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Abstract. In computational models of argumentation, argument jus-
tification has attracted more attention than statement justification, and
significant sensitivity losses are identifiable when dealing with the jus-
tification of statements by otherwise appealing formalisms. This paper
reappraises statement justification as a formalism-independent com-
ponent in argument-based reasoning. We introduce a novel general
model of argument-based reasoning based on multiple stages of la-
bellings, the last one being devoted to statement justification, identify
two alternative paths from argument acceptance to statement justifica-
tion, and compare their expressiveness. We then show that this model
encompasses several prominent literature proposals as special cases,
thereby enabling a systematic comparison of existing approaches to
statement justification, evidencing their merits and limits. Finally we
illustrate our model by specifying a generic ignorance-aware state-
ment justification and showing how it can be seamlessly integrated
into different formalisms.

1 INTRODUCTION

In studies of argument-based reasoning, argument justification has
received far more attention than statement justification, often treated
as a simple byproduct of the former. As a consequence, significant
expressiveness and sensitivity problems can be identified in the treat-
ment of statement justification by otherwise appealing formalisms. In
particular, in a recent paper [4] we have pointed out that even in very
simple common sense reasoning examples the statement justification
outcomes produced by different argumentation formalisms may be
significantly different and show counterintuitive aspects. To overcome
these limitations, in [4] we have proposed a preliminary approach
where statement justification is regarded as a formalism-independent
tunable component of argument-based reasoning. The approach is
based on a generic multi-labelling system and its application and
relevant advantages have been exemplified in the case of ASPIC+[11].
In this paper we provide a twofold advancement in this research direc-
tion. First we identify two alternative design choices in multi-labelling
systems and compare their expressiveness. Second we illustrate the
application of multi-labelling systems to model a representative set of
argumentation formalisms, thus confirming their potential to provide
a common formalism-independent reference for the investigation of
statement justification principles and methods. The presentation is
supported by a common sense example, illustrated below.

Example 1. Suppose that Dr. Smith says to you: “Given your clinical
picture, you are affected by disease D1, not disease D2”. Suppose then
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Dr. Jones, considered equally competent, says to you: “Given your
clinical picture, you are affected by disease D2, not by disease D1”.
Your view on the justification of the statements S1=“I am affected by
disease D1” and S2=“I am affected by disease D2” may become quite
uncertain. In a different situation, at home, you use an off-the-shelf
test kit suggesting you have caught disease D3. You then undertake a
serious and reliable clinical test, which excludes disease D3. Would
you consider the same status for the statement S3=“I am affected by
disease D3” and the statements S1, S2? What about the justification
status of the statement S4=“I am affected by D4”, where D4 is a
poorly studied and initially asymptomatic disease you never heard
of? Intuitively, different justification statuses seem reasonable and
useful. Actually, such distinctions may be decisive. Surprisingly, as
will be discussed in the following, the current versions of several
well-known structured argumentation formalisms fail to distinguish
these justification statuses, equating, for instance, the justification
status of S4 with the one of S3, or with that of S1 and S2, or even the
justification status of S3 with that of S1 and S2.

We advocate that the loss of sensitivity to statements’ statuses is not
intrinsic to the formalisms, but is rather due to the relatively limited
attention paid to justification of statements, often treated as a sort of
appendix of the notions of acceptance and justification of arguments.
To address this limitation, we propose a multi-labelling model of the
argumentation process, showing that starting from the common basis
of argument production and acceptance two alternative approaches to
statement justification can be considered.

The paper is organised as follows. In Section 2 we propose multi-
labelling systems for argumentation, catering for an argument-focused
approach and a statement-focused approach. In Section 3 we compare
the expressiveness of the two approaches. We show in Section 4 that
several literature proposals can be seen as instances of our model,
and in Section 5 how it can support tunable statement justification
labellings, before concluding in Section 6.

2 MULTI-LABELLING SYSTEMS

To investigate the different notions of justification involved in
a generic argument-based reasoning system, one may define a
generic multi-labelling model of the argumentation process. In [4]
we preliminarily introduced a model consisting of four stages (or
levels), namely argument production, argument acceptance, argument
justification, statement justification. Here we extend our analysis with
two variants of the model, called the argument-focused approach
and the statement-focused approach. These two approaches differ
at the third stage (see Fig. 1). In the argument-focused approach,
argument acceptance gives rise to argument justification at a third
stage, from which statement justification is derived at a fourth stage.
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In the statement-focused approach, argument acceptance is projected
on statements, giving rise to statement acceptance at a third stage,
from which statement justification is again derived at a fourth stage.
The description and formal definitions of these different stages are
provided in the sequel, preceded by some basic concepts. Due to
space limits we cannot include illustrative examples in this section:
they are provided with the analyses developed in Sections 3 and 4.

Basic concepts. Multi-labelling systems are based on the notion of
labelling.

Definition 1 (Labelling). Given a set of labels Λ and a set T , a
Λ-labelling L of T is a (possibly partial) function L : T → Λ.

The idea is then that argument-based reasoning can be regarded as
a sequence of labelling activities where the starting point consists in
producing labellings for arguments and the final result is a labelling
for the statements about which the arguments are built. Moving across
the stages, the labellings produced at one stage are used as input
to produce new labellings at the next stage, where the labels, their
meaning and/or the labelled elements change. As we will see, it may
happen that sets of labels are projected or transferred from the ele-
ments of a stage to those in the subsequent one (e.g. a statement may
“receive” the set of labels associated to all the arguments concluding
it). In these cases a synthesis (S) operator is required.

Definition 2 (S-operators). Given two sets of labels Λ1 and Λ2, a
S-operator from Λ1 to Λ2 is a function S : Pow(Λ1) → Λ2, where
Pow(T ) denotes the powerset of T . A double S-operator from Λ1 to
Λ2 is a function S : Pow(Λ1)× Pow(Λ1) → Λ2.

Intuitively, a synthesis operator associates with each set of labels in
Λ1 a single corresponding label in Λ2. Such an operator is naturally
applied to projected or transferred sets of labels belonging to Λ1

to obtain a synthetic representation in the context of Λ2. Double
synthesis operators will have a role when contraries come into play.

Argument production. The first stage regards the production of a
set of arguments A whose structure and mutual relationships are left
unspecified. The only relevant property for our purposes is that each
argument A ∈ A has a conclusion, denoted as Con(A), belonging to
a language L. We do not make any assumption on the set of arguments,
while we assume that the language is equipped with a contrariness
relation. In its simplest form the contrariness relation corresponds to
the traditional notion of negation but other more general forms of con-
trariness have been considered in the literature [10, 3]. To encompass
this wider view, we assume a contrariness relation Cnt, allowing the
existence of multiple (or no) contraries for each statement, and hence
being compatible with a variety of argumentation formalisms.

Definition 3 (Language). A language L is a set of statements
equipped with a contrariness relation Cnt : L → Pow(L). For
all ϕ ∈ L, ψ ∈ Cnt(ϕ) is called a contrary of ϕ.

The outcomes of the argument production stage can be summarised
in an abstract form as an argument-conclusion structure.

Definition 4 (Argument-conclusion structure). An argument-
conclusion structure (ACS) is a triple 〈L,A, Con〉 where L is a
language, A is a finite set of arguments and Con : A → L is a
relation associating every argument with its conclusion.

Note that some elements of L may not play the role of conclusions,
e.g. if L encompasses negation as failure.

In general each statement ϕ ∈ L is supported by a (possibly empty)
set of arguments denoted as Arg(ϕ). This notion can obviously be
extended to sets of statements as in the following definition.

Definition 5 (Supporting arguments). Given an ACS 〈L,A, Con〉
and a set Φ ⊆ L, the set of supporting arguments of Φ is defined as

Arg(Φ) � {A ∈ A | Con(A) ∈ Φ}.
Argument acceptance. The second stage concerns the acceptance
evaluation of a set of arguments, the outcome is a set of argument
acceptance labellings using a set of labels ΛAA. Each label in ΛAA

represents an individual argument acceptance status and a labelling
LAA altogether represents a “reasonable” viewpoint (in general among
many possible ones) about the acceptance of the arguments in A.

Definition 6 (Argument acceptance labelling and evaluation). Given
an ACS AC = 〈L,A, Con〉 and a set of acceptance labels ΛAA, an
argument acceptance ΛAA-labelling for AC is a ΛAA-labelling of A.

A ΛAA-acceptance evaluation for AC is a set of argument accep-
tance ΛAA-labellings for AC denoted as LAA(AC) or just LAA where
not ambiguous.

Different ways of using the set LAA give rise to two alternatives for
the subsequent stages. In a nutshell, in the argument-focused approach,
the set of acceptance labelling is projected on arguments and then
synthesised, giving rise to an argument justification stage, while in the
statement-focused approach, the focus is transferred from arguments
to their conclusions, giving rise to a statement acceptance stage.

Argument-focused (AF) approach

Argument justification. In the AF approach, the third stage deals
with the definition of an argument justification labelling LAJ using a
a set ΛAJ of argument justification labels.

It is natural to assume that LAJ is functionally dependent on LAA

and, in particular, we make two basic assumptions on the nature of
this dependency. First, for each argument A, LAJ(A) depends only on
the acceptance labels of A in LAA; second, cardinality does not count
in this evaluation, i.e. for each label λ ∈ ΛAA it only matters whether
there is any LAA ∈ LAA such that LAA(A) = λ. Following these
assumptions, LAJ is obtained by first projecting LAA on arguments
and then applying a synthesis operator from ΛAA to ΛAJ.

Definition 7 (Argument acceptance projection). Let AC =
〈L,A, Con〉 be an ACS and LAA a ΛAA-acceptance evaluation for
AC. For every A ∈ A the projection of LAA on A is defined as

ΣAA(A) � {λ ∈ ΛAA | ∃LAA ∈ LAA : LAA(A) = λ}.

Definition 8 (Argument justification labelling and evaluation). Given
a set of justification labels ΛAJ and an ACS AC = 〈L,A, Con〉,
an argument justification ΛAJ-labelling for AC is a ΛAJ-labelling of
A. Given a ΛAA-acceptance evaluation LAA for AC, an argument
justification ΛAJ-labelling LAJ is the synthesis of the projection of
LAA based on a S-operator SAJ from ΛAA to ΛAJ if for every argument
A ∈ A it holds that LAJ(A) = SAJ(ΣAA(A)).

AF statement justification. The fourth stage in the AF approach
caters for the justification status of statements, i.e. the elements of the
language L. We assume that this is functionally dependent on a given
argument justification labelling, as defined above, and is represented
by exactly one statement justification labelling LASJ using a set of
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statement justification labels ΛSJ. We assume that the contraries of a
statement may play a role in the assessement of its justification and of
course that LASJ depends on the outcome of the third stage: for each
statement ϕ the justification labels are transferred from arguments to
ϕ itself and to its contraries, yielding ΥAJ(ϕ) and ΥAJ(ϕ) according
to the following definition.

Definition 9 (Justification transfer). Let AC = 〈L,A, Con〉 be an
ACS and LAJ an argument justification ΛAJ-labelling for AC. For ev-
ery statement ϕ ∈ L the supporting transfer and contrary-supporting
transfer of LAJ on ϕ are respectively defined as

ΥAJ(ϕ) � {λ ∈ ΛAJ | ∃A ∈ Arg({ϕ}) : LAJ(A) = λ}
ΥAJ(ϕ) � {λ ∈ ΛAJ | ∃A ∈ Arg(Cnt(ϕ)) : LAJ(A) = λ}.

Based on ΥAJ(ϕ) and ΥAJ(ϕ), assigning a justification label
in ΛSJ to each statement amounts to define a double S-operator
SASJ : Pow(ΛAJ)× Pow(ΛAJ) → ΛSJ.

Definition 10 (AF statement justification labelling and evaluation).
Given an ACS AC = 〈L,A, Con〉 and a set of statement justifi-
cation labels ΛSJ, an AF statement justification ΛSJ-labelling for
AC is a ΛSJ-labelling of L. Given an argument justification ΛAJ-
labelling LAJ for AC, an AF statement justification ΛSJ-labelling
LASJ is the synthesis of the transfer of LAJ based on a double
S-operator SASJ from ΛAJ to ΛSJ if for every statement ϕ ∈ L
LASJ(ϕ) = SASJ(ΥAJ(ϕ),ΥAJ(ϕ)).

Statement-focused (SF) approach

Statement acceptance. Since multiple arguments may have the same
conclusion, within each single labelling LAA ∈ LAA(AC) one can
transfer the acceptance labels from arguments to statements and then
synthesise them to obtain a statement acceptance labelling. In this
way, a set of statement acceptance labellings can be derived from an
argument acceptance evaluation.

Definition 11 (Acceptance transfer). Let AC = 〈L,A, Con〉 be
an ACS and LAA an argument acceptance ΛAA-labelling for AC.
For every statement ϕ ∈ L the supporting transfer and contrary-
supporting transfer of LAA on ϕ are respectively defined as

ΥAA(ϕ) � {λ ∈ ΛAA | ∃A ∈ Arg({ϕ}) : LAA(A) = λ}
ΥAA(ϕ) � {λ ∈ ΛAA | ∃A ∈ Arg(Cnt(ϕ)) : LAA(A) = λ}.

Definition 12 (Statement acceptance labelling and evaluation). Given
a set of statement acceptance labels ΛSA and an ACS AC =
〈L,A, Con〉, a statement acceptance ΛSA-labelling for AC is a ΛSA-
labelling of L. Given an argument acceptance ΛAA-labelling LAA for
AC, a statement acceptance ΛSA-labelling LSA is the synthesis of the
transfer of LAA based on a double S-operator SSA from ΛAA to ΛSA

if for every ϕ ∈ L LSA(ϕ) = SSA(ΥAA(ϕ),ΥAA(ϕ)).
A statement acceptance evaluation for AC is a set of statement

acceptance labellings for AC denoted LSA(AC) or just LSA where
not ambiguous.

SF statement justification. In the SF approach, the statement accep-
tance evaluation is projected on each statement and on its contraries.

Definition 13 (Statement acceptance projection). Let AC =
〈L,A, Con〉 be an ACS and LSA a statement acceptance evalua-
tion for AC. For every statement ϕ ∈ L the projection of LSA on ϕ
and on its contraries are respectively defined as

ΣSA(ϕ) � {λ ∈ ΛSA | ∃LSA ∈ LSA : LSA(ϕ) = λ}

ΣSA(ϕ) � {λ ∈ ΛSA | ∃ϕ ∈ Cnt(ϕ), ∃LSA ∈ LSA : LSA(ϕ) = λ}.

Then, for each statement ϕ, a statement justification labelling LSSJ

is a function of the acceptance labels of ϕ itself, and its contraries.

Definition 14 (SF statement justification labelling and evaluation).
Given an ACS AC = 〈L,A, Con〉 and a set of statement justification
labels ΛSJ, a SF statement justification ΛSJ-labelling for AC is a ΛSJ-
labelling of L. Given a statement acceptance evaluation LSA for AC,
a SF statement justification ΛSJ-labelling LSSJ is the synthesis of the
projection of LSA based on a double S-operator SSSJ from ΛSA to ΛSJ

if for every statement ϕ ∈ L LSSJ(ϕ) = SSSJ(ΣSA(ϕ),ΣSA(ϕ)).

Figure 1. Overview of a multi-labelling system.

A multi-labelling system (MLS) consists of an ACS equipped with
the relevant evaluations either in the AF or SF approach. Accordingly,
two classes of multi-labelling systems can be identified:

• an AF MLS is a tuple LA = 〈AC,LAA, LAJ, LASJ〉;
• an SF MLS is a tuple LS = 〈AC,LAA,LSA, LSSJ〉;

where all the symbols are interpreted as in the previous definitions.

3 COMPARING THE AF AND SF
APPROACHES

In the AF approach the idea is that the outcomes of the second stage
(i.e. the acceptance labellings of arguments) are first projected and
synthesised on the argument themselves, giving rise to argument justi-
fication. Then argument justification outcomes are transferred to state-
ments and synthesised in turn, taking contraries into account, to get
statement justification. On the other hand in the SF approach the out-
comes of the argument acceptance stage are immediately transferred
and synthesised on statements, giving rise to statement acceptance.
Then the acceptance outcomes of a statement and of its contraries are
taken into account to derive statement justification.

One may wonder whether, under the assumptions we made, the
two approaches feature the same expressiveness, i.e. whether any
statement justification labelling produced by an AF MLS can be
obtained by a corresponding SF MLS and vice versa.

We show that the answer is negative, using some simple examples
with the set of argument acceptance labels ΛAA = {IN,OUT}.

P. Baroni et al. / On Labelling Statements in Multi-Labelling Argumentation 491



A distinction expressible only by the SF approach.

C1. Consider a first case C1 where there are (possibly among oth-
ers) two arguments A and B such that, for some statement ϕ,
Arg({ϕ}) = {A,B} (i.e. they have the same conclusion ϕ and no
other arguments conclude ϕ). For simplicity, let us also assume that
Arg(Cnt(ϕ)) = ∅. Suppose that the outcome of the argument accep-
tance stage consists of two labellings, i.e. LAA(AC) = {L1

AA, L
2
AA}

such that L1
AA(A) = IN and L1

AA(B) = OUT, while L2
AA(A) = OUT

and L2
AA(B) = IN.

• In the AF approach, at the argument justification stage, we get
ΣAA(A) = ΣAA(B) = {IN,OUT} and, whatever S-operator SAJ is
adopted it must be that LAJ(A) = LAJ(B) = SAJ({IN,OUT}) =
λ for some λ ∈ ΛAJ. At the statement justification stage, we have
ΥAJ(ϕ) = {λ} and ΥAJ(ϕ) = ∅. Then, whatever S-operator SASJ

is adopted, we get that LASJ(A) functionally depends on the pair
({λ}, ∅) i.e. LASJ(ϕ) = SASJ({λ}, ∅).

• In the SF approach, at the statement acceptance stage, we
get Υ1

AA(ϕ) = Υ2
AA(ϕ) = {IN,OUT}. Therefore, L1

SA(ϕ) =
L2

SA(ϕ) = SSA({IN,OUT}, ∅) = λ0 for some λ0 ∈ ΛSA. At
the statement justification stage, ΣSA(ϕ) = {λ0} and LSSJ(ϕ) =
SSSJ({λ0}, ∅).

C2. Consider a second case C2 where there is a single argument A
with conclusion ϕ, i.e. Arg({ϕ}) = {A}, and assume again that
Arg(Cnt(ϕ)) = ∅ and that the outcome of the argument acceptance
stage consists of two labellings, i.e. LAA(AC) = {L1

AA, L
2
AA} such

that L1
AA(A) = IN while L2

AA(A) = OUT.
• In the AF approach, at the argument justification stage, as

in the case C1, ΣAA(A) = {IN,OUT} and then LAJ(A) =
SAJ({IN,OUT}) = λ. Hence, at the statement justification stage,
we get ΥAJ(ϕ) = {λ} and ΥAJ(ϕ) = ∅ from which LASJ(ϕ) =
SASJ({λ}, ∅) must be the same as in case C1.

• In the SF approach, at the statement acceptance stage, we get
Υ1

AA(ϕ) = {IN} and Υ2
AA(ϕ) = {OUT}. Therefore, L1

SA(ϕ) =
SSA({IN}, ∅) = λ1 and L2

SA(ϕ) = SSA({OUT}, ∅) = λ2, for
some λ1, λ2 ∈ ΛSA. At the statement justification stage, ΣSA(ϕ) =
{λ1, λ2}, and LSSJ(ϕ) = SSSJ({λ1, λ2}, ∅), which may give rise
to a different outcome than in case C1.
We observe that in the cases C1 and C2 the statement justification

of ϕ must be the same by the AF approach, while the statement
justification of ϕ may be different by the SF approach. Hence, we
conclude that the AF approach is unable to capture some distinctions
which can be captured by the SF approach.

A distinction expressible only by the AF approach.

C3. Consider a case C3, where, similarly to case C1, there are two ar-
guments A and B such that, for some statement ϕ, Arg({ϕ}) =
{A,B} and Arg(Cnt(ϕ)) = ∅. Suppose also that the outcome
of the argument acceptance stage consists of two labellings, i.e.
LAA(AC) = {L1

AA, L
2
AA} such that L1

AA(A) = IN and L1
AA(B) = IN,

while L2
AA(A) = IN and L2

AA(B) = OUT.

• In the AF approach, at the argument justification stage, we get
ΣAA(A) = {IN} and ΣAA(B) = {IN,OUT}. Then let LAJ(A) =
SAJ({IN}) = λ and LAJ(B) = SAJ({IN,OUT}) = λ′. It fol-
lows that ΥAJ(ϕ) = {λ, λ′} while ΥAJ(ϕ) = ∅, from which
LASJ(ϕ) = SASJ({λ, λ′}, ∅).

• In the SF approach, at the statement acceptance stage, we
get Υ1

AA(ϕ) = {IN}, Υ2
AA(ϕ) = {IN,OUT}, and L1

SA(ϕ) =

SSA({IN}, ∅) = λ1, and L2
SA(ϕ) = SSA({IN,OUT}, ∅) = λ2 for

some λ1, λ2 ∈ ΛSA. Then ΣSA(ϕ) = {λ1, λ2} on which LSSJ(ϕ)
functionally depends.

C4. Consider now a case C4 which differs from case C3 because
there is an additional argument labelling L3

AA, namely LAA(AC) =
{L1

AA, L
2
AA, L

3
AA} where L1

AA and L2
AA are as in case C3, while

L3
AA(A) = OUT and L3

AA(B) = IN.

• In the AF approach, at the argument justification stage, we get
ΣAA(A) = ΣAA(B) = {IN,OUT}. Then LAJ(A) = LAJ(B) =
SAJ({IN,OUT}) = λ′. It follows that ΥAJ(ϕ) = {λ′} and
LASJ(ϕ) = SASJ({λ′}, ∅), which may give rise to a different
outcome than in case C3.

• In the SF approach, at the statement acceptance stage, we get
Υ3

AA(ϕ) = Υ2
AA(ϕ) = {IN,OUT}, henceL3

SA(ϕ) = L2
SA(ϕ) = λ2.

Then also in the case C4 we get ΣSA(ϕ) = {λ1, λ2} and hence
LSSJ(ϕ) must be the same as in case C3.

We observe that in the cases C3 and C4 the statement justification
of ϕ may be different by the AF approach, while the statement
justification of ϕ must be the same by the SF approach. Hence, we
conclude that the SF approach is unable to capture some distinctions
which can be captured by the AF approach.

In summary, the AF and the SF approaches are incomparable in
terms of expressiveness.

4 ARGUMENTATION FORMALISMS AS MLSs

In this section we illustrate how to cast argumentation formalisms
into MLSs. In particular we will consider ASPIC+, Assumption-
Based Argumentation, and Defeasible Logic Programming and ex-
amine for each formalism whether it can be seen as an instance of
the argument-focused approach, the statement-focused approach, or
both. This analysis involves identifying some argument and statement
labellings and the relevant synthesis operators corresponding to the
original definition of each formalism. We will also show how this
reconstruction in terms of MLSs and associated properties can ease
the analysis and comparison of argumentation formalisms.

Due to space limitations we will not recall the definitions of these
formalisms, which are typically very rich, but we will rather focus on
the properties relevant for our development. The reader is referred to
the original references for all the details.

Some of the considered formalisms deal with infinite and/or circu-
lar arguments. As these kinds of argument would require a specific
additional treatment, due to space limitations and in order to focus on
the main message of the paper, we will consider only finite and non-
circular arguments in the context of each of the reviewed formalisms.

Moreover, we will assume that the monotonic or strict part of the
knowledge base is consistent, that is, it does not support the derivation
of contrary conclusions.

Also, we will not formally develop Example 1 for each formalism,
but will refer directly to the statement justification outcome, assuming
that the underlying formalisation is quite immediate in each case. As
a brief informal description, we assume that two mutually attacking
arguments support the statements S1 and S2, that the argument sup-
porting the statement S3 is defeated by another (stronger) argument
supporting the negation of S3 (denoted ¬S3), and that there are no
arguments supporting S4, nor its negation.

In the remainder, all proofs are omitted due to space limitations.
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4.1 Basic properties of MLSs

MLSs are useful to analyse and compare actual argumentation for-
malisms on a common ground consisting of abstract general properties.
In particular we will consider in this paper the notions of full coverage
and contrary-sensitivity.

The first property requires that the relevant functions are total.

Definition 15 (Coverage). An AF MLS LA = 〈AC,LAA, LAJ, LASJ〉
(resp. a SF MLS LS = 〈AC,LAA,LSA, LSSJ〉) is said to provide
• a full coverage of argument acceptance if every LAA ∈ LAA is

total,
• a full coverage of argument justification (resp. of statement accep-

tance) if LAJ (resp. every LSA ∈ LSA) is total,
• a full coverage of statement justification if LASJ (resp. LSSJ) is

total.
LA (resp. LS) provides an exhaustive coverage if it provides all the
three levels of full coverage introduced above.

Sensitivity to contrariness concerns statement justification only:
the idea is that the justification status of a statement ϕ is actually
somehow affected also by the contraries of ϕ. Formally this amounts
to require that they make some difference in the evaluation.

Definition 16 (Contrary-sensitivity). Given an AF MLS LA =
〈AC,LAA, LAJ, LASJ〉, LASJ is contrary-sensitive iff ∃ϕ,ψ ∈ L such
that ΥAJ(ϕ) = ΥAJ(ψ), ΥAJ(ϕ) 	= ΥAJ(ψ), and LASJ(ϕ) 	=
LASJ(ψ).

Given a SF MLS LS = 〈AC,LAA,LSA, LSSJ〉, LSSJ is contrary-
sensitive iff ∃ϕ,ψ ∈ L such that ΣSA(ϕ) = ΣSA(ψ), ΣSA(ϕ) 	=
ΣSA(ψ), and LSSJ(ϕ) 	= LSSJ(ψ).

We will use the properties of coverage and contrary-sensitivity to
analyse argumentation formalisms in the remainder of this section. So,
an argumentation formalism F can be considered, at a very general
level, as a mechanism to produce ACSs and the relevant labellings.
The universe of all ACSs possibly produced by a formalism F is
denoted as Ω(F). Concepts concerning MLSs and their components
can be applied to argumentation formalisms considering the elements
of Ω(F). For instance a formalism F is said to provide an exhaustive
coverage if all of the MLSs associated to every ACS in Ω(F) provide
an exhaustive coverage.

4.2 ASPIC+

ASPIC+ (denoted as A+ for short) is a rule-based argumentation
formalism which assumes the existence of a generic language L
equipped with a contrariness relation [12, 10, 11].

A+ arguments may attack each other, and argument acceptance is
based on Dung’s formalism of argumentation frameworks [7] and
its semantics. Accordingly, it is possible to refer to the labelling-
based version of Dung’s semantics [2], where a set of three argument
acceptance labels is adopted, namely ΛIOU

AA = {IN,OUT, UN}. The
ΛIOU

AA -based argument acceptance labellings prescribed by the various
abstract argumentation semantics proposed in the literature are all
total. Note however that stable semantics fails to produce any labelling
in some cases. In general, the argument acceptance phase for an
argument collection AC in A+ produces the acceptance evaluation
LAA(AC) and the relevant projection ΣAA (Definition 7).

Concerning the subsequent stage, A+ focuses on argument justifica-
tion, hence it belongs to the AF approach, and adopts the traditional
notion of skeptical and credulous justification (see Def. 3.1 of [11])

which says that an argument is skeptically justified (denoted SKJ) if
it is labelled IN in all labellings prescribed by the adopted semantics,
while it is credulously justified (denoted CRJ) if it is labelled IN in
some labellings. It is easy to see that, with a small adjustment to keep
the two notions disjoint, it fits Definition 8.

Proposition 1. Given the set of argument justification labels ΛA+
AJ =

{SKJ, CRJ}, the argument justification labellingLA+
AJ prescribed by A+

for every AC ∈ Ω(A+) is such that LA+
AJ (A) = SA+

AJ (ΣAA(A)) where
the S-operator SA+

AJ from ΛIOU
AA to ΛA+

AJ is defined for T ∈ Pow(ΛIOU
AA )

as
• SA+

AJ (T ) = SKJ iff T = {IN};
• SA+

AJ (T ) = CRJ iff T � {IN}.

It can be immediately observed that literally LA+
AJ does not provide

full coverage, since it does not cover the cases where IN /∈ ΣAA(A).
This can be explained by the emphasis on acceptance in A+. It is
anyway easy to recover a full coverage by defining a third status (let
say not justified, denoted as NOJ), covering the remaining cases, i.e.
letting ΛA+

AJ = {SKJ, CRJ,NOJ}.
In A+, statements inherit directly the justification status of the

“best justified” argument supporting them: a statement is skeptically
justified if and only if it is the conclusion of a skeptically justified
argument, while it is credulously justified if and only if it is not
skeptically justified and it is the conclusion of a credulously justified
argument. Again, it can be proved that this fits Definition 10, applying
the transfer of Definition 9 to LA+

AJ .

Proposition 2. Given the set of statement justification labels
ΛA+

SJ = {skj, crj}, the statement justification labelling LA+
ASJ pre-

scribed by A+ for every AC ∈ Ω(A+) is such that LA+
ASJ(ϕ) =

SA+
ASJ(ΥAJ(ϕ),ΥAJ(ϕ)) where the double S-operator SA+

ASJ from ΛA+
AJ

to ΛA+
SJ is defined for T, U ∈ Pow(ΛA+

SJ ) as
• SA+

ASJ(T, U) = skj iff SKJ ∈ T ;
• SA+

ASJ(T, U) = crj iff CRJ ∈ T and SKJ /∈ T .

LA+
ASJ does not provide full coverage since it does not cover the

cases where ΥAJ(ϕ) ∩ {SKJ, CRJ} = ∅, i.e. the justification status
is left undefined for all the various cases where a statement is not
supported by any justified argument. Again this can be easily fixed
by defining a third statement label (denoted as noj) covering the
remaining cases, i.e. letting ΛA+

SJ = {skj, crj, noj}. Note, anyway that
by the properties of the formalism, that we can not discuss in detail
due to space limitation, not all cases are possible. For instance, under
some well-formedness hypotheses of the set rules, if a statement is
skeptically justified its contraries cannot be skeptically justified nor
credulously justified.

With the above analysis and in particular with Proposition 1 and
2 we have built an AF MLS for ASPIC+. It can be shown (using the
same line of reasoning presented in the second part of Section 3) that
it is impossible to build a SF MLS which, starting from LAA(AC),
produces the same statement justification labelling as ASPIC+in all
cases. More precisely, the situation of the arguments A and B in the
case C3 presented in Section 3 can be obtained, for instance4, with a
Dung’s argumentation framework consisting of three arguments, A,
B, C, where B and C mutually attack each other. Applying stable
semantics to this framework gives rise to two labellings L1

AA and L2
AA

whose restriction on A and B is as described in Section 3. Similarly,

4 We omit the underlying rule based-reasoning and admit that these small
ad-hoc examples can be felt as somehow unrealistic: the same situation for
A and B could be obtained in a realistic rule-based reasoning scenario with
a larger number of arguments.
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the situation of the arguments A and B in the case C4 can be ob-
tained with a Dung’s argumentation framework consisting of four
arguments, A, B, C, D where A and D mutually attack each other,
B and C mutually attack each other, and in addition D attacks C.
Again, applying stable semantics to this framework gives rise to three
labellingsL1

AA,L2
AA,L3

AA whose restriction onA andB is as described
in Section 3. Under the assumption that Arg({ϕ}) = {A,B}, we
get that in case C3, LA+

AJ (A) = SKJ, LA+
AJ (B) = CRJ, from which

LA+
SJ (ϕ) = skj. In case C4 we get LA+

AJ (A) = LA+
AJ (B) = CRJ from

which LA+
ASJ(ϕ) = crj. So the justification of the statement ϕ is dif-

ferent in the two cases, while as shown in Section 3 this difference
can not be obtained in the statement focused model. This shows that
the argument and statement justification mechanisms adopted in AS-
PIC+, as, defined in [11], belong to the AF camp. Since ASPIC+is a
generic formalism admitting many instances, note also that this does
not show that it is in general impossible to reconstruct actual instances
of ASPIC+in the SF approach: there can be some instance-specific
constraints preventing cases like the ones illustrated above to actually
occur.

Moreover it is evident that A+ is not contrary-sensitive, given that
SA+

ASJ does not actually use its second parameter U , i.e. ΥAJ(ϕ) does
not have any effect in the definition of LA+

SJ (ϕ). As above, this can be
explained by the focus on positive support in A+. Hence these limita-
tions are certainly not intrinsic to A+, rather they can be overcome by
providing more articulated definitions for the notions of justification,
leaving unchanged all the rest of the formalism.

Example 2. Referring to Example 1, we observe that according to
A+, with every semantics, S3 and S4 get the same justification status
(undefined or noj), while ¬S3 would be skj. The status of S1 and
S2 is semantics-dependent: both would get the status crj if a Dung
multiple-status semantics (e.g. preferred or stable) is adopted, while
they would be equated to S3 and S4 (undefined or noj) in the case of
a Dung single-status semantics (e.g. grounded or ideal)5.

4.3 Assumption-Based Argumentation

Assumption-Based Argumentation (denoted as ABA for short) is
a rule-based argumentation formalism which, similarly to ASPIC+,
assumes the existence of a generic language L equipped with a con-
trariness relation, see [13] for a tutorial. Similarly to ASPIC+, ABA
uses Dung’s argumentation frameworks and their semantics hence
the set of argument acceptance labels ΛIOU

AA = {IN,OUT, UN} and the
relevant considerations are the same as for ASPIC+.

The situation is more articulated concerning the other stages since
both a credulous and a skeptical6 stance [6] have been considered
in the literature. In the credulous stance (see a detailed description
in [13]) a statement ϕ is justified if there is at least one acceptance
labelling supporting ϕ. This can be directly reconstructed in the AF
approach: using the terminology of [13], an argument is justified if it
belongs to at least one winning set. This corresponds to being labelled
IN in at least one labelling in Definition 8.

Proposition 3. Given the set of argument justification labels
ΛAB·cr

AJ = {WIN}, the credulous argument justification labelling

5 An argumentation semantics is single-status if, ∀AC |LAA(AC)| = 1, is
multiple-status if ∃AC such that |LAA(AC)| > 1.

6 Unfortunately these terms are overloaded in the literature. In particular
the skeptical stance of [6] is significantly different e.g. from the notion of
skeptical justification in ASPIC+. To avoid to introduce a new terminology
we are forced to the use of the same term with different meanings in different
formalisms.

LAB·cr
AJ prescribed by ABA for every AC ∈ Ω(ABA) is such that

LAB·cr
AJ (A) = SAB·cr

AJ (ΣAA(A)) where the S-operator SAB·cr
AJ from

ΛIOU
AA to ΛAB·cr

AJ is defined for T ∈ Pow(ΛIOU
AA ) as SAB·cr

AJ (T ) = WIN

iff T ⊇ {IN}.

This labelling does not allow full coverage (since it does not cover
the cases where IN /∈ T ), but it is immediate to recover full coverage
by introducing a complementary “not winning” label NOWIN.

In the credulous stance of ABA, statements inherit directly the
justification status from arguments: a statement is winning if it is the
conclusion of a winning argument. This easily fits Definition 10.

Proposition 4. Given the set of statement justification labels
ΛAB·cr

SJ = {win}, the statement justification labelling LAB·cr
ASJ pre-

scribed by ABA for every AC ∈ Ω(ABA) is such that
LAB·cr

ASJ (ϕ) = SAB·cr
ASJ (ΥAJ(ϕ),ΥAJ(ϕ)) where the double S-operator

SAB·cr
ASJ from ΛAB·cr

AJ to ΛAB·cr
SJ is defined for T, U ∈ Pow(ΛAB·cr

AJ ) as
SAB·cr

ASJ (T, U) = win iff WIN ∈ T .

Again, literally speaking, this labelling does not provide full cover-
age (which can however be easily recovered with an additional label
nowin) and it is not contrary-sensitive. Here similar observations as
for the case of ASPIC+ apply.

It can be easily shown that the credulous stance can also be recon-
structed in the SF model. We omit it due to space limitation.

Example 3. According to the credulous stance in ABA, with every
semantics, S3 and S4 get the same justification status (undefined
or nowin), while ¬S3 is win. The status of S1 and S2 is semantics-
dependent: both get the status win (thus being equated to ¬S3) if a
multiple-status semantics is adopted, while they are equated to S3 and
S4 (undefined or nowin) in the case of a single-status semantics.

In [6], in addition to the credulous statement justification reviewed
above, a skeptical notion of justification is considered: basically a
statement ϕ is skeptically justified if all acceptance labellings sup-
port ϕ. On this basis, a more articulated classification of statement
justification, distinguishing credulously, skeptically and not justified
statements can be introduced. This stance, denoted as AB · sk can be
reconstructed in the SF approach as we illustrate below.

Definition 17. Given the set of statement acceptance labels ΛAB·sk
SA =

{in, nin}, the double S-operator SAB·sk
SA from ΛIOU

AA to ΛAB·sk
SA for AB·sk

is defined for T, U ∈ Pow(ΛIOU
AA ) as:

• SAB·sk
SA (T, U) = in iff IN ∈ T ;

• SAB·sk
SA (T, U) = nin otherwise.

So, by applying SAB·sk
SA , for a given statement ϕ and a single accep-

tance labelling LAA, if at least one argument supporting ϕ is labelled
IN in LAA, then LSA(ϕ) = in, else LSA(ϕ) = nin.

The final stage of statement justification requires the statement
justification labels corresponding to skeptical, credulous and no justi-
fication, and a double S-operator, which is rather simple since, as the
other cases considered above, AB · sk is contrary insensitive.

Proposition 5. Given the set of statement justification labels
ΛAB·sk

SJ = {skj, crj, noj}, the statement justification labelling LAB·sk
SSJ

prescribed by ABA for every AC ∈ Ω(ABA) is such that
LAB·sk

SSJ (ϕ) = SAB·sk
SSJ (ΣSA(ϕ),ΣSA(ϕ)) where the double S-operator

SAB·sk
SSJ from ΛAB·sk

SA to ΛAB·sk
SJ is defined for T, U ∈ Pow(ΛAB·sk

AJ ) as
• SAB·sk

SSJ (T, U) = skj iff T = {in};
• SAB·sk

SSJ (T, U) = crj iff T � {in};
• SAB·sk

SSJ (T, U) = noj otherwise.
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Proposition 5 completes the reconstruction of AB · sk in the SF
approach. It is interesting to note that such a reconstruction is not
possible in the AF approach: this can be proved with the same line of
reasoning used in the first part of Section 3.

Example 4. AB · sk behaves similarly to A+: with every semantics,
S3 and S4 get the same justification status (undefined or noj), while
¬S3 would be skj. The status of S1 and S2 is semantics-dependent:
both would get the status crj if a Dung multiple-status semantics (e.g.
preferred or stable) is adopted, while they would be equated to S3 and
S4 (undefined or noj) in the case of a Dung single-status semantics.

4.4 Defeasible Logic Programming

Defeasible Logic Programming (denoted as DeLP ) “provides a com-
putational reasoning system that uses an argumentation engine to
obtain answers from a knowledge base represented using a logic
programming language extended with defeasible rules” [8]. DeLP
encompasses two forms of contrariness, namely strong and default
negation. On this basis, defeat relations between arguments can be de-
fined. For language statements, a notion of complement is introduced,
based on strong negation only.

Differently from the approaches surveyed in the previous sections,
DeLP does not use Dung’s framework for argument acceptance eval-
uation, rather it adopts a dialectical procedure. This leads to a single
status approach where each argument is marked as Defeated or Un-
defeated, hence the set of argument acceptance labels is defined as
ΛDe

AA = {D, U}. In other words the dialectical procedure is guaran-
teed to produce a unique total ΛAA-based acceptance labelling: for
every AC ∈ Ω(DeLP) |LAA(AC)| = 1. Based on this property, in
the AF approach acceptance projection (Definition 7) and argument
justification (Definition 8) can be defined essentially as identity.

Proposition 6. Given the set of argument justification labels ΛDe
AJ =

{D, U}, the argument justification labelling LDe
AJ prescribed by DeLP

for every AC ∈ Ω(DeLP) is such that LDe
AJ(A) = SDe

AJ(ΣAA(A))
where the S-operator SDe

AJ from ΛDe
AA to ΛDe

AJ is defined for T ∈
Pow(ΛDe

AA) as SDe
AJ(T ) = D iff T = {D}; SDe

AJ(T ) = U iff T = {U}.

A statement is said to be warranted if it is the conclusion of an
argument whose justification label is U. On this simple basis, an
articulated notion of justification status for a statement ϕ based on
four labels (corresponding to the possible answers to a DeLP query)
is introduced: yes if ϕ is warranted; no if the complement of ϕ is
warranted; und(ecided) if neitherϕ nor its complement are warranted;
unk(nown) if ϕ in not in the signature of the program. This fits
Definition 10 as shown by Proposition 7 (see also Table 1).

Proposition 7. Given the set of statement justification labels ΛDe
SJ =

{yes, no, und, unk}, for every AC ∈ Ω(DeLP), the statement justi-
fication labelling LDe

SJ prescribed by DeLP is such that LDe
ASJ(ϕ) =

SDe
ASJ(ΥAJ(ϕ),ΥAJ(ϕ)) where the double S-operator SDe

ASJ from ΛDe
AJ

to ΛDe
SJ is defined for T, U ∈ Pow(ΛDe

SJ ) as
• SDe

ASJ(T, U) = yes iff U ∈ T ;
• SDe

ASJ(T, U) = no iff U ∈ U ;
• SDe

ASJ(T, U) = und iff T ∪ U = {D};
• SDe

ASJ(T, U) = unk iff T ∪ U = ∅.

In contrast with the previous formalisms, this labelling provides a
full coverage, since all possible cases for a statement are considered
(note in particular that it is guaranteed that U /∈ ΥAJ(ϕ) ∩ ΥAJ(ϕ),
i.e. a statement and its complement cannot be both warranted). In

ΥAJ(ϕ) \ ΥAJ(ϕ) ∅ {U} {D} {U,D}
∅ unk yes und yes

{U} no n.a. no n.a.
{D} und yes und yes

{U,D} no n.a. no n.a.

Table 1. Justification status of statement ϕ depending on ΥAJ(ϕ) and
ΥAJ(ϕ) in DeLP .

particular it distinguishes three cases of non acceptance (while non
acceptance was overlooked in the previously surveyed formalisms).
This is also due to the fact that this approach is contrary sensitive.

Example 5. DeLP would label S3 as no, ¬S3 as yes, both S1 and
S2 as und, and S4 as unk.

Since DeLP is single-status at the stage of argument acceptance,
it encompasses a single notion of positive justification, while, for
instance, ASPIC+ distinguishes credulous and skeptical justification.
This suggests that combining the most expressive aspects of different
approaches may give rise to a more general treatment of the notion
of argument and statement justification. Further, it can be shown that
(omitted due to space limitations) the DeLP statement justification
labelling can be reconstructed in the SF approach too.

5 TOWARDS TUNABLE JUSTIFICATION

From the analysis in the previous section, it emerges that different ar-
gumentation formalisms adopt quite different notions of justification,
both concerning arguments and statements, featuring different proper-
ties and sometimes failing to satisfy some intuitive requirements like
full coverage and contrary-sensitivity. However these differences do
not seem to be caused by technical motivations, but rather to depend
on arbitrary choices based on the intended use of the notion of justi-
fication in the presentation of the formalisms themselves. Moreover,
some proposals (ABA in the credulous stance and DeLP ) fit both the
AF and SF approach, while others (ABA in the sceptical stance and
ASPIC+) fit only one (the SF and AF approach respectively). These
observations back up our claim that the notion of justification (and in
particular of statement justification) has been somehow neglected in
the development of argumentation formalisms, often more focused
on the notion of argument acceptance. Moreover they suggest that
justification notions, instead of being “hardwired” in the definitions,
could better be conceived as tunable components of any argumenta-
tion formalism, with a role similar to those played by argumentation
semantics in ASPIC+and ABA. These formalisms do not stick to a
single argumentation semantics, rather they assume that one is cho-
sen among the various available ones (including possibly those to be
developed in the future).

We aim now at illustrating how our model can be used to build
alternative options for statement justification, by providing an ex-
ample of a generic approach to statement justification, the so-called
ignorance-aware labelling. Due to space limits, we do this for the AF
approach only, analogous ideas are applicable to the SF approach too.

The ignorance-aware labelling captures different reasons for which
a statement is not justified: this may be because it is falsified in some
way, or due to to some lack of knowledge or because the available
knowledge carries some undecidedness. To support this distinction,
we assume the set of labels ΛIa

SJ = {yes, fal, unk, ni}, where the label
yes indicates that the statement is justified, the label fal indicates that
the statement is falsified, unk stands for an ‘unknown’ statement,
while ni captures other cases of indecision about the statement.
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Assuming accordingly the set of labels ΛIa
SJ and full coverage as

a basic requirement, the adoption of the ignorance-aware labelling
in a formalism essentially amounts to specify for each possible pair
(ΥAJ(ϕ),ΥAJ(ϕ)) the corresponding yes, fal, unk or ni label, i.e a
double S-operator SIa

ASJ from ΛAJ to ΛIa
SJ, where ΛAJ is the set of

justification labels adopted in the formalism. For the sake of con-
ciseness, in the following we will leave implicit the definition of
the S-operator SIa

ASJ and will express directly the dependence of the
statement labelling on ΥAJ(ϕ) and ΥAJ(ϕ).

Let us consider ASPIC+ first and assume ΛA+
AJ = {SKJ, CRJ,NOJ}.

A first, skeptically oriented, option corresponds to the idea that a
statement is labelled yes if it is supported by a skeptically justified
argument. A second, credulously oriented, option labels a statement
yes if it is supported by a skeptically or credulously justified argument.

Definition 18. The skeptical ignorance-aware labelling for ASPIC+

is defined as follows:
• LIa·A+·sk

ASJ (ϕ) = yes iff SKJ ∈ ΥAJ(ϕ);
• LIa·A+·sk

ASJ (ϕ) = fal iff SKJ ∈ ΥAJ(ϕ)
7;

• LIa·A+·sk
ASJ (ϕ) = unk iff ΥAJ(ϕ) ∪ΥAJ(ϕ) = ∅;

• LIa·A+·sk
ASJ (ϕ) = ni otherwise.

Definition 19. The credulous ignorance-aware labelling for ASPIC+

is defined as follows
• LIa·A+·cr

ASJ (ϕ) = yes iff {SKJ, CRJ} ∩ΥAJ(ϕ) 	= ∅;
• LIa·A+·cr

ASJ (ϕ) = fal iff {SKJ, CRJ} ∩ΥAJ(ϕ) = ∅ and {SKJ, CRJ} ∩
ΥAJ(ϕ) 	= ∅;

• LIa·A+·cr
ASJ (ϕ) = unk iff ΥAJ(ϕ) ∪ΥAJ(ϕ) = ∅;

• LIa·A+·cr
ASJ (ϕ) = ni otherwise.

Example 6. In the skeptical labelling, S1 and S2 are labelled as ni,
S3 as fal, ¬S3 as yes, while in the credulous labelling S1 and S2
are labelled as yes, S3 as fal, ¬S3 as yes. In both the skeptical and
credulous version, S4 is labelled unk.

Turning to ABA (in the credulous stance), the same observations
as for ASPIC+apply to the ignorance-aware labelling counterpart.

Definition 20. The skeptical ignorance-aware labelling for ABA is
defined as follows
• LIa·AB·sk

ASJ (ϕ) = yes iff WIN ∈ ΥAJ(ϕ) and WIN /∈ ΥAJ(ϕ);
• LIa·AB·sk

ASJ (ϕ) = fal iff WIN /∈ ΥAJ(ϕ) and WIN ∈ ΥAJ(ϕ);
• LIa·AB·sk

ASJ (ϕ) = unk iff ΥAJ(ϕ) ∪ΥAJ(ϕ) = ∅;
• LIa·AB·sk

ASJ (ϕ) = ni otherwise.

Definition 21. The credulous ignorance-aware labelling for ABA is
defined as follows
• LIa·AB·cr

ASJ (ϕ) = yes iff WIN ∈ ΥAJ(ϕ);
• LIa·AB·cr

ASJ (ϕ) = fal iff WIN /∈ ΥAJ(ϕ) and WIN ∈ ΥAJ(ϕ);
• LIa·AB·cr

ASJ (ϕ) = unk iff ΥAJ(ϕ) ∪ΥAJ(ϕ) = ∅;
• LIa·AB·cr

ASJ (ϕ) = ni otherwise.

Example 7. In the skeptical labelling for ABA, S1 and S2 are la-
belled as ni, S3 as fal, ¬S3 as yes, S4 as unk, while in the credulous
case, S1 and S2 are labelled as yes, S3 as fal, ¬S3 as yes, S4 as unk.

As to DeLP , the original labelling reified in Proposition 7 is
ignorance-aware, modulo two label names: no for fal, und for ni.

7 We don’t specify the additional condition SKJ /∈ ΥAJ(ϕ) since, by the
properties of ASPIC+, it is already implied by SKJ ∈ ΥAJ(ϕ).

Definition 22. The (skeptical) ignorance-aware labelling for DeLP
is defined as follows
• LIa·De

ASJ (ϕ) = yes iff U ∈ ΥAJ(ϕ);
• LIa·De

ASJ (ϕ) = fal iff U ∈ ΥAJ(ϕ);
• LIa·De

ASJ (ϕ) = unk iff ΥAJ(ϕ) ∪ΥAJ(ϕ) = ∅;
• LIa·De

ASJ (ϕ) = ni otherwise.

Example 8. According to Definition 22, S1 and S2 are labelled as ni,
S3 as fal, ¬S3 as yes, S4 as unk.

It can be noted that the credulous and skeptical versions of the
ignorance-aware labelling provide (respectively) coincident results
for all the formalisms considered, while the outcomes were different
(not only formally but also substantially) with the original definitions.

Example 9. For every statement S in {S1, S2, S3,¬S3, S4, S5}:
• LIa·A+·sk

ASJ (S) = LIa·AB·sk
ASJ (S) = LIa·De

ASJ (S), and
• LIa·A+·cr

ASJ (S) = LIa·AB·cr
ASJ (S).

6 CONCLUSION

Argument-based reasoning is a complex activity which is based on,
but is not limited to, the tasks of argument production and argument
acceptance evaluation, on which many current literature formalisms
are mainly focused. In particular, treating statement justification as a
simple byproduct of the previous reasoning stages tends to hide the
conceptual richness of this task too. As we have shown, this gives
rise to disagreements and/or losses of sensitivity in some well-known
formalisms even in simple common-sense examples.

To overcome these limits, we have proposed the novel notion of
multi-labelling system for argument-based reasoning, which restores
statement justification as a first-class formalism-independent compo-
nent of the overall process and promotes the idea that it is tunable,
much in the way argumentation semantics is a tunable component
in several formalisms. We have shown that at least two approaches,
namely the AF and the SF approach, can be considered in this context
and that they are incomparable in terms of expressiveness. We have
then shown how the process leading from argument acceptance to
statement justification in three well-known argumentation formalisms
can be regarded as a kind of either AF or SF multi-labelling sys-
tem. Multi-labelling systems can be tuned, and we illustrated this by
‘plugging’ a (so-called ignorance-aware) labelling for statement justifi-
cation into the three considered formalisms, thus achieving agreement
in the example used in the paper.

Overall, the paper provides a first foundational contribution towards
a deeper study of statement justification in argument-based reasoning
and opens the way to several future research directions. In particular,
we mention a systematic study of general principles and properties
for statement labellings. This would represent a complementary con-
tribution with respect to the literature works on rationality postulates
[5, 1] which deal with the collective properties (e.g. consistency and
closure) of the conclusions of a set of arguments rather than with the
notion of justification of the conclusions themselves. Moreover we
will consider the investigation of other pluggable statement justifica-
tion methods and of their relationships, and the revision of some of
the assumptions underlying the approaches considered in this paper.
For instance, revising some of these assumptions may allow one to
overcome the expressiveness gaps evidenced in Section 3. Finally, a
first analysis carried out on Defeasible Logic [9] shows the necessity,
in this context, of more articulated approaches taking into account
the different types of arguments and attacks present in the underlying
formalism.
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