc = −ẇr

(14)

where ε = ηw
ηp

> 0,ur = R+P−S−T > 0, uc = r+p−s−t > 0,
cr = S − P , cc = s− p, dr = T − P , dc = t− p, and e = P − p.

We can see that the dynamic of coordination game is nonlinear
when ur �= uc. We start with proving the last type of equilibrium
points first:

If there exist an equilibrium eq = (p∗r , p
∗
c , w

∗
r , w

∗
c )

T ∈ (0, 1)4,
then we have ṗi (eq) = 0 and ẇi (eq) = 0, i ∈ {r, c}. By linearizing
the unconstrained update differential equations into the form of ẋ =
Ax+B in point eq = (p∗r , p

∗
c , w

∗
r , w

∗
c )

T , we have

A =

⎡
⎢⎢⎣

0 u∗
r a13 0

u∗
c 0 0 a24

−εa13 εa24 0 0
εa13 −εa24 0 0

⎤
⎥⎥⎦

where u∗
r = ur+

uc−ur
2

w∗
r , u∗

c = uc+
ur−uc

2
w∗

c , c∗r = cc−cr
2

w∗
r +

cr, and d∗c = dr−dc
2

w∗
c + dc. The parameters aij are represented as

functions of p∗r , p
∗
c , w

∗
r and w∗

c . Without loss of generality, we set
ur ≥ uc. Because of ur ≥ uc > 0, and w∗

r , w
∗
c ∈ [0, 1], we have

u∗
r ∈ [uc+ur

2
,ur] and u∗

c ∈ [uc,uc+ur
2

], which means u∗
r > u∗

c > 0.
After calculating matrix A’s eigenvalue in Matlab, we have an

eigenvalue λ1 = 0, an eigenvalue λ2 with its real part Re (λ2) > 0,
an eigenvalue λ3 with Re (λ3) < 0 and an eigenvalue λ4 close to
0. Since there exists an eigenvalue λ > 0, the equilibrium eq is not
stable[19].

Next we turn to prove the first type of equilibrium. In this case, we
need to put the projection function back since we are dealing with
boundary cases.

For the case P > p > s, we have V idv
i (eq) > V soc

i (eq),
thus ẇr (eq) > 0 and ẇc (eq) < 0, which means wr and wc will
keeps wr = 1 and wc = 0. Because ṗr (eq) = s−p+S−P

2
< 0

and ṗc (eq) = t − p < 0, then pr and pc will keeps pr = 0 and
pc = 0. According to the continuity theorem of differential equations
[8], (0, 0, 1, 0) is a stable equilibrium. The case p > P > T can be
proved similarly, which is omitted here.

For the case P = p, we have V idv
i = V soc

i , then ẇr (eq) =
−ẇc (eq) = ε

(
V idv

r − V soc
r

)
= 0. Because

(
T−t
2

w∗
c < p− t

)
, we

have ṗr = T−t
2

w∗
c + t − p < 0. Because

(
s−S
2

w∗
r < P − S

)
, we

have ṗc = s−S
2

w∗
c + S − P < 0. According to the continuity theo-

rem of differential equations, (0, 0, w∗
r , w

∗
c ) is a stable equilibrium.

The stability of the second type of equilibrium points can be proved
similarly, which is omitted here.

4 A Practical Algorithm

In SA-IGA, each agent needs to know the policy of its opponent and
the payoff matrix, which are usually not available before a repeated

game starts. Based on the idea of SA-IGA, we relax these assump-
tions and propose a practical multiagent learning algorithm called
Socially-Aware Policy Gradient Ascent (SA-PGA). The overall flow
of SA-PGA is shown in Algorithm 1. In SA-PGA, each agent only
needs to observe the payoffs of both agents by the end of each round.
In SA-IGA, we know that agent i’s policy (the probability of selec-

Algorithm 1 SA-PGA for player i

1: Let α ∈ (0, 1) and δp, δw ∈ (0, 1) be learning rates.
2: Initialize Qidv

i (a)← 0, Qop
i (a)← 0,Qi (a)← 0,

wi ← 0.5, πi (a)← 1
|Ai| .

3: repeat

4: Select action a ∈ Ai according to mixed strategy πi with
suitable exploration.

5: Observing reward r and its opponent’s reward r′,
Qidv

i (a)← (1− α)Qidv
i (a) + αr,

Qop
i (a)← (1− α)Qop

i (a) + αr′,
6: Qi (a)←

(
1− w

2

)
Qidv

i (a) + w
2
Qop

i (a),
7: Average payoff Vi =

∑
a∈Ai

πi(a)Qi(a)
8: for each action a ∈ Ai do

9: πi (a)← πi (a) + δp (Qi (a)− Vi (s))
10: end for

11: πi ← Π�[πi]
12: V idv

i =
∑

a∈Ai
πi (a)Q

idv
i (a)

13: V op
i =

∑
a∈Ai

πi (a)Q
op
i (a)

14: V soc
i = 1

2

(
V idv
i + V op

i

)
15: wi ← wi + δw

(
V idv
i − V soc

i

)
16: until the repeated game ends

tion each action) is updated based on the partial derivative of the ex-
pected value Vi, while the social attitude w is adjusted according to
the relative value of V idv

i and V soc
i . In SA-PGA, we first estimate the

value of V idv
i and V op

i using Q-values, which are updated based on
the immediate payoffs received during repeated interactions. Specif-
ically, each agent i keeps a record of the Q-value of each action for
both its own and its opponent (Qidv

i and Qop
i ) (Line 2). Both Q-

values are updated according to the Q-learning update rule at the end
of each round (Line 5). The overall Q-value of each agent is calcu-
lated as the weighted average of Qidv

i and Qop
i , weighted by its social

attitude w (Line 6). Based on the Q-values, we estimate the value of
Vi in SA-IGA as the expected Q-value over all actions given the cur-
rent policy (Line 7). However, Vi is simply an estimated value instead
of a function which cannot be differentiated. To obtain the derivative
of Vi with respect to different actions, we estimate it as the differ-
ence between each action’s Q-value and the expected Q-value over
all actions (the value of Vi) (Line 9). Agent i’s probability of select-
ing an action is updated in the direction of the estimated derivative of
the action’s expected value (Line 8-10). After that, agent i’s policy
is mapped back to the valid probability space (Line 11). Similarly,
the expected individual payoff and its opponent’s payoff when agent
i plays policy πi are estimated based on its current policy and Q-
values (Line 12-13). The value of V soc

i is calculated as the average
between V idv

i and V op
i (Line 14). Finally, the social attitude of agent

i is updated in the same way as we introduced in SA-IGA based on
the estimated V -values (Line 15). The updating direction of wi is
estimated as the difference between V idv

i and V soc
i .
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5 Experimental Evaluation

We start the performance evaluation with analyzing the learning per-
formance of SA-PGA under two-player two-action repeated games.

In general a two-player two-action game can be classified into
three categories[21]:

Category 1: (rr
11−rr

21)(r
r
12−rr

22) > 0 or (rc
11−rc

12)(r
c
21−rc

22) >
0. In this case, each player has a dominant strategy and thus the
game only has one pure strategy NE.

Category 2: (rr
11 − rr

21)(r
r
12 − rr

22) < 0 and (rc
11 − rc

12)(r
c
21 −

rc
22) < 0 and (rr

11 − rr
21)(r

c
12 − rc

22) > 0. In this case, there are
two pure strategy NEs and one mixed strategy NE.

Category 3: (rr
11 − rr

21)(r
r
12 − rr

22) < 0 and (rc
11 − rc

12)(r
c
21 −

rc
22) < 0 and (rr

11 − rr
21)(r

c
12 − rc

22) < 0. In this case, there only
exists one one mixed strategy NE.

where rr
ij and rc

ij are payoffs of player r and player c respectively
when player r takes action i while player c takes action j. We select
one representative game for each category for illustration.

5.1 Category 1

For category 1, we consider the PD game as shown in Table 1. In this
game, both players have one dominant strategy D, and (D,D) is the
only pure strategy NE, while there also exists one socially optimal
outcome (C,C) under which both players can obtain higher payoffs.

Figure 1(a) show the learning dynamics of the practical SA-PGA
algorithm playing the PD game. The x-axis p1 represents player 1’s
probability of playing action C and the y-axis p2 represents player
2’s probability of playing action C. We randomly selected 20 initial
policy points as the starting point for the SA-PGA agents. We can
observe that the SA-PGA agents are able to converge to the mutual
cooperation equilibrium point starting from different initial policies.

Figure 1(b) illustrates the learning dynamics predicted by the the-
oretical SA-IGA approach. Similar to the setting in Figure 1(a), the
same set of initial policy points are selected and we plot all the learn-
ing curves accordingly. We can see that for each starting policy point,
the learning dynamics predicted from the theoretical SA-IGA is well
consistent with the learning curves from simulation. This indicates
that we can better understand and predict the dynamics of SA-PGA
algorithm using its corresponding theoretical SA-IGA model.

5.2 Category 2

For category 2, we consider the CG game as shown in Table 5. In
this game, there exist two pure strategy Nash equilibria (C, D) and
(D, C), and both of them are also socially optimal.

Figure 2(a) illustrates the learning dynamics of the practical SA-
PGA algorithm playing a CG game. The x-axis p1 represents player
1’s probability of playing action C and the y-axis p2 represents
player 2’s probability of playing action C. Similar to the case of PD
game, 20 initial policy points are randomly selected as the starting
points. We can see that the SA-PGA agents can converge to either of
the aforementioned two equilibrium points depending on the initial
policies they start from.

Figure 2(b) shows the learning dynamics predicted by the theo-
retical SA-IGA approach. Similar to the setting in Figure 2(a), we
adopt the same set of 20 initial policy points for comparison pur-
pose. All the learning curves starting from these 20 policy points
are drawn accordingly. We can observe that for each starting policy
point, the learning dynamics predicted from the theoretical SA-IGA

is well consistent with the learning curves obtained from simulation.
Therefore, the theoretical model can facilitate a better understanding
and prediction of the dynamics of SA-PGA algorithm.

1’s payoff
2’s payoff

Agent 2’s actions

C D

Agent 1’s
actions

C 3/4 0/0

D 0/0 4/3

Table 5: Coordination game (Category 2)

5.3 Category 3

The game we use in Category 3 is shown in Table 6. In this game,
there only exist one mixed strategy Nash equilibrium, while the pure
strategy outcome (C,D) is socially optimal.

Figure 3(a) illustrates the learning dynamics of the practical SA-
PGA algorithm playing the game in Table 6. The x-axis p1 and y-axis
p2 represent player 1’s probability of playing action C and player 2’s
probability of playing action C respectively. Similar to the previous
cases, 20 initial policy points are randomly selected as the starting
points. From Figure 3(a), we can see that the SA-PGA agents can
always converge to the socially optimal outcome (C,D) no matter
where the initial policies start from.

Figure 3(b) presents the learning dynamics of agents predicted by
the theoretical SA-IGA approach. Similar to the setting in Figure
3(a), we adopt the same set of 20 initial policy points for comparison
purpose, and the corresponding learning curves are drawn accord-
ingly. From Figure 3(b), we can observe that for each starting policy
point, the theoretical SA-IGA model can well predict the simula-
tion results of SA-PGA algorithm. Therefore, a better understanding
and insights of the dynamics of SA-PGA algorithm can be obtained
through analyzing its corresponding theoretical model.

1’s payoff
2’s payoff

Agent 2’s actions

C D

Agent 1’s
actions

C 3/2 4/4

D 1/3 5/1

Table 6: An example game of Category 3

5.4 Performance in General-sum Games

In this section we turn to evaluate the performance of SA-PGA
with previous representative learning strategies CJAL [3] and WoLF-
PHC [5] in two-player’s repeated games under self-play. CJAL is se-
lected since this algorithm is specifically designed to enable agents to
achieve mutual cooperation (i.e., maximizing social welfare) instead
of inefficient NE for games like prisoner’s dilemma. WoLF-PHC is
selected as one representative NE-oriented algorithm for baseline
comparison purpose. For all previous strategies the same parameter
settings as communicated in their original papers are adopted.

We use all possible structurally distinct two-player, two-action
conflict games as a testbed for SA-PGA. In each game, each player
ranks the four possible outcomes from 1 to 4.We use the rank of an
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(a) SA-PGA in PD game
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(b) SA-IGA in PD game

Figure 1: The Learning Dynamics of SA-IGA and SA-PGA in PD game (parameter wr(0) = wc(0) = 0.85, δp = 0.001, α = 0.8 and
ε = 0.02 )
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(a) SA-PGA in CG
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(b) SA-IGA in CG

Figure 2: The Learning Dynamics of SA-IGA and SA-PGA in coordination game (parameter wr(0) = wc(0) = 0.85, δp = 0.001, α = 0.8
and ε = 0.02 )
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(a) SA-PGA for the game with one mix NE
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(b) SA-IGA for the game with one mix NE

Figure 3: The Learning Dynamics of SA-IGA and SA-PGA in game with one mix NE (parameter wr(0) = wc(0) = 0.85, δp = 0.001,
α = 0.8 and ε = 0.02 )
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outcome as the payoff to that player for any outcome. We perform the
evaluation under 100 randomly generated games with strict ordinal
payoffs. We perform 10,000 interactions for each run and the results
are averaged over 20 runs for each game.

We compare their performance based on the the following two cri-
teria: utilitarian social welfare and Nash social welfare. Utilitarian
social welfare is the sum of the payoffs obtained by the two play-
ers in their converged state, averaged over 100 randomly generated
games. Nash social welfare is the product of the payoffs obtained
by two players in their converged state, averaged over 100 randomly
generated games. Both criteria reflect the system-level efficiency of
different learning strategies in terms of the total payoffs received for
the agents. Besides, Nash social welfare also partially reflects the
fairness in terms of how equal the agents’ payoffs are. The over-
all comparison results are summarized in Table 7. We can see that
SA-IGA outperforms the previous CJAL strategy under both criteria.
The WoLF-PHC strategy is designed to achieve NE and thus can only
achieve the same level of performance as adopting NE solutions.

Table 7: Performance comparison with CJAL and WoLF-PHC

Utilitarian Social
Welfare

Nash Product

SA-PGA (our strategy)
(wr(0) = wc(0) = 0.85)

7.241± 0.003 12.706± 0.015

CJAL [3] 6.504± 0.032 10.887± 0.114
WoLF-IGA [5] 6.536± 0.004 10.943± 0.145

5.5 Against Selfish Agents

If a learning agent is facing selfish agents that attempt to exploit
others, one reasonable choice for an effective algorithm is to learn
a Nash equilibrium. In this section, we evaluate the ability of SA-
PGA against selfish opponents. We adopt the same three represen-
tative games used in previous sections as the testbed and the results
are given in Figure 4, 5 and 6 respectively. We can observe that for
the PD and coordination games, the SA-PGA agent can successfully
achieve the corresponding NE solution. This property is desirable
since it prevents the SA-PGA agent from being taken advantage of
by selfish opponents. The results also show how the socially-aware
degree w of SA-PGA agent changes, which varies depending on the
game structure. For PD and coordination game, a SA-PGA agent
eventually behaves as a purely individually rational entity and one
pure strategy NE is eventually converged to. In contrast, for the third
type of game (Table 6), a SA-PGA agent behaves as a purely socially
rational agent and cooperates with the selfish agent towards the so-
cially optimal outcome (C,D) without fully exploiting the opponent.
This indicates the cleverness of SA-PGA algorithm since higher in-
dividual payoff can be achieved under the outcome (C, D) than pur-
suing the Nash equilibrium (C, C).

6 Conclusion and Future Work

In this paper, we proposed a novel way of incorporating social aware-
ness into traditional gradient-ascent algorithms to facilitate reaching
mutually beneficial solutions (e.g., (C, C) in PD game). We presented
a theoretical gradient-ascent based policy updating approach (SA-
IGA) and analyzed its learning dynamics using dynamical system
theory. For PD games, we showed that mutual cooperation (C,C) is a
stable equilibrium point as long as both agents are strongly socially-
aware. For CG games, either of the Nash equilibria (C,C) and (D,D)
can be a stable equilibrium point depending on the agents’ socially-
aware degrees. Following that, we proposed a practical learning al-
gorithm SA-PGA relaxing the impractical assumptions of SA-IGA.
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Figure 4: SA-PGA against a selfish agent for in PD game(wr(0) = 1,
pr(0) = 0.2 and pc(0) = 0.8)
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Figure 5: SA-PGA against a selfish agent for in coordination
game(wr(0) = 1, pr(0) = 0.2 and pc(0) = 0.8)
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Figure 6: SA-PGA against a selfish agent for the game with only one
mix NE(wr(0) = 1, pr(0) = 0.2 and pc(0) = 0.8)

Experimental results show that a SA-PGA agent can achieve higher
social welfare than previous algorithms under self-play and also is
robust against individually rational opponents. As future work, more
testbed scenarios (e.g., population of agents) will be applied to fur-
ther evaluate the performance of SA-PGA. Another interesting direc-
tion is to investigate how to further improve the convergence rate of
SA-PGA.
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