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Abstract. Group sparse representation (GSR) exploits group struc-
ture in data and works well on many problems. However, the group
structure must be manually given in advance. In many practical s-
cenarios such as classification, samples are grouped according to
their labels. Constructing a consistent group structure in such cas-
es is not easy. The reasons are: 1) samples may be incorrectly la-
beled; and 2) label assigning in big data is time-consuming and ex-
pensive. In this paper, we propose and formulate a new problem,
semi-supervised group sparse representation (SS-GSR) to support
group sparse representation among both labeled and unlabeled data,
while learning a more robust group structure, which can be further
exploited to more effectively represent other unlabeled data. We de-
velop a model to tackle the SS-GSR problem, based on the manifold
assumption in subspace segmentation that samples in the same group
lie close in feature space and span the same subspace. We also pro-
pose an alternating algorithm to solve the model. Finally, we validate
the model via extensive experiments.

1 INTRODUCTION

Sparse representation (SR) [18] and group sparse representa-
tion (GSR) [24] have been successfully applied to many regression
problems [24] and machine learning tasks, such as the classification
tasks of images [15, 22], texts [20, 9] and biological data [13, 23].
GSR considers the group structure of data as prior knowledge and
benefits from it when the data is consistent with such structure. For
example, in most classification tasks, samples can be seen naturally
with a group structure, because samples in the same class tend to be
grouped together. For such cases, GSR usually outperforms SR [15]
because group sparsity works better when the underlying samples are
strongly group-sparse [10]. However, GSR requires that the group
structure is explicitly given in advance, which is implied in the class
relationship of labeled samples. In real applications, accurate label
information may not be easy to acquire. On the one hand, the samples
may be incorrectly labeled. On the other hand, it requires a lot human
effort to assign the labels, which is prohibitively expensive for big
data. Consequently, a large fraction of data in reality are unlabeled
although we know that they should have certain labels. In parallel to
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semi-supervised learning, if we can exploit the large amounts of un-
labeled data in the GSR process, better data representation should be
achieved.

With this in mind, in this paper we propose a new problem, semi-
supervised group sparse representation (SS-GSR) to conduct GSR
over a dataset consisting of both labeled and unlabeled samples. The
aim is two-fold: 1) representing each sample with respect to the other
samples while the representation coefficients are consistent with the
underlying group structure of the whole dataset; 2) learning a more
robust group structure underlying the dataset via exploiting also the
unlabeled samples. SS-GSR is not only a nontrivial advancement but
also a significant complement to the traditional GSR that represents
unlabeled samples with a dictionary of labeled samples by imposing
the group sparsity constraint. SS-GSR performs GSR among labeled
and unlabeled data, meanwhile refines the group structure explicitly
given in the labeled data by additionally utilizing unlabeled data.

To reveal the underlying group structure of the dataset, we believe
that the coefficient matrix should be in a specific form. Manifold as-
sumption and block-diagonal constraint are introduced in subspace
segmentation [21] to cluster samples into groups. Samples (labeled
and unlabeled) are assumed to be grouped according to their underly-
ing subspace and the distance in the feature space. This assumption
allows the block-diagonal constraint on the affinity matrix to find
clustering structure among samples [8]. In this paper, we employ the
same assumption to the SS-GSR problem and formulate our model
with block-diagonal constraint, thus the underlying group structure
can be discovered with the block structure in the coefficient matrix.
Furthermore, to exploit the group structure of unlabeled data in s-
parse representation, we construct the affinity matrix using the co-
efficient matrix and try to maintain the local consistency of group
structure among samples according to the affinity matrix as in [27].

Contributions of this paper are as follows:

• We propose the problem of SS-GSR to extend GSR so that unla-
beled data can be also exploited in the representation process.

• We formulate our model to automatically learn the underlying
group structure by utilizing the manifold structure of data, and
develop an efficient algorithm to solve the model.

• We validate our model by extensive experiments of two typical ap-
plications. Experimental results show that our model outperforms
the existing GSR model and three semi-supervised learning meth-
ods (including one proposed recently).

The rest of this paper is organized as follows: Section 2 reviews
the traditional group sparse representation (GSR) model, which is
the starting point and the most related work to our model proposed
in this paper. Section 3.2 presents the new model that is called semi-
supervised group sparse representation (SS-GSR). Section 4 intro-
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duces the algorithm to solve the proposed model. Section 5 gives
the validation of the proposed model on two applications. Section 6
concludes this paper.

2 GROUP SPARSE REPRESENTATION (GSR)

GSR explores group structure information during representation by
requiring the coefficients corresponding to different groups to be s-
parse. The training samples used to represent other samples together
constitute a dictionary X ∈ Rd×n. Let Gg be the group of indices of
training samples with group id g ∈ {1..c}, given another test sample
y ∈ Rd, GSR can be formulated as:

min
z∈Rn

1

2
‖y −Xz‖22 + λ

c∑
g=1

∥∥zGg

∥∥
2
, (1)

with tradeoff parameter λ>0. Here, the non-zero elements of vector
zGg are the same as those of vector z indexed in Gg . The first term is
the regression error, and the second term can be seen as an �21-norm:
the �2-norm is for the elements of the coefficient vector z inside each
group and �1-norm measures the sparsity among groups.

Given the group structure, GSR favors the selection of multiple
correlated samples in the dictionary to represent the test sample, and
thus promotes the representation of the test sample in terms of all the
training samples from the correct group [15]. Even though, it requires
that the group structure of the whole dictionary should be given in
advance and the structure should be correct according to the prior
knowledge. However, in practice the given structure might not be
fully consistent with data due to the complexity of data and noise in
data collection. Assigning structures to all samples in the dictionary
via human labor might be prohibitively expensive if not impossible
when large amount of data are collected. In this paper, we will try
to exploit the group structure information of some samples properly
and learn the group structure of all samples automatically.

3 SS-GSR MODEL

3.1 Problem statement

Suppose we have a dataset X ∈ Rd×n whose column vector
Xi (i = 1, . . . , n) corresponds to each of the n samples. These sam-
ples can be grouped into c non-overlapping groups. However only
part of these samples are given with group labels in C = {1, . . . , c},
and for the rest of them, the group labels are unknown. We simply
assume that the first m samples X1...m are given with group labels,
and these group labels form a group label vector G ∈ Cm. Our prob-
lem is to decide a coefficient matrix Z ∈ Rn×n, whose columns are
representation coefficients Zi that represent sample Xi using the
others, and the non-zero elements in Zi should correspond to sam-
ples in the same underlying group with sample Xi. That is, the group
sparsity on Zi should be the underlying group sparsity. Since we do
not want samples to represent themselves, we fix the diagonal ele-
ments in Z to be 0 to avoid such trivial representations. Accordingly,
we have the following equation:

X = XZ, s.t. Zi
i = 0, ∀i ∈ {1, . . . , n}. (2)

If we rearrange the samples to an order that the samples in the
same underlying group are put together, the desired coefficient ma-
trix Z would be a block-diagonal matrix with each block correspond-
ing to a group structure. This gives us the inspiration that we might be
possible to find the underlying group structure by finding the block
structure in the coefficient matrix Z.

However, when we assume the given group structure of X1...m

to be unreliable, we need some other assumptions on data that can
help find the block structure in Z. Interestingly, the works of sub-
space segmentation [21, 7, 14, 8] follow similar idea to build a block-
diagonal affinity matrix W ∈ Rn×n

+ . Subspace segmentation is
to segment the samples according to the manifold assumption. The
work of [8] explicitly imposes a fixed rank constraint on the graph
Laplacian, which constrains the number of connected components in
the affinity matrix W as:

rank (LW ) = n− c, (3)

where LW is the Laplacian matrix for W and c is the number of con-
nected components (a connected component corresponds to a group
of samples). Thus the optimal affinity matrix is constrained to be a
c-block-diagonal matrix.

Here, we employ the manifold assumption and the block con-
straint into GSR, with which the underlying group structure can be
obtained by finding the block structure of the coefficient matrix. Note
that though we used a similar block constraint form to that in [8],
our work is different from subspace segmentation [8] at least in t-
wo aspects: a) The task is different. Their work aims at solving an
unsupervised learning problem, while ours aims at extending the tra-
ditional group sparse representation, and applied it to both supervised
and semi-supervised learning problems. b) The solution is different.
Their work follows a two-step scheme: first they compute an affini-
ty matrix W from data, and then perform regular clustering on the
affinity matrix. And the first step is independent from the second step.
However in our work, the second step (classification) also affects the
first step (computing the affinity matrix). Thus, we propose a com-
bined scheme that solves the affinity matrix and the label assignment
jointly, in order to simultaneously obtain a better affinity matrix and
a more accurate label assignment.

3.2 Model formulation

We introduce a confidence matrix F ∈ Rn×c
+ whose elements indi-

cate the probability that a sample belongs to a certain group. So we
have the following equation and inequation:

c∑
j=1

F j
i = 1, ∀i ∈ {1, . . . , n},

0 ≤ F j
i ≤ 1, ∀i ∈ {1, . . . , n}, j ∈ {1, . . . , c}.

As the first m samples’ labels are already known, thus:

FGi
i = 1, ∀i ∈ {1, . . . , n};

F j
i = 0, ∀j �= Gi, j ∈ {1, . . . , c}, i ∈ {1, . . . , n}.

The first m rows of F are fixed and we write them as FL. The rest
part of F is denoted by FU . Thus F = [F�

L F�
U ]�.

We take two steps to formulate our model according to the two
problems in GSR: first we try to detect the underlying group struc-
ture in samples whose group structure is given, then we present the
procedure of finding the hidden group structure of the whole set of
samples by taking also the unlabeled samples into consideration.

3.2.1 Detecting the underlying structure of labeled data

First, we focus on detecting the underlying structure in labeled data.
To avoid the influence of unlabeled data, we fix the coefficients corre-
sponding to those samples as 0, namely Zm+1,...,n

m+1,...,n = 0, and denote
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the Laplacian from labeled data to labeled data as L̂W = L
W

1,...,m
1,...,m

,

where LW is the Laplacian matrix of the affinity matrix W .
Based on the requirement in Equation (2) and our assumption in

Section 3.1, as well as the group sparsity regularization term, we
formulate our model as:

min
Z,F

1

2
‖X −XZ‖2F + λ

m∑
i=1

∥∥∥Zi
∥∥∥
G(F )

+ γtr(F�
L L̂WFL)

s.t. rank(L̂W ) = m− c,W = (|Z|+ |Z|�)/2. (4)

Above, the norm ‖·‖G(F ) is a group sparse norm in which the group
structure is given by the column number of the maximum element of
each row in F , namely, samples with the same column number are
considered to be in the same group.

The first term in the objective function is to ensure the represen-
tation to be of small residual error to meet the requirement in Equa-
tion (2). The second term uses the confidence matrix to help decide
the group structure of the coefficient matrix, and the third term us-
es the Laplacian matrix constructed by the coefficient matrix as the
affinity matrix and perform label propagation on Laplacian graph.
The rank constraint is equivalent to a block-diagonal constraint on
W [8], which encourages the samples to be clustered into groups
according to the manifold assumption.

3.2.2 Finding the group structure for the entire dataset

Next, we go to find the hidden group structure of the whole set of
samples and use the learned structure information for group sparse
representation. Since we only have the group structure of part of the
samples, we have to propagate the group structure with respect to
the Laplacian LW as in the works of graph-based semi-supervised
learning (SSL) [4, 27, 26]. Since in our first step, we have already
learned a coefficient matrix and then an affinity matrix can be con-
structed as W = (|Z| + |Z|�)/2, the same propagation process
as in graph-based SSL can be directly applied to our first model (4).
Therefore, we have:

min
Z,F

1

2
‖X −XZ‖2F + λ

n∑
i=1

∥∥∥Zi
∥∥∥
G(F )

+ γtr(F�LWF )

s.t. rank(LW ) = n− c,W = (|Z|+ |Z|�)/2. (5)

In the above formulation, the coefficient matrix Z is learned for all
samples, and the rank constraint is performed on the whole Laplacian
graph.

Although we have formulated the model, solving the optimization
problem is not easy because it is a non-smooth and non-convex prob-
lem, and the rank constraint is generally NP-hard. In Section 4, we
will present an algorithm to efficiently solve the problem.

3.3 The Advantages of SS-GSR

In our model formulation (5), the affinity matrix W can be divided
into four parts:

W =

[
WLL WLU

WUL WUU

]
, (6)

where WUL = W�
LU indicates the relationship between labeled

samples and unlabeled samples, and WLL and WUU indicate re-
spectively the relationships among labeled samples and unlabeled
samples. In the best case, all the four matrices are block-diagonal
matrices as shown in Figure 1.

Algorithm 1 Iteration between Z and F

Input: dictionary X , initial labels FL

Initialize W
repeat

Solve FU using Equation (9)
Solve Z using Algorithm 2
Update W = (|Z|+ |Z|�)/2

until Z and F converge

Algorithm 2 Projected subgradient descent
Input: dictionary X , labels F , initial Zinit

Initialize step size η
repeat

Calculate subgradient g of the objective in Equation (7)
Subgradient descent Z = Z − ηg
Project Z = ΠK (Z) as in Algorithm 3

until Z converges

We discuss the advantages of our model from two aspects:
1) learning the underlying group structure that is consistent with the
labeled samples; 2) finding the underlying group structure by exploit-
ing both labeled and unlabeled samples, and using the structure to
represent all samples.

For the first aspect, how a sample is consistent with its group struc-
ture can be measured by the group sparsity of the corresponding col-
umn of WLL. Since our model learns the underlying group structure
automatically, the properly learned WLL will show us how samples
are consistent with their group structures and therefore improves the
group sparse representation. We take the supervised classification
task as an example, where unlabeled samples are classified one by
one. For our model, only one sample is unlabeled (the one to be clas-
sified), and the matrix WUU becomes a single real number which
is set to 0 since it is also the diagonal element, that is, we solve the
model (4). In this case, though WUU will not help in classifying the
unlabeled samples, our model can still outperforms GSR via learn-
ing WLL. Obviously, GSR can be seen as a special case of our model
when the matrix WLL is fixed as an zero matrix.

For the second aspect, we compare our model with graph-based
semi-supervised learning (SSL) methods because they all use the
group information of unlabeled samples. The major difference is
that, for the graph-based SSL methods, the affinity matrix W must
be constructed in advance and is fixed during the learning process.
However, in our model the affinity matrix is constructed by coeffi-
cient matrix Z, which is learned during the model optimization. Fur-
thermore, W in our model contains the underlying structure of data,
while a pre-given W in graph-based SSL methods may not be con-
sistent with the structure of data [25]. In Section 5, our experiments
over five real datasets clearly show that our model outperforms the
graph-based SSL methods even when similar initialized W is used.

4 SS-GSR ALGORITHM

In this section, we first design an alternating algorithm to solve the
proposed model, and then briefly discuss the convergence of the al-
gorithm.

4.1 Alternatively solving Z and F

Note that the rank constraint is all about the coefficient matrix Z, so
we first alternate between solving Z and solving F as outlined in
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Algorithm 3 Projecting Z into K
Input: Z0 and c
Initialize Z = Z0; ρ = 1.1; β = 1× 10−4

repeat

Solve the first quadratic problem in (13) for Z
Calculate L̃ via Equation (14)
Update J = J + β(L̃−LW )
Update β = ρβ

until Z and L̃ converge

Algorithm 1.
When F is fixed, the optimization problem becomes:

min
Z

1

2
‖X −XZ‖2F + λ

n∑
i=1

∥∥∥Zi
∥∥∥
G(F )

s.t. rank (LW ) = n− c.

(7)

We will further show how to solve this in Algorithm 2.
When Z is fixed, the optimization problem becomes:

min
F

tr
(
F�LWF

)
, (8)

and this unconstrained problem has a closed form solution [27]:

FU = (DUU −WUU)−1 WULFL, (9)

where D is a diagonal matrix whose diagonal elements are the sums
of every row of W and DUU is that of WUU .

4.2 Sub-gradient descent for Z

The optimization problem (7) is a non-smooth and constrained prob-
lem, which can be solved by the projected subgradient descen-
t method. Let K be the set of c-block-diagonal matrix as:

K = {Z|rank(LW ) = n− c} . (10)

Thus the rank constraint can be rewritten as Z ∈ K. For each iter-
ation, we perform a subgradient descent on Z and then project Z
back into the feasible set K. This process is shown in Algorithm 2.

4.3 Projecting Z into K
To distinguish between input variable and output variable, we assume
that the variable to be projected is Z0. The projection step is to find
a matrix in the set K, which is closest to Z0 as follows:

min
Z

1

2
‖Z −Z0‖2F , s.t. Z ∈ K. (11)

We introduce an auxiliary variable L̃ to replace the Laplacian ma-
trix LW and rewrite the projection (11) via Augmented Lagrangian
Multiplier as in [1]:

min
Z,˜L

1

2
‖Z −Z0‖2F +

〈
J , L̃−LW

〉
+

β

2

∥∥∥L̃−LW

∥∥∥2

F
,

s.t. rank(L̃) = n− c, (12)

where J is the Lagrangian multiplier and β is an increasing weight
parameter. This problem can be solved by alternatively updating Z,

L̃ and J as follows:

Z = argmin
Z

1

2
‖Z −Z0‖2F − 〈J ,LW 〉+ β

2

∥∥∥L̃−LW

∥∥∥2

F
;

L̃ = argmin
˜L

〈
J , L̃

〉
+

β

2

∥∥∥L̃−LW

∥∥∥ s.t. rank(L̃) = n− c;

J = J + β(L̃−LW ). (13)

The first problem above can be solved via quadratic programming
because except for the first term, all the other terms contain only |Z|.
Thus the sign of all elements in the optimal Z are the same as those
of elements in Z0. The second problem has a closed-form solution
via SVD [6]:

L̃ = U1:(n−c)Σ
1:(n−c)

1:(n−c)(V
1:(n−c))�, (14)

where UΣV � = LW − 1
β
J . The projection process is outlined in

Algorithm 3.
Our algorithm has a relatively higher computational complexity,

because we try to solve a much more challenging problem than the
existing algorithms. The main challenge is the noise in labeled data
and the unknown group structure of a large fraction of unlabeled data,
which have not been considered in the existing works. Furthermore,
our algorithm is suitable for a branch of accelerating strategies. For
example, with stochastic sub-gradient descent, our algorithm can be
implemented in a distributed way.

Figure 1. illustration of W learned via SS-GSR.

4.4 Convergence of the algorithm

The optimization problem in Model (5) is strongly non-convex and
we solve it using an EM-like algorithm (Algorithm 1). The motiva-
tion of using such an algorithm is based on the fact that minimizing
the objective with respect to F is obviously a convex problem and
minimizing the objective with respect to Z has been approximated
using its convex relaxation as in [1]. Therefore, by convex relaxation,
the optimization problem actually solved is a bi-convex problem with
respect to F and Z.
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Also, the gradient descent with projection used in solving Z is
guaranteed to converge to the global optimum because the Scalable
Restricted Isometry Property holds [1, 17].

It is worthy of noting that in our experiments, the algorithm usual-
ly gets converged within 10 outer iterations, and achieves satisfactory
result.

0 0.2

0 0.2

0 0.2

Figure 2. Pictures of Z on Caltech7. From top to bottom are: (a) Z
generated by GSR, (b) ZLU generated by SS-GSR-1 and (c) ZLU

generated by SS-GSR-2. SS-GSR-1 learns the group structure using only
labeled data, while SS-GSR-2 learns the group structure using both labeled

and unlabeled data.

Table 1. Group sparsity results of different representation methods on
dataset Caltech7. SS-GSR-1 learns the group structure using only labeled
data, while SS-GSR-2 learns the group structure using both labeled and

unlabeled data.
Representation Method Group Sparsity

GSR 4455.0
SS-GSR-1 3455.2
SS-GSR-2 3144.8

Table 2. Details of datasets used in the experiments.

Dataset Data type Num. of samples Num. of classes

Caltech7 images 1471 7
PENDIGITS images 5620 10
OPTDIGITS images 5620 10
Reuters texts 7424 6
WEBKB4 texts 4196 4

5 Performance Evaluation and Applications

To validate the effectiveness of our method, here we apply it to both
supervised and semi-supervised classification tasks. Concretely, we
first evaluate the improvement on representing samples with the help
of SS-GSR, we then test the performance of SS-GSR on both a su-
pervised classification task and a semi-supervised classification task,
and compare it with some major existing methods. We evaluate those
methods with performance metrics Accuracy, Precision and Recall,
which are first evaluated on each class and then averaged over the
classes.

5.1 Model validation: SS-GSR vs. GSR

We compare the representation abilities of GSR and SS-GSR on
dataset Caltech7 [12] in terms of group sparsity. To calculate the
group sparsity, we generate the coefficient matrices that use labeled
data to represent the other data with the same parameter. For GSR, it
is the whole coefficient matrix Z; for SS-GSR, it is the matrix ZLU .
We generate two results for SS-GSR: SS-GSR-1 represents the test
data one by one so that the matrix ZUU is fixed as 0, namely it learns
only the group structure of the labeled data as in model (4); SS-GSR-
2 represents the test data with both labeled and test data, namely it
learns the group structure of all data (labeled and unlabeled) as in
model (5).

Figures 2 (a)-(c) show the normalized coefficient matrices. As we
have already sorted the samples according to their labels, the ex-
pected coefficient matrix should be a block-diagonal matrix. In our
above figures, those with fewer non-zero elements outside the diago-
nal blocks are better representations. We can see that the color of the

Table 3. Supervised classification results. Both algorithms classify test
samples one by one.

Dataset Method Accuracy Precision Recall

Caltech7 GSR 96.33% 87.63% 87.14%
SS-GSR 96.73% 89.05% 88.57%

PENDIGITS GSR 99.63% 98.33% 98.13%
SS-GSR 99.63% 98.35% 98.13%

OPTDIGITS GSR 99.40% 97.32% 97.00%
SS-GSR 99.42% 97.38% 97.10%

Reuters GSR 92.67% 65.13% 63.71%
SS-GSR 93.71% 68.18% 66.86%

WEBKB4 GSR 84.00% 68.00% 68.00%
SS-GSR 85.13% 71.81% 70.25%
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Figure 3. Performance on Caltech7 with 5%-30% labeled samples.
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Figure 4. Performance on PENDIGITS with 5%-30% labeled samples.
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Figure 5. Performance on OPTDIGITS with 5%-30% labeled samples.
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Figure 6. Performance on Reuters with 5%-30% labeled samples.

area outside the diagonal blocks of Figure 2 (a) is obviously deeper
than the color of the area outside the diagonal blocks of Figure 2 (b),
and the color of the area outside the diagonal blocks of Figure 2 (b) is

slightly deeper than the color of the area outside the diagonal blocks
of Figure 2 (c). Thus, Figure 2 (c) is better than Figure 2 (b) and Fig-
ure 2 (b) is better than Figure 2 (a). We further calculate the group
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Figure 7. Performance on WEBKB4 with 5%-30% labeled samples.

sparse norm of normalized Z in GSR and normalized ZLU in GSL,
and the results are listed in Table 1. By comparing Figure 2 (a), Fig-
ure 2 (b) and Figure 2 (c) and checking the results in Table 1, we
can conclude that: 1) the coefficient matrices generated by SS-GSR
are sparser than the one generated by GSR, which indicates that SS-
GSR can more effectively mine and exploit the relationship between
the labeled data and the unlabeled data than GSR; 2) As far as spar-
sity is concerned, learning the structure from the whole data set is
better than learning the structure from only the labeled data. The re-
sults meet the expectation of our model: exploiting both labeled and
unlabeled data in a semi-supervised way can do better group sparse
representation.

5.2 Performance comparison in two applications

We apply the new model to two applications: supervised classifica-
tion and semi-supervised classification, and compare its performance
with that of some major existing methods. Five datasets, including
Caltech7 [12], PENDIGITS [2], OPTDIGITS [2], Reuters [11] and
WEBKB4 [5] are used. The details of these datasets are shown in
Table 2. Three performance metrics Accuracy, precision and recall
are employed for performance comparison.

5.2.1 Supervised classification task

The first application is text classification, a popular supervised learn-
ing task. In this task, our aim is to compare the performance of the
traditional GSR model and our new model SS-GSR (when no unla-
beled data are used). For each dataset in Table 2, we perform 10-fold
cross-validation to compare the classification results of GSR and SS-
GSR: give labels to 9 subsets of samples and then use GSR and SS-
GSR to classify the rest samples one by one. This process is repeated
10 times and the output results are averaged. The results are shown
in Table 3. We can see that SS-GSR works better than GSR in su-
pervised classification. This is because samples in the dictionary are
not fully consistent with their labels. For those real datasets, noisy
feature vectors can not be given simple labels and outliers cause mis-
labeling. Nevertheless, SS-GSR can learn a more consistent group
structure from the labeled data and selects more precise groups of
data according to their underlying group structure.

5.2.2 Semi-supervised classification task

This second application is semi-supervised text classification, a semi-
supervised learning task. In this classification task, we compare the
capability of our model in group structure learning with that of

three typical (including one proposed recently) graph-based semi-
supervised methods:

• Harmonic function (HF) [27]: it assumes that the harmonic prop-
erty of label function should be preserved with respect to the
graph with given affinity matrix (weight matrix). Equivalently, this
method minimizes the quadratic energy function which results in
a harmonic solution.

• Consistency method (CM) [26]: it proposes a regularization
framework which contains two terms: the smoothness term and
the fitting term. The former penalizes on the changes between n-
earby points and the latter penalizes on the change from the given
labels. By trading-off between these two terms, the method find-
s a smooth solution with respect to the intrinsic structure of data
points.

• Mumford-Shah-Potts model (Potts) [3]: it extends the
Mumford-Shah method [16] and Potts method [19] to transduc-
tive learning problem using �1 relaxation.

For each dataset in Table 2, we give labels only to 5%− 30% ran-
dom samples (uniformly selected from each class), so the remaining
samples are not labeled. We then use the three SSL methods and SS-
GSR to decide the labels of the unlabeled samples. This process is
repeated 100 times and the output results are averaged. The results
of recall, precision and accuracy are presented in Figures 3-7.

From those figures, we can see that SS-GSR clearly outperform-
s the SSL methods even though they are initialized with the same
affinity matrices. There reasons are: on the one hand, manually set-
ting affinity matrix in SSL methods has the consistency problem with
real data. On the other hand, the affinity matrix learned by SS-GSR
contains the underlying group structure information of all samples
and thus is more accurate.

6 CONCLUSION

In this paper, we propose and formulate semi-supervised GSR (SS-
GSR) to conduct group sparse representation on datasets containing
both labeled and unlabeled data. It can overcome the two drawback-
s of the traditional GSR: 1) the pre-defined group structure in GSR
may not be fully consistent with that in data; and 2) the underly-
ing group structure of unlabeled data is not exploited in GSR. Com-
pared with GSR, SS-GSR is able to utilize the prior group structure
of labeled data properly and take advantage of the group structure
information of the unlabeled data. In comparison with SSL methods,
SS-GSR can automatically learn the structured affinity matrix from
the data instead of using a fixed one. We apply SS-GSR to both su-
pervised and semi-supervised classification tasks, which validate the
effectiveness and advantages of SS-GSR.
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