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Abstract. In epidemic modeling, state filtering is an excellent tool
for enhancing the performance of traditional epidemic models. We
introduce a novel state filter algorithm to further improve the perfor-
mance of state-of-the-art approaches based on Susceptible-Infected-
Recovered (SIR) models. The proposed algorithm merges two tech-
niques, which are typically used separately: linear correction, as seen
in the Ensemble Kalman Filter (EnKF), and resampling, as used in
the Particle Filter (PF). We compare the inferential accuracy of our
approach against the EnKF and the Ensemble Adjustment Kalman
Filter (EAKF), using algorithms employing both an uncentered co-
variance matrix (UCM) and the standard column-centered covari-
ance matrix (CCM). Our algorithm requires O(DN) more time than
EnKF does, where D is the ensemble dimension and N denotes the
ensemble size. We demonstrate empirically that our algorithm with
UCM achieves the lowest root-mean-square-error (RMSE) and the
highest correlation coefficient (CORR) amongst the selected meth-
ods, in 11 out of 14 major real-world scenarios. We show that the
EnKF with UCM outperforms the EnKF with CCM, while the EAKF
gains better accuracy with CCM in most scenarios.

1 Introduction

Epidemic prediction has a long history, and an early model SIR
model [27] has proved essential for accurate forecasting [4, 28]. The
SIR model divides the population into three sub-populations: sus-
ceptible (S), infected (I) and recovered (R). During the outbreak of
an infectious disease, some susceptible individuals will become in-
fected by contact with the infected individuals, and some infected
individuals will recover within a certain period of time.

Recently, Shaman and Karspeck, and Yang et al. [34, 44] showed
that state filtering methods significantly improve the inferential ac-
curacy of the SIRS-humidity model (which is a variant of SIR) [4].
Yang et al. also empirically demonstrated that EnKF, EAKF and PF
have the lowest RMSE [44]. Although the difference in the perfor-
mance of these three filters is small, EAKF comes out on top, while
PF is in bottom place. They examine the model performance con-
cerning 115 cities in the United States (U.S.), using only Google Flu
Trends (GFT) data [16].

The EnKF is a Monte Carlo approximation of the Kalman filter,
which represents the distribution of the system state using a collec-
tion of state vectors, called an ensemble, and replace the KF covari-
ance matrix by the sample covariance computed from the ensem-
ble. The EnKF assumes Gaussian-distributed models, while the PF
does not impose that restriction. However, Kalman-type filters re-
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quire fewer ensemble members (or particles) than the PF to guaran-
tee good performance [36]. Moreover, the EnKF applies linear cor-
rection updates to the states to satisfy the Maximum Likelihood; the
PF updates its ensemble members from the existing particles by sam-
pling from their weight distributions, where the weights are assigned
by the ensemble members’ importance (a.k.a importance weighting)
[12, 10, 30]. Our algorithm integrates all these techniques, correcting
the states with Maximum Likelihood, and updating the ensemble by
sampling from the best-performing particles. The algorithm imposes
only slight additional time complexity to the EnKF; however, it re-
quires the same ensemble size as the EnKF, provided the improved
performance over the two single filters is attained.

[43] shows that the EnKF underestimates the state covariance ma-
trix. Therefore, we compare the model accuracy of the Kalman-type
filters empirically, with UCM and CCM. UCM [5] is mostly dis-
cussed in Principal Component Analysis (PCA), hence, our use of
UCM in the EnKF and the EAKF is novel. Centering the data or
keeping it uncentered remains an open question in pattern recogni-
tion [20]. There are only two theoretical papers [5, 20] analyzing
UCM and CCM, and they both performed eigen-analysis of certain
features of both types. We empirically compare these approaches us-
ing real-world infection data [7] from the U.S. Center for Disease
Control and Prevention (CDC), which contains weekly influenza-like
illnesses (ILI) statistics.

Our contributions are as follows. We compare our state filter al-
gorithms with state-of-the-art filters on the nationwide ILI data of
2011-15 and the regional ILI data of 2014-15. The empirical results
demonstrate that our approach obtains the optimal RMSE and CORR
amongst the examined filters, in 11 out of 14 cases. It also shows that
the EnKF and our approach create more accurate predictions with
UCM rather than CCM, whereas the EAKF gains better performance
with CCM, given the tested scenarios.

In the rest of the paper, Sect. 2 reviews the related work. Sect. 3
elaborates on the models. Following that, Sect. 4 discusses our ap-
proach, and then conducts the empirical analysis in Sect. 5. Finally,
Sect. 6 concludes the paper.

2 Related Work

Kermack and Mckendrick [27] introduced a key early model for epi-
demic forecasting, the SIR model. Later, several models were derived
from it, such as SI, SIRS, SEIR, SIS, etc. [4, 19]. Researchers have
also developed other types of models for computational epidemiol-
ogy, e.g., agent-based models, meta-population models, spatial mod-
els, and stochastic models [35].

Recently, data-driven solutions have shown great promise. Gins-
berg et al. [15] used Google search data to build a logistic regression
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model based on the odds ratio of the search-term frequency. Santil-
lana et al. [33, 32] then used the term frequency directly with several
machine learning techniques, such as Support Vector Machine, Least
Absolute Shrinkage and Selection Operator, and AdaBoost regres-
sion etc., to outperform Google’s solution. These innovative methods
obtain great performance, but at a high computational cost.

Shaman and Karspeck [34] applied the EAKF to the SIRS-
humidity model (SIRS-EAKF). SIRS-humidity adds the humidity
data as a component to the standard SIRS model, given a correlation
between the spread of the epidemic and the humidity levels. Yang et
al. [44] then compared a few filtering methods, such as EnKF, EAKF,
PF, Maximum Likelihood Filter etc., on the SIRS model. They re-
ported that the EAKF, the EnKF and the PF were the top three per-
formers. Later, [45] estimated a few SIRS-EAKF epidemiological
parameter ranges for the seasonal flu and pandemics for a few sea-
sons. We compare the EnKF and the EAKF, with CCM and UCM,
while [44] only tested on the generic cEnKF and cEAKF2.

There are related works connecting the EnKF and the PF. Hoteit
et al. [22] introduced the method of combing Kalman correction and
resampling, and later simplified the algorithm by removing the un-
necessarily complex steps in the resampling circle [21]. [41] then
extended Hoteit’s method to mixture Gaussian models. Different
from the above principle, [14, 9] suggested a strategy that adopts
the weighted sum of the posterior states propagated with the EnKF
and the PF. Slivinski et al. presented a hybrid filter EnKF-PF for La-
grangian data assimilation [40, 39]. The most complex step in most
methods is the covariance matrix approximation; however we per-
formed a comparison between CCM and UCM for deciding the sim-
plest covariance approximation procedure. Our algorithm thereby ad-
dresses the overwhelming complexity in the existing approaches.

3 Models

3.1 Notation

In SIR modeling, the population has three sub-categories: suscep-
tible (S), infected (I), and recovered (R). Given the total popula-
tion M , the percentages of the three sub-groups are {s, i, r}, where
s = S/M , likewise for i and r. Lastly, β and γ denote the mean
contact rate and the mean recovery rate, respectively.

For the filtering approaches, we first denote the state vector by
x =

[
s i

]T. We denote the one-element estimate vector by y =[
i
]
, the observation by z =

[̂
i
]
, and parameter θ =

[
β γ

]T. We
use a transition function f(·), and the state to observation mapping
matrix, H , to define the following dynamical state space system

xt+1 = f(xt, θt) + ut (1a)

yt+1 = Hxt+1 + vt (1b)

Moreover, we denote the observed data zt for time t. In our formula-
tion, f(·) is governed by the SIR dynamics and H =

[
0 1

]
.

Let ∼ denote “distributed according to”; henceforth we assume
the noise is zero-mean Gaussian such that u ∼ N (0, U) and v ∼
N (0, V ). We define an ensemble as a group of particles, where a par-
ticle is a random sample from a certain distribution. The N -ensemble
of states, estimates, and parameters are respectively depicted as

Xt =
{
x
(n)
t

}N

Yt =
{
y
(n)
t

}N

Θt =
{
θ
(n)
t

}N

.

2 We add “c” in front of the filter names to indicate the filters using CCM,
and use prefix “u” for those using UCM.

Hence, the ensemble version of the dynamical system is:

Xt+1 = f(Xt,Θt) +
{
u
(n)
t

}N

(2a)

Yt+1 = HXt+1 +
{
v
(n)
t

}N

(2b)

We denote the weights of the ensemble members, by wt =[
w

(1)
t . . . w

(N)
t

]T
. Therefore, for the ensemble or particle based

methods, it is the expected value of the infection rate (a.k.a. preva-
lence) at time t, such that

yt =
[
it
]
= HE[Xt] (3)

where E [X] returns the mean of X . Let I denote the identity matrix
and ∝ denote “proportional to”. 0D×N refers to a D-by-N matrix of
zeros, and 1N is a length-N vector of ones.

Parameter estimation with KFs. The parameter estimation with
the EnKF and the EAKF proceeds by regarding the parameters as
augmented states [29, 23, 13, 1]. Specifically, we denote the refined
state vector by x̃ and its corresponding ensemble set X̃ , such that

x̃ =

[
x
θ

]
=⇒ X̃ =

[
X
Θ

]
(4)

Given Eq. (1) and (2), we get H̃ =
[
0 1 0 0

]
. In implementing

the KFs, we replace x, X and H by x̃, X̃ and H̃ , respectively. In the
PF, we use the original x, X and H .

3.2 Suceptible-Infected-Recovered

We select the version of the SIR [28] that uses the ratios s, i, and
r. As SIR assumes that the birth and death are negligible to the
whole population during a period, the population M is constant and
st + it + rt ≡ 1 holds at any time within a particular period. The
model depicts the dynamics by assuming the susceptible individu-
als become infected with probability β, and infected individuals can
recover from the disease with recovery rate γ.

∂s

∂t
= βstit

∂i

∂t
= βstit − γit

∂r

∂t
= γit (5)

Apparently, r does not contribute to computing the prevalence i. We
thus only present s and i in the state vector x, and omit the equations
related to r in the rest of this paper.

3.3 Kalman Filter

The KF is a method that computes the posterior states based on
the Maximum Likelihood of a linear Gaussian dynamical system
[8, 36, 30]. During each KF round, Eq. (6) and (7) execute a pre-
diction phase, and Eq. (8) to (10) run a correction phase. P denotes
the covariance of the states, and K the Kalman Gain matrix. Also,
we use a transition matrix B to approximate the transition function
f(·). We thus obtain

xt|t−1 = Bxt−1|t−1 (6)

Pt|t−1 = BPt−1|t−1B
T + U (7)

Kt = Pt|t−1H
T
(
HPt|t−1H

T + V
)−1

(8)

xt|t = xt|t−1 +Kt

(
zt −Hxt|t−1

)
(9)

Pt|t = (I −KtH)Pt|t−1 (10)
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The critical step of a KF is to compute the Kalman Gain K, then
combine the observed data to calibrate the state vector x. The KF
assumes that the posteriori xt|t is more probable as the input for the
next estimation than the priori xt|t−1. Eq. (9) is known as a Kalman-
type (or linear) correction step.

3.3.1 Ensemble Kalman Filter

The KF is an optimal filter for linear Gaussian systems with Gaus-
sian noise [8]. For nonlinear systems, researchers have developed the
Extended Kalman Filter, the Unscented Kalman Filter, the EnKF and
the EAKF, etc. [11, 36, 30]. We consider the EnKF and the EAKF as
they require less parameter tuning than the other Kalman Filters.

The EnKF estimates the covariance matrix P , through the sample
covariance of the ensemble [11, 25, 12, 13]. Therefore, Eq. (7) and
(10) are not used in the EnKF. With the sample covariance denoted
by C, we have the Kalman Gain K:

Kt = Ct|t−1H
T
(
HCt|t−1H

T + V
)−1

(11)

We now show the UCM Cc and the CCM Cu are computed using:

Cu =
1

N − 1
XXT (12a)

Cc =
1

N − 1
(X − x̄1TN )(X − x̄1TN )T, (12b)

where the mean vector x̄ = 1
N
X1N . The CCM is the UCM of the

ensemble after being centered. It follows that:

Cc =
1

N − 1

(
XXT − x̄1TNXT −X1N x̄T + x̄1TN1N x̄T

)
=

1

N − 1
XXT − N

N − 1
x̄x̄T

= Cu − N

N − 1
x̄x̄T (13)

Given any X > 0D×N , Cc is strictly smaller than Cu. The sam-
ple covariance matrix Cu and Cc both approach the correspond-
ing population covariance matrix asymptotically as N grows, as
limN→∞ N − 1 = N .

Finally, the EnKF executes the correction as in Eq. (9) to update
every prior state particle x

(n)

t|t−1 to the posterior state x
(n)

t|t .

3.3.2 Ensemble Adjustment Kalman Filter

The EAKF adds one more step at each round to improve the EnKF
[2, 26]. This filter runs an EnKF round, and then employs a matrix A
to further correct the ensemble members such that

x̂
(n)

t|t = AT
(
x
(n)

t|t−1 − xt|t−1

)
+ xt|t n = 1 . . . N (14)

Anderson [2] stated that a number of values for A exist, raising a
new problem of choosing A. [34, 44] used A = 1.03I for the GFT
data they examined. The research to date mostly selects A based on
empirical tests [2, 34, 44, 45]. Ensemble adjustment in the EAKF is
superior to the EnKF in preventing the filter divergence caused by
the dubiously small prior covariances.

3.4 Particle Filter

A PF [3, 10, 30] is a sequential Monte Carlo method that can perform
filtering for arbitrary models. It employs sequential importance sam-
pling and resampling to draw samples from certain distributions, in
order to approximate the “true” state variables by a weighted mean
that satisfies

E [Xt] =
N∑

n=1

w
(n)
t x

(n)
t . (15)

These Monte Carlo methods approximate the true distribution of
a state through sampling from a proposal distributions. For the
simulations, we implement Storvik’s PF algorithm [42], instead
of the generic PF. At each timestamp, Storvik’s PF samples θt

and xt from the proposal distributions qθ
(
θ
(n)
t

∣∣∣ x(n)
t−1, zt

)
and

qx
(
x
(n)
t

∣∣∣ x(n)
t−1, zt, θ

(n)
t

)
in sequence. Hence, it normalizes the

weights such that for every n,

w
(n)
t ∝ w

(n)
t−1

p
(
θt

∣∣∣ s(n)
t

)
p
(
zt

∣∣∣ x(n)
t , θ

(n)
t

)
p
(
x
(n)
t

∣∣∣ x(n)
t−1, θ

(n)
t

)
qθ

(
θ
(n)
t

∣∣∣ x(n)
t−1, zt

)
qx

(
x
(n)
t

∣∣∣ x(n)
t−1, zt, θ

(n)
t

)
(16)

where st refers to the sufficient statistics for the parameters in the
distribution. A sufficient statistic for an unknown parameter in a dis-
tribution, is the statistic that provides sufficient information for de-
ciding that parameter. We approximate the required distributions by
assuming some known distribution (e.g., Gaussian) rather than using
the Markov Chain Monte Carlo, since [24, 6] suggested that a PF
with appropriate assumption of distributions can yield better accu-
racy and far better computing efficiency.

The PF suffers from degeneracy, where the significant weights are
occupied by a minor portion of the particles [3, 30]. It then uses the
quantity of the effective sample size Seff to control the resampling
switch, where

Seff :=
N

1 + Var [wt]
≈

[
N∑

n=1

(
w

(n)
t

)2
]−1

If Seff is smaller than a certain threshold, it is thought to be suffering
from degeneracy. In such a case, the PF resamples Xt indirectly by
sampling the indices of the states according to the weight distribution
wt. After resampling, all weights will be reset to N−1.

4 Proposed State Filter

Our approach, ensemble adjustment using resampling (BASS), incor-
porates the Kalman-type (linear) correction, resampling and impor-
tance weighting, which prunes the worst-performing particles and
weight the particles after every Kalman correction. The resampling
helps the ensemble members converge more quickly to the true pos-
terior distributions. The linear correction reduces the ensemble size,
and makes the process more tractable. BASS ideally retains a suffi-
ciently large proportion of the states, and the information of them.
That is, we conduct partial resampling, in which the particles with
negligible weight are replaced by those with large weight. It then nat-
urally protects the process from degeneracy if there are sufficiently
many ensemble members performing well. To mitigate against sam-
ple impoverishment, i.e., the loss of diversity amongst the ensem-
ble population [3, 30], we also introduce noise when resampling the
states.
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4.1 BASS

BASS integrates the EnKF and the PF, and focuses on the state cor-
rection step. The correction phase prepares the posterior particles
Xt|t as input for the next prediction. Since the prior particles Xt|t−1

(e.g., generated by the SIR model) and the observations zt are col-
lected, it first runs one EnKF correction and fetches Xt|t. Next, it
proceeds with weighting and partial resampling on Xt|t, to update
Xt|t and fetch the weights wt. The forecasting procedure is shown
in Algorithm 1. The EnKF execution is contained in the algorithm
BASS (Algorithm 2).

Algorithm 1: FORECASTING
(
X0|0, ε, H

)
1 Initialization w0 ← {

N−1
}N

2 for t ← 1 . . . T do � T ← ∞ for continuous forecasting
3 Xt|t−1 ← SIR

(
Xt−1|t−1

)
4

[
it
] ← H

∑N
n=1 w

(n)
t−1x

(n)

t|t−1 � the prediction
5 if t 	= T − 1 then

6 zt streams in
7

(
Xt|t, wt

) ← BASS
(
Xt|t−1, wt−1, zt, ε

)

Compared with full resampling, partial resampling decreases the
computational costs and removes particles with small weights.Partial
resampling in BASS uses a global threshold variable, ε, and a weight
score variable w(n)

t for each particle n. More specifically, the weight
represents the normalized likelihood w

(n)
t = p

(
z1:t

∣∣∣ x(n)
1:t

)
. If the

particle’s weight score is less than the threshold ε, we replace it with
a randomly picked existing particle with large weight. Consider the
system in a Hidden Markov representation, we have

p
(
z1:t

∣∣∣ x(n)
1:t

)
= p

(
z1:t−1

∣∣∣ x(n)
1:t

)
p
(
zt

∣∣∣ x(n)
1:t

)
= p

(
z1:t−1

∣∣∣ x(n)
1:t−1

)
p
(
zt

∣∣∣ x(n)
t

)
∝ w

(n)
t−1p

(
zt

∣∣∣ x(n)
t

)
The likelihood also coincides with the chained performance of the

particular particle. From existing research [34, 44], we know that
there must be state samples that consistently forecast well. Thus, the
chained performance over time can be used for filtering out the worst-
performing (with small likelihood) particles. Every newly resampled
particle inherits the weight score from the root particle. As the weight
is also the chained performance, we do not reset the weights back to{
N−1

}N as in the PF, thus keeping the historical information of the
particles.

BASS is detailed in Algorithm 2. The weights are initialized to a
uniform one-sum vector. First, line 2 executes one EnKF execution
and returns the posterior states, by ENKF(·). The normalization in
line 5 prevents the likelihood from tending towards 0 as time grows.
NORM(·) takes a non-negative weight vector and returns a normal-
ized one-sum weight vector, such that the sum of the weights divides
each weight. The particles fitting to the observations satisfactorily
survive. Hence, we call E (in line 6) the non-survivor set, and ws (in
line 7) the survivors weight set. Normalizing the survivors’ weights
(in line 8) guarantees the under-performing particles are all replaced.
Line 6 to 11 present the partial resampling procedure. It splits the
particles into survivors and non-survivors depending on the thresh-
old ε, hence it resamples the particles from the survivors (according
to their weights) to replace the non-survivors.

Algorithm 2: BASS
(
Xt|t−1, wt−1, zt, ε

)
1 Function BASS

(
Xt|t−1, wt−1, zt, ε

)
2 Xt|t ← ENKF

(
Xt|t−1, zt

)
3 for n ← 1 . . . N do

4 w
(n)
t ← w

(n)
t−1p

(
zt

∣∣∣ x(n)

t|t
)

5 wt ← NORM (wt)

6 E ←
{
n : w

(n)
t−1 < ε, n = 1 . . . N

}
7 ws ←

{
w

(n)
t−1 : w

(n)
t−1 ≥ ε, n = 1 . . . N

}
8 ws ← NORM (ws)
9 Sample |E| indices G ∼ ws � |E| returns the size of E

10 w
(E)
t ← w

(G)
t

11 X
(E)

t|t ← X
(G)

t|t +
{
u
(g)
t

}G

12 wt ← NORM (wt)
13 return

(
Xt|t, wt

)

4.1.1 Time Complexity

BASS consists of the EnKF and the supplement (resampling and
weighting). The time of the supplement for each iteration is in
O(DN), where D is the state dimension and N is the ensemble
quantity. In the algorithm, three normalizations in line 5, 8 and 12,
force O(3 × 2N) steps. Checking and computing the likelihood
consumes time in O(N), from line 3 to 4. Next, drawing the sur-
vivors sets also takes time in O(N), in line 6 and 7. Ideally, re-
sampling (from line 9 to 11) is just for a small portion of the par-
ticles, while the worst case costs the time O(2N + 2DN). Given
the assumption D is at least close to 5, the extra time is bounded by
O(6N +N +N + 2N + 2DN) = O(DN) at each round.

5 Empirical Study

5.1 Experimental Setup

The ILI data [7] records the weekly infection statistics for the U.S.,
both nationwide and regionally. We select the data of 2011-15, and
the 10 regions in 2014-15. Our simulations focus on the forecasts of
the infection rate, for the national cases (4 cases) and the regional
cases (10 cases) separately. We mainly focus on the RMSE between
our predictions and the observations, and also present their CORR.

Initialization. Every initial infection percentage i
(n)
0 , for the n-th

particle, is sampled from a uniform distribution U(0, b), in which b
approximately doubles the first observation of the ILI data z, such
that the population mean μ = a+b

2
≈ z0. Given s

(n)
0 + i

(n)
0 +r

(n)
0 =

1 and r
(n)
0 = 0 for the particle n, we have s

(n)
0 = 1 − i

(n)
0 , n =

1 . . . N . Hence, β and γ are sampled from U(0, 1). The process will
resample the state vector when β ≤ γ is detected. The reproduction
number is given by R0 = β/γ, and R0 ≤ 1 means there would not
be an epidemic outbreak. With respect to the Kalman Filters, we set
the noise r ∼ N (0, 10−4I) and s ∼ N (0, 10−4). For the EAKF, we
pick A = 1.001I for A in Eq. (14). For uBass and cBass, we find that
the resampling threshold ε = 10−5 is rather robust for all cases. For
the PF solution, given Eq. (16), we select the proposal distributions
according to the setting:

qθ
(
θ
(n)
t

∣∣∣ x(n)
t−1, zt

)
= p

(
θt

∣∣∣ s(n)
t

)
qx

(
x
(n)
t

∣∣∣ x(n)
t−1, zt, θ

(n)
t

)
= p

(
x
(n)
t

∣∣∣ x(n)
t−1, θ

(n)
t

)
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Table 1. Mean RMSE% for the methodologies, with the 0.99 confidence interval within the parentheses. Every approach is repeated 50 times. In each tested
situation, the best performer is labeled with bold face.

2011-12 2012-13 2013-14 2014-15
cBass 0.202 (0.200, 0.204) 0.469 (0.458, 0.480) 0.376 (0.369, 0.383) 0.594 (0.580, 0.608)
cEAKF 0.651 (0.637, 0.664) 0.510 (0.498, 0.522) 0.522 (0.508, 0.536) 0.520 (0.512, 0.528)
cEnKF 0.391 (0.391, 0.391) 1.373 (1.253, 1.494) 1.053 (0.990, 1.115) 1.372 (1.243, 1.501)
PF 0.449 (0.413, 0.486) 0.689 (0.657, 0.721) 0.569 (0.523, 0.615) 0.677 (0.641, 0.714)
uBass 0.163 (0.158, 0.168) 0.406 (0.395, 0.417) 0.269 (0.260, 0.279) 0.427 (0.415, 0.440)
uEAKF 0.562 (0.550, 0.574) 1.005 (0.989, 1.020) 0.847 (0.834, 0.860) 0.925 (0.910, 0.939)
uEnKF 0.146 (0.145, 0.146) 0.417 (0.417, 0.417) 0.295 (0.295, 0.296) 0.446 (0.446, 0.447)

2014-15 Region 1 2014-15 Region 2 2014-15 Region 3 2014-15 Region 4 2014-15 Region 5
cBass 0.351 (0.337, 0.365) 0.339 (0.330, 0.348) 0.898 (0.873, 0.922) 0.861 (0.833, 0.889) 0.630 (0.609, 0.651)
cEAKF 0.531 (0.520, 0.543) 0.610 (0.597, 0.623) 0.855 (0.845, 0.866) 0.734 (0.723, 0.744) 0.715 (0.697, 0.733)
cEnKF 0.955 (0.955, 0.956) 1.757 (1.732, 1.782) 1.897 (1.897, 1.898) 1.696 (1.695, 1.696) 2.207 (2.132, 2.283)
PF 0.855 (0.677, 1.033) 0.607 (0.569, 0.646) 1.325 (1.259, 1.392) 1.046 (0.825, 1.267) 1.589 (1.353, 1.825)
uBass 0.276 (0.269, 0.283) 0.267 (0.260, 0.274) 0.809 (0.793, 0.825) 0.718 (0.702, 0.735) 0.467 (0.453, 0.481)
uEAKF 0.845 (0.833, 0.858) 0.797 (0.781, 0.812) 1.218 (1.206, 1.230) 1.219 (1.204, 1.234) 1.116 (1.102, 1.129)
uEnKF 0.445 (0.441, 0.449) 0.986 (0.934, 1.037) 1.740 (1.660, 1.821) 1.567 (1.392, 1.743) 0.874 (0.779, 0.969)

2014-15 Region 6 2014-15 Region 7 2014-15 Region 8 2014-15 Region 9 2014-15 Region 10
cBass 0.639 (0.622, 0.655) 0.462 (0.445, 0.478) 0.462(0.443, 0.481) 0.395 (0.386, 0.403) 0.436 (0.423, 0.449)
cEAKF 0.506 (0.499, 0.513) 0.455 (0.445, 0.466) 0.477 (0.462, 0.492) 0.617 (0.607, 0.628) 0.402 (0.397, 0.407)
cEnKF 2.690 (2.670, 2.719) 1.473 (1.434, 1.512) 1.096 (1.096, 1.096) 1.157 (1.156, 1.159) 1.086 (1.086, 1.086)
PF 0.934 (0.880, 0.987) 2.012 (1.649, 2.376) 0.818 (0.620, 1.016) 0.681 (0.650, 0.711) 1.138 (0.915, 1.361)
uBass 0.601 (0.556, 0.647) 0.472 (0.461, 0.483) 0.331 (0.320, 0.342) 0.341 (0.330, 0.351) 0.374 (0.366, 0.381)
uEAKF 1.100 (1.086, 1.114) 1.106 (1.094, 1.119) 0.985 (0.969, 1.002) 0.867 (0.848, 0.876) 0.808 (0.792, 0.820)
uEnKF 3.111 (2.171, 4.050) 1.054 (1.039, 1.069) 0.742 (0.721, 0.763) 1.155 (1.103, 1.207) 0.824 (0.795, 0.852)

We also assume that p
(
x
(n)
t

∣∣∣ zt) is distributed by Gaussian. The

sufficient statistics for the Gaussian N (μ, σ2) are the sample mean
for μ and sample variance for σ2, or sample covariance matrix for Σ
in the multivariate Gaussian N (μ,Σ). Finally, let Seff = N/2.

Implementation. The program is developed in Python, and is
available at https://github.com/weipeng/pyepi.

5.2 Discussion

5.2.1 Performance Result

For this task, we find that the CORR is strongly correlated to the
RMSE and therefore we focus on the RMSE. We average our results
over 50 for each case. In each season and region, we carry out the
Analysis of Variance (ANOVA) on the mean RMSE, with the null
hypothesis that all methods gain equal RMSE. The data show that
for all the scenarios, the null hypothesis is rejected with the P-values
all less than 2e−16. A statistical comparison is thought to be signif-
icant when its P-value is less than 0.05. We apply the Tukey test to
conduct pairwise comparisons of the approaches. The Tukey test is
commonly thought to be better than the pairwise t-test, as it embeds
the protection to the rise in the risk of Type I error. The statistical
analysis is carried out through the built-in functions in the statistical
computing language R [31].

Mean RMSE. The mean RMSE result is shown in Table 1 and the
Tukey result involving the Bass solutions is shown in Table 2. From
2011-15, uBass, uEnKF and cBass are the top 3 performers in order.
The algorithm uBass achieves the optimal prediction accuracy in 3
seasons (2012-15), while uEnKF achieves the optimal accuracy for
2011-12. Also, cBass is the third best performer in the nationwide
cases, gaining the third best performance in 3 cases. In 10 regional

cases, uBass, cBass and cEAKF are the top three performers in or-
der. The mean RMSE of uBass is significantly lower than that of both
cBass and cEAKF in 5 regions, however, demonstrates better accu-
racy than both cBass and cEAKF in 4 regions (amongst the other 5
regions) although the differences between them are not significant.
Our cBass achieves significantly lower RMSE than cEAKF in 2 re-
gions, and lower (but not significantly) RMSE in 7 regions.

RMSE of the Mean Estimates. Fig. 1 displays the RMSE and the
CORR of the mean estimates over 50 repetitions. In the RMSE heat-
map, the lighter color implies better accuracy. In the CORR heat-
map, the darker color implies higher correlation, and red indicates the
positive direction while blue indicates the negative. In view of such a
situation, uBass gains both the optimal RMSE and CORR in 11 out of
14 cases. Both heat-maps demonstrate uBass is clearly optimal, and
cBass is the third across all cases. In conclusion, uBass and cBass
consistently perform better in predicting the seasonal influenza level
in the U.S.

Confidence Interval. Table 1 exhibits the mean RMSE, with the
99% confidence intervals. Our uBass approach consistently obtains
high accuracy, and maintains a small/tight confidence interval gap
(gap < 0.03%), except for region 6. Besides, cBass yields the gaps
smaller than 0.03% in 13 situations, and cEAKF achieves the tight
gaps in all situations. Notice that, uEnKF has the smallest (compared
with others) interval gaps for the 4 nationwide predictions, but gets
large uncertainty in the regional predictions of 8 regions. However,
as a derivation from uEnKF, uBass overcomes the adversity in the
regional forecasting simulations.

Fig. 2 illustrates that most approaches have tight confidence in-
tervals even at the 99% level. The PF and cEnKF show the visible
intervals for all scenarios, and uEnKF illustrates strong uncertainty
in regional scenarios.
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Table 2. Tukey test of 0.99 confidence interval for measuring the mean of the RMSE of all approaches on the national influenza level amongst 2011-15 and
the regional influenza level in 2014-15. Only the comparisons involving uBass and cBass are presented.

2011-12 2012-13 2013-14 2014-15
� P-value � P-value � P-value � P-value

cEAKF-cBass 4.483 0.000 0.132 0.999 1.462 0.000 −0.739 0.098
cEnKF-cBass 1.891 0.000 8.768 0.000 6.768 0.000 7.782 0.000
PF-cBass 2.472 0.000 1.926 0.000 1.932 0.000 0.837 0.037
uBass-cBass −0.394 0.000 −0.933 0.006 −1.064 0.000 −1.666 0.000
uEAKF-cBass 3.597 0.000 5.081 0.000 4.717 0.000 3.309 0.000
uEnKF-cBass −0.566 0.000 −0.796 0.033 −0.805 0.000 −1.476 0.000
uBass-cEAKF −4.878 0.000 −1.065 0.001 −2.526 0.000 −0.927 0.013
uBass-cEnKF −2.286 0.000 −9.701 0.000 −7.832 0.000 −9.449 0.000
uBass-PF −2.866 0.000 −2.859 0.000 −2.996 0.000 −2.503 0.000
uEAKF-uBass 3.992 0.000 6.014 0.000 5.781 0.000 4.975 0.000
uEnKF-uBass −0.172 0.265 0.136 0.998 0.259 0.599 0.190 0.993

2014-15 Region 1 2014-15 Region 2 2014-15 Region 3 2014-15 Region 4 2014-15 Region 5
� P-value � P-value � P-value � P-value � P-value

cEAKF-cBass 1.804 0.000 2.705 0.000 −0.422 0.463 −1.273 0.277 0.851 0.685
cEnKF-cBass 6.046 0.000 14.182 0.000 9.997 0.000 8.346 0.000 15.770 0.000
PF-cBass 5.041 0.000 2.681 0.000 4.275 0.000 1.848 0.021 9.586 0.000
uBass-cBass −0.749 0.357 −0.721 0.000 −0.890 0.001 −1.427 0.158 −1.632 0.038
uEAKF-cBass 4.945 0.000 4.574 0.000 3.203 0.000 3.579 0.000 4.855 0.000
uEnKF-cBass 0.939 0.121 6.466 0.000 8.424 0.000 7.065 0.000 2.436 0.000
uBass-cEAKF −2.554 0.000 −3.427 0.000 −0.468 0.334 −0.154 1.000 −2.484 0.000
uBass-cEnKF −6.795 0.000 −14.904 0.000 −10.887 0.000 −9.773 0.000 −17.402 0.000
uBass-PF −5.790 0.000 −3.402 0.000 −5.165 0.000 −3.275 0.000 −11.218 0.000
uEAKF-uBass 5.694 0.000 5.296 0.000 4.093 0.000 5.006 0.000 6.488 0.000
uEnKF-uBass 1.688 0.000 7.188 0.000 9.314 0.000 8.492 0.000 4.068 0.000

2014-15 Region 6 2014-15 Region 7 2014-15 Region 8 2014-15 Region 9 2014-15 Region 10
� P-value � P-value � P-value � P-value � P-value

cEAKF-cBass −1.325 0.992 −0.063 1.000 0.148 1.000 2.229 0.000 −0.341 0.989
cEnKF-cBass 20.548 0.000 10.117 0.000 6.336 0.000 7.629 0.000 6.499 0.000
PF-cBass 2.949 0.702 15.509 0.000 3.553 0.000 2.863 0.000 7.018 0.000
uBass-cBass −0.372 1.000 0.105 1.000 −1.314 0.020 −0.540 0.001 −0.624 0.809
uEAKF-cBass 4.612 0.180 6.448 0.000 5.231 0.000 4.672 0.000 3.698 0.000
uEnKF-cBass 24.718 0.000 5.922 0.000 2.799 0.000 7.608 0.000 3.875 0.000
uBass-cEAKF 0.952 0.999 0.168 1.000 −1.462 0.006 −2.769 0.000 −0.283 0.996
uBass-cEnKF −20.920 0.000 −10.012 0.000 −7.649 0.000 −8.169 0.000 −7.123 0.000
uBass-PF −3.322 0.571 −15.405 0.000 −4.867 0.000 −3.403 0.000 −7.642 0.000
uEAKF-uBass 4.984 0.114 6.343 0.000 6.544 0.000 5.211 0.000 4.322 0.000
uEnKF-uBass 25.090 0.000 5.817 0.000 4.113 0.000 8.148 0.000 4.500 0.000

� the difference (×103)

5.2.2 Curve Fitting

We describe the calibration power/capacity and discuss the curve
fitting (in Fig. 2) for each filter in the following paragraphs.

Fig. 2 demonstrates the curve fitting plots for the chosen nation-
wide and regional cases, including the 99% confidence interval. A
Kalman-type filter is thought to have strong calibration power if it
raises a big numerical change when correcting the prior states to the
posterior states (Eq. (9)). The calibration power is decided by the
Kalman Gain and thus decided by the covariance matrix. A calibra-
tion that is too strong introduces oscillations in the predicting curve,
while a calibration capacity that is too weak fails to make the predic-
tions close to the observed data. Hence a suitable calibration helps
the filter forecasts more accurately.

We find that uEnKF works well in the nationwide cases, but
achieves relatively large RMSE in 9/10 regional cases. The method

cEnKF perceptibly fails to predict the epidemic. In comparison, the
capacity of calibration in uEnKF is stronger than that in cEnKF. The
predicting curves of uEnKF are oscillating, whereas cEnKF fails to
approach the observations, particularly in the regional cases. Accord-
ing to Eq. (13), CCM of the non-negative state ensemble is numeri-
cally less than or equal to its UCM. We also find that a numerically
small matrix will be influenced by noise easily. However, an exces-
sively strong calibration makes the methods hit the boundaries of the
states (e.g. 0 ≤ s, i ≤ 1). For instance, in regions 6 and 8, it shows
that, the states hitting the bounds will be corrected by the hard limits
(Fig. 2), rather than by the filter, distorting the nature of the filtering
methods. This problem falls into the category of constrained Kalman
Filter [17, 18, 38, 37].

It shows that cEAKF have higher RMSE than uEAKF in all situ-
ations. In contrast to EnKF, uEAKF holds a weaker calibration ca-
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(a) RMSE

(b) CORR

Figure 1. Heat map of the performance metrics, with the mean estimates of
the 50 repeated forecasting simulations. R is short for Region.

pacity. For all scenarios after the epidemic peak, the predictions of
uEAKF never manage to approach the observations until the very
end of the flu seasons. Additionally, cEAKF converges to the ob-
servations slower than uEAKF before the epidemic peak, however
outperforms uEAKF after the peak. It implies that the calibration ca-
pacity of uEAKF gradually declines over time.

The plots show that the performance of the PF strongly relies on
the underlying models. The curve fitting for region 3 and 5 illustrates
that the PF is not able to accommodate the fluctuations in the obser-
vation curves. [34, 44] availed of the SIRS model with the humid-
ity data as extra features, which is superior to the SIR model. Their
model addresses the epidemic peak, or multiple peaks, through the
filter or humidity component. For a standalone PF, it is not capable
of handling multiple peaks, since the SIR model foremost decides
the shape of the prediction curve.

BASS with UCM consistently outperforms that with CCM (in 13
scenarios). The comparison between uBass and cBass follows the
similar pattern of that in the EnKF. Both methods fit the observation
curves well, but uBass has a more suitable calibration capacity and
achieves better inferential accuracy.

5.2.3 Resampling Size Analysis

Table 3 exhibits the expected value of the average resampling size
over time for the two Bass candidates of the 50 simulations. The two
algorithms both resample only a small portion of their particles on
average, even when providing accurate forecasts. Amongst all cases,
the maximum percentage is merely 13.04% generated by cBass for
the region 6 in 2014-15. It also shows that uBass consumes signif-
icantly smaller average resampling size per round, compared with
cBass (P-values smaller than 10e−11 for 10 cases). Only in region
6 and 10, does cBass resample less (with P-values 1 and 0.75). In
our 500-particle simulations, the mean resampling size interval is

[34.67, 67.06] for cBass, and [19.64, 63.54] for uBass.

Table 3. Average resampling size in the BASS algorithm of 500 particles,
with the error threshold ε = 10−5. The 0.99 confidence intervals are shown
in the parentheses. R is short for region in the first column, for 2014-15. The
rightmost column shows the t-test on the null hypothesis μ1 ≤ μ2, where
μ1 and μ2 are the expectation of average resampling quantities of cBass and
uBass respectively.

average resampling size μ1 ≤ μ2

cBass uBass P-value
2011-12 34.67 (34.34, 35.00) 19.64 (18.44, 20.84) < 2e−16
2012-13 52.77 (51.20, 54.22) 35.19 (32.27, 38.11) < 2e−16
2013-14 47.98 (46.14, 49.81) 25.60 (23.96, 27.24) < 2e−16
2014-15 55.02 (53.15, 56.90) 32.94 (31.07, 34.81) < 2e−16
R 1 42.81 (41.75, 43.88) 34.55 (33.23, 35.87) < 2e−16
R 2 43.54 (41.62, 45.46) 35.54 (34.06, 37.01) 2.75e−14
R 3 67.06 (64.08, 70.05) 53.62 (51.16, 56.08) 2.4e−15
R 4 60.57 (58.27, 62.87) 51.54 (49.61, 53.45) 1.13e−12
R 5 53.85 (51.33, 56.36) 35.07 (33.13, 37.01) < 2e−16
R 6 65.21 (62.17, 68.26) 63.54 (60.37, 66.72) 0.16
R 7 48.69 (46.85, 50.53) 62.43 (60.38, 64.48) 1
R 8 49.96 (48.28, 51.63) 34.04 (32.55, 35.54) < 2e−16
R 9 48.73 (47.23, 50.24) 40.01 (38.54, 41.48) < 2e−16
R 10 49.55 (48.45, 50.65) 50.02 (48.56, 51.47) 0.75

5.2.4 Drawback of the Filtering Approach

The shortcoming of the SIR-filter approaches is a one-week lag for
predicting the epidemic peak, although the Kalman filters address the
micro details to a certain extent. Shaman et al. [34] and Yang et al.
[44] employed the SIRS assimilated with the humidity component.
More orthogonal features may add value to the standalone SIR pre-
dictions. In future work, we plan to investigate how social content
(web searches, Tweets, etc.) could help improve the model by allow-
ing proactive predictions to address the peak timing.

6 Conclusion

This paper proposed an improved SIR-based filter algorithm, BASS,
for predicting the seasonal influenza level. It empirically achieves the
optimal RMSE and CORR in 11 out of 14 major real-world cases.
We also examined UCM and CCM in the BASS, EnKF and EAKF.
The experimental results indicate that, in our formulation, the BASS

and EnKF perform better with UCM, and it is ideal for the EAKF to
utilize CCM. Our future work includes combining social data to fur-
ther enhance the approach of model and filters. We are also interested
in combining the SIRS model with the filters to predict seasonal flu
continuously. In addition, we would also like to assess whether our
filtering algorithm is applicable to other general problems.
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