
Efficient Computation of Exact IRV Margins

Michelle Blom and Vanessa Teague and Peter J. Stuckey and Ron Tidhar 1

Abstract. Computing the margin of victory (MOV) in an Instant
Runoff Voting (IRV) election is NP-hard. In an IRV election with
winning candidate w, the MOV defines the smallest number of cast
votes that, if modified, result in the election of a candidate other than
w. The ability to compute such margins has significant value. Argu-
ments over the correctness of an election outcome usually rely on the
size of the electoral margin. Risk-limiting audits use the size of this
margin to determine how much post-election auditing is required.
We present an efficient branch-and-bound algorithm for computing
exact margins that substantially improves on the current best-known
approach. Although exponential in the worst case, our algorithm runs
efficiently in practice, computing margins in instances that could not
be solved by the current state-of-the-art in a reasonable time frame.

1 Introduction

Instant Runoff Voting (IRV) is a system of preferential voting in
which voters rank candidates in order of preference. IRV is used
for all parliamentary lower house elections in Australia, parliamen-
tary elections in Fiji and Papua New Guinea, presidential elections
in Ireland and Bosnia/Herzogovinia, and local elections in numer-
ous locations world-wide, including the UK and United States [19].
Given candidates c1, c2, c3, and c4, each vote in an IRV election
is a (possibly partial) ranking of these candidates. A vote with the
ranking [c1, c2, c3] expresses a first preference for candidate c1, a
second preference for c2, and a third for c3. The tallying of votes
proceeds by distributing each vote to its first ranked candidate. The
candidate with the smallest number of votes is eliminated, with their
votes redistributed to subsequent, less preferred candidates. Elimi-
nation proceeds in this fashion, until a single candidate w remains,
who is declared the winner. The margin of victory (MOV) of the elec-
tion is the smallest number of cast votes that must be modified (their
ranking replaced with an alternate ranking) to ensure that a candidate
other than w is the last candidate standing and is elected.

Exact computation of IRV electoral margins is NP-hard [22]. It
is difficult to compute either the true runner-up of an IRV election,
or the margin by which they lost. Disputing an election outcome, or
proving that it is correct, generally requires some argument compar-
ing the electoral margin to the precision of the process. For exam-
ple, risk-limiting audits require knowledge of the MOV to determine
how much auditing is required [15]. A close election, in which the
MOV is small, requires more auditing than one with a large margin.
As more jurisdictions move toward electronic voting or post-election
digitisation of votes, software for election analysis, including MOV
computation, will become increasingly important.

Automatic recounting of ballots, for example, is triggered in many
jurisdictions if the last round margin (the difference between the tal-
lies of the last two remaining candidates, divided by two and rounded

1 The University of Melbourne, Australia, email: michelleb@unimelb.edu.au

up) of an IRV election falls below a threshold. The 2013 federal elec-
tion for the Australian seat of Fairfax, in Queensland, for example,
had a last round margin of just 4 votes, triggering a recount. The ac-
tual margin of victory for an IRV election, however, may be much
lower than its last round margin. The 2011 federal election for the
Australian seat of Balmain, New South Wales, had a last round mar-
gin of 1239 votes, with 2477 votes separating the last two remain-
ing candidates – a Liberal and a Green. The actual margin of victory,
however, was at most 388 votes, with 775 votes separating the Greens
and Labor in a prior round of elimination. Last round margins will
therefore trigger recounts in only a portion of eligible IRV elections.

This paper contributes an efficient algorithm, denoted margin, for
exact IRV margin computation that substantially improves on the cur-
rent best-known approach by Magrino et al. [16], denoted MRSW
throughout this paper. On a data set of 29 IRV elections held in the
United States between 2007 and 2014, MRSW computes margins in
several hundred seconds in 26 of the 29 instances, but fails to com-
pute a margin within 72 hours in the remainder. Although exponen-
tial in the worst case, our algorithm runs efficiently in practice on all
real IRV election instances for which we could obtain data. On all
IRV instances in our data set, our algorithm computes exact margins
in less than 6 seconds. The significance of our improved algorithm is
that MOV computation is now practical in elections with large num-
bers of candidates. In the 2007 San Francisco Mayoral election (with
18 candidates) our algorithm computes the MOV is less than 2 sec-
onds while MRSW times out after 72 hours. We compute the MOV in
the Minneapolis 2013 Mayoral election (36 candidates) and the Oak-
land 2014 Mayoral election (17 candidates) in less than 5 seconds,
while MRSW times out after 72 hours. In the 2015 Australian New
South Wales (NSW) state election (lower house), 93 IRV elections
were held to elect a member of parliament in 93 distinct electorates.
Our algorithm computes the MOV in each of these elections in less
than 0.04 seconds. MRSW requires up to several hundred seconds.

An obvious, but inefficient, algorithm for computing exact IRV
margins is to consider every possible order in which candidates could
be eliminated, and use a linear program (LP) solver such as CPLEX
to compute the exact number of manipulations (vote modifications)
necessary to achieve it. A manipulation replaces the ranking of a vote
(e.g., [c1, c2, c3]) with a different ranking (e.g., [c2, c1]). The MOV
is the smallest number of such modifications required to realise the
election of a different candidate. An insight of Magrino et al. [16] is
that this LP can be used to compute a lower bound on the number
of manipulations required to realise an elimination order ending in a
particular sequence of candidates. The branch-and-bound algorithm
of Magrino et al. [16] guides a search of the space of partial orders,
using these lower bounds, for a complete elimination order (involv-
ing all candidates) requiring fewest vote manipulations to realise.

Our algorithm has the same basic structure as MRSW but intro-
duces a new, easily computed, and often tighter, lower bound on the

ECAI 2016
G.A. Kaminka et al. (Eds.)

© 2016 The Authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/978-1-61499-672-9-480

480

number of vote manipulations required to realise an elimination or-
der ending in a specific candidate sequence. Computing this lower
bound does not require the solving of an LP, and is often higher
in value than that computed by MRSW. Combining our new lower
bounds with those generated by the LP of MRSW allows us to prune
larger portions of the space of possible elimination orders, earlier in
search, and disregard many partial orders without the need to solve
an LP. This significantly reduces the time required to compute the
MOV. Like Magrino et al. [16], we compute margins under the as-
sumption that any manipulation applied to cast votes must leave the
number of votes unchanged. We further extend the work of Magrino
et al. [16] by presenting two variations of our algorithm in which this
assumption is not required. This allows us to answer important prac-
tical questions. If there were lost votes, could their inclusion have
altered the election outcome? If some people voted twice, could it
have made a difference to the outcome? The answer to these ques-
tions can be obtained by calculating the MOV under the assumption
that votes can only be added to the election (addition only) or re-
moved (deletion only). This type of manipulation is known as voter
control. We consider both settings in this paper.

The problem of computing margins in elections is related to that
of bribery in the literature (see [11, 10, 12, 4, 5, 13, 6]). In the bribery
problem, voters can be bribed in order to change their votes. Much
work has analysed the susceptibility of various voting rules (e.g.,
Condocert-based or plurality voting) to bribery, and the complexity
of manipulating an election with bribery. In the shift bribery prob-
lem, for example, each voter has prices (bribes) for which they are
willing to shift the position of a candidate in their vote forward by
i positions [5]. The bribery problem seeks to find a lowest cost set
of bribes such that an alternate candidate (to the original winner) is
elected. If each voter will change their vote at a price of 1, this lowest
cost is equivalent to the electoral MOV. While the complexity of the
bribery problem, and election manipulation in general, has been well-
studied, the work presented in this paper differs in that it presents a
practical and implementable algorithm for computing electoral mar-
gins in IRV elections, outperforming the current state-of-the-art.

The key contributions of this paper are as follows. We present: a
new, efficient method of computing a lower bound on the number of
vote manipulations required to realise the elimination of candidates
in an IRV election in a specific order; a modification of the MOV-
calculation algorithm of Magrino et al. [16] in which this bounding
procedure is used; a comparison of our approach with that of Ma-
grino et al. [16] on 29 IRV elections held in the United States be-
tween 2007 and 2014 (25 of which appear in the work of Magrino
et al. [16]), and 93 IRV elections from the 2015 NSW state election;
and two adaptations of our algorithm for settings in which votes can
only be added or removed, but not both.

This paper is structured as follows. Section 2 examines related
work in the complexity and computation of IRV margins. Definitions
and concepts underlying our approach are presented in Section 3.
Section 4 describes our improved algorithm for the computation of
margins, highlighting where it deviates from that of Magrino et al.
[16]. Section 5 evaluates our algorithm on a suite of IRV instances.
Section 6 examines two variations of our algorithm in which votes
may be deleted from or added to an election profile, but not both.

2 Related Work

Computing the exact MOV in an IRV election is NP-hard [22]. De-
termining whether a single voter can manipulate an IRV election to
achieve a desired outcome is also NP-hard [2]. This result has been

extended by Conitzer et al. [8, 9] to show that for a weighted vari-
ant of IRV in which there are more than 3 candidates (and votes are
weighted), finding a manipulation for which a specific candidate is
elected (constructive manipulation) is NP-complete. For elections of
more than 4 candidates, finding a destructive manipulation (ensur-
ing that a specific candidate is not elected) is also NP-complete. The
complexity of manipulating plurality and Condorcet-based elections
by adding or deleting voters (equivalent to the addition or deletion
of votes considered in this paper) is examined by Bartholdi III et al.
[3]. The complexity of strategic voting in schemes for which votes
can be partial rankings over candidates is investigated by Narodyt-
ska and Walsh [17]. See Rothe and Schend [20] for a review of such
complexity results. In some of these works, IRV is referred to as a
form of Single Transferable Vote (STV) with a single winner.

In this paper we seek to determine the smallest number of votes
cast in an IRV election that, if modified, will result in a different out-
come (a different winner). Similar questions have been considered
for alternate voting rules. The complexity of manipulating an elec-
tion with bribery is considered by Faliszewski et al. [12], under a
number of voting schemes: Condocert-based; approval voting; scor-
ing rules; veto rules; and plurality. Their aim is to find a manipula-
tion to achieve a desired election result, while minimising the cost of
bribes given to voters for changing their vote.

An algorithm for computing upper and lower bounds on the IRV
MOV has been developed by Cary [7]. The “Winner Elimination”
upper bound, for example, finds the most efficient way to eliminate
the winner in each round, returning the least-cost (involving fewest
vote changes) of these. Bounds on the MOV for IRV and other voting
schemes have also been provided by Sarwate et al. [21]. A lower
bound is computed by picking sets of candidates to eliminate in order
to maximise the difference between the number of votes allocated to
the candidates in these sets, and to the remaining candidate with the
fewest votes. The bounds defined by Cary [7] and Sarwate et al. [21]
can be computed in polynomial time, but are not necessarily tight
(i.e., they may differ significantly from the true margin).

In 31 IRV elections conducted in the United States and Ireland,
Sarwate et al. [21] compare their computed bounds to known exact
margins. Lower bounds equaled exact margins in 18 elections, and in
the others fell below exact margins by 0.6% to 19% of the total votes
cast. Computed upper bounds were typically within a few votes of
exact margins, with a number of exceptions. For the 2009 Aspen City
Council election, the lower and upper bound of Sarwate et al. [21]
differ from the exact margin by 2.5% (62 votes) and 9.9% (254 votes)
of the total number of votes cast. Our algorithm finds the exact MOV
in this election within 1.5 seconds. In the 2008 race for Pierce County
assessor, their lower and upper bound differ from the exact margin
by 0.6% (1945 votes) and 1.6% (5079 votes) of the total number of
votes. Our algorithm computes the MOV within 0.02 seconds.

Magrino et al. [16] present a branch-and-bound algorithm for com-
puting exact IRV margins. Applied to 25 IRV elections in the United
States, this approach successfully computes exact margins in all but
one instance. This algorithm, referred to as MRSW in this paper,
considers the space of possible alternate elimination orders of a set
of candidates C, in which the actual winner cw ∈ C is not the last
remaining candidate. Given one such order, a linear program (LP)
computes the smallest number of votes (of those cast) that must be
modified in order to realise this elimination order. When applied to
a partial sequence of candidates, π′, this LP computes the smallest
number of vote changes required to achieve this order of elimination
in a reduced election profile, in which all candidates not in π′ have
been eliminated (and their votes redistributed). It is clear that this

M. Blom et al. / Efficient Computation of Exact IRV Margins 481

Initially, all candidates remain standing (are not eliminated)
While there is more than one candidate standing

For every candidate c standing
Tally (count) the votes in which c is the highest-ranked
candidate of those standing

Eliminate the candidate with the smallest tally
The winner is the one candidate not eliminated

Figure 1. An informal definition of the IRV counting algorithm.

number is a lower bound on the number of vote changes required
to achieve any complete elimination order (involving all candidates)
ending in π′. The MRSW algorithm builds a tree of partial elimina-
tion orders, with the smallest LP evaluation obtained for each visited
leaf (a complete order) providing an upper bound on the electoral
margin. Partial orders whose associated lower bound is larger than
the best known upper bound are pruned from the search.

The main restricting cost of MRSW is the number of nodes that
are explored and evaluated via the LP. Our algorithm dramatically re-
duces the number of partial elimination orders (nodes) explored, rel-
ative to MRSW, through the use of a bounding rule assigning tighter
(higher) lower bounds to nodes close to the root of the tree. We are
thus able to prune larger portions of the search space, earlier.

3 Preliminaries

The tallying of votes in an IRV election proceeds by a series of
rounds in which the candidate with the lowest number of votes is
eliminated (see Figure 1) with the last remaining candidate declared
the winner. All votes in an eliminated candidate’s tally are distributed
to the next most-preferred (remaining) candidate in their ranking.

Let C be the set of candidates in an IRV election B. We refer to
sequences of candidates π in list notation (e.g., π = [c1, c2, c3, c4]),
and use such sequences to represent both votes and elimination or-
ders. We will often treat a sequence as the set of elements it contains.
An election B is defined as a multiset2 of votes, each vote b ∈ B
a sequence of candidates in C, with no duplicates, listed in order of
preference (most preferred to least preferred). Let first(π) denote the
first candidate appearing in sequence π (e.g., first([c2, c3]) = c2).
In each round of vote counting, there are a current set of eliminated
candidates E and a current set of candidates still standing S = C \ E .
The winner cw of the election is the last standing candidate.

Definition 1 Projection pS(π) We define the projection of a se-
quence π onto a set S as the largest subsequence of π that contains
only elements of S. (The elements keep their relative order in π).

For example: p{c2,c3}([c1, c2, c4, c3]) = [c2, c3] and
p{c2,c3,c4,c5}([c6, c4, c7, c2, c1]) = [c4, c2].

Each candidate c ∈ C has a tally of votes. Votes are added to
this tally upon the elimination of a candidate c′ ∈ C \ c, and are
redistributed from this tally upon the elimination of c.

Definition 2 Tally tS(c) Given candidates S ⊆ C are still standing
in an election B, the tally for a candidate c ∈ C, denoted tS(c),

2 A multiset allows for the inclusion of duplicate items.

Ranking Count
[c2, c3] 4

[c1] 20
[c3, c4] 9

[c2, c3, c4] 6
[c4, c1, c2] 15

[c1, c3] 6

(a)

Candidate Rnd1 Rnd2 Rnd3
c1 26 26 26
c2 10 10 —
c3 9 — —
c4 15 24 30

(b)

Table 1. An example IRV election profile, stating (a) the number of votes
cast with each listed ranking over candidates c1, c2, c3, and c4, and (b) the

tallies after each round of vote counting and elimination.

is defined as the number of votes b ∈ B for which c is the most-
preferred candidate of those remaining. Recall that pS(b) denotes
the sequence of candidates mentioned in b that are also in S.

tS(c) = | [b | b ∈ B, c = first(pS(b))] | (1)

Definition 3 Margin of Victory (MOV) The MOV in an election
with candidates C and winner cw ∈ C, is the smallest number of
votes whose ranking must be modified (by an adversary) so that a
candidate c′ ∈ C \ cw is elected.

If several candidates receive the same number of votes, at any
stage of the IRV count, we assume that the adversary can decide
which of the candidates is eliminated. This assumption is made by
Magrino et al. [16]. If this is not the case, the MOV of Definition 3
slightly underestimates (but never overestimates) the true margin.

Definition 4 Last Round Margin (LRMB) The last round margin
of election B, in which two candidates S = {c, c′} remain with
tS(c) and tS(c′) votes in their tallies, is equal to half the difference
between the tallies of c and c′ rounded up.

LRMB = � |tS(c)− tS(c′)|
2

� (2)

Example 1 Consider the IRV election of Table 1. The tallies of can-
didates c1, c2, c3, and c4, in the 1st counting round are 26, 10, 9,
and 15 votes. Candidate c3 is eliminated, and 9 votes are distributed
to c4, who now has a tally of 24. Candidate c2, on 10 votes, is elimi-
nated next with 6 of their votes distributed to c4 (the remainder have
no subsequent preferences and are exhausted). Candidates c1 and c4
remain with tallies of 26 and 30. The last round margin is 2 votes.
Candidate c1 is eliminated from consideration and c4 elected.

4 A Fast Algorithm for Calculating Margins

We present a branch-and-bound algorithm for computing the MOV
in IRV elections. This algorithm has the same basic structure as that
of MRSW [16], being a traversal of the tree of possible orders of
candidate elimination. Our algorithm incorporates a substantially im-
proved pruning rule allowing us to dramatically reduce the portion of
this tree we must traverse to compute the MOV. In this section, we
describe our algorithm in detail and contrast its performance against
MRSW on 29 IRV elections held in the United States between 2007
and 2014, and the 2015 NSW lower house election held in Australia.
In the latter election, 93 IRV elections were held to elect a member
of parliament in 93 electorates.

Magrino et al. [16] define an LP, DISTANCETO, shown below, for
computing the minimum number of votes cast in an election B that, if

M. Blom et al. / Efficient Computation of Exact IRV Margins482

manipulated, realises a specific complete elimination order π (involv-
ing all candidates C). When applied to a partial order π′ (π′ ⊂ C),
DISTANCETO computes a lower bound on the number of votes that,
if manipulated, will realise an elimination order ending in π′. In this
paper, we define a bounding rule that, when applied to a partial order
π′, computes an alternative, often tighter (higher), lower bound.

Let R denote the set of possible (partial and total) rankings R of
candidates C that could appear on a vote, NR the number of votes
cast in the election with ranking R ∈ R, and N the total number of
votes cast. For each ranking R ∈ R, we define variables:

qR number of votes to be changed into R;

mR number of votes with ranking R in the unmodified

election to be changed into something other than R; and

yR number of votes in the modified election with ranking R.

Given a partial or complete order π, the DISTANCETO LP is:

min
∑

R∈R

qR

NR + qR −mR = yR ∀R ∈ R (3)
∑

R∈R

qR =
∑

R∈R

mR (4)

∑

R∈Ri,i

yR ≤
∑

R∈Rj,i

yR ∀ci, cj ∈ π . i < j (5)

n ≥ yR ≥ 0, NR ≥ mR ≥ 0, qR ≥ 0 ∀R ∈ R (6)

Constraint (3) states that the number of votes with ranking R ∈ R
in the new election is equal to the sum of those with this ranking in
the unmodified election and those whose ranking has changed to R,
minus the number of votes whose ranking has been changed from R.
Constraint (5) defines a set of special elimination constraints which
force the candidates in π to be eliminated in the stated order. Rj,i

denotes the subset of rankings in R (Rj,i ⊂ R) in which cj is the
most preferred candidate still standing (i.e., that will count toward
cj’s tally) at the end of round i (in which candidate ci is eliminated).
Constraint (4) ensures that the total number of votes cast in the elec-
tion does not change as a result of the manipulation.

4.1 Two New Lower-Bounding Rules

Let us consider a partial elimination order π′ ⊂ C. Each candidate
e ∈ C \ π′ must be eliminated before every candidate c ∈ π′ (recall
that we are computing a lower bound on the number of votes that
must be manipulated to realise an elimination order ending in π′).
We define Δ(c, e) as the number of votes b ∈ B for which c is ranked
higher than e, or c appears and e does not. This is equal to the number
of votes with rankings [c, e] or [c] when all candidates apart from c
and e are removed. At any time e is eliminated before c, c has a tally
of at most Δ(c, e) votes at the moment e is eliminated, with all other
votes assigned to e, or another candidate. Recall that pS(b) denotes
the projection of b onto set S (i.e., the ranking of vote b with all
candidates not in the set S removed).

Δ(c, e) = | [b | b ∈ B, p{c,e}(b) ∈ {[c, e], [c]}] | (7)

The primary vote of candidate c ∈ C, denoted f(c), is the number
of votes b ∈ B for which c is ranked highest.

f(c) = | [b | b ∈ B, c = first(b)] | (8)

To ensure that candidate e is eliminated before candidate c, we
require that f(e) ≤ Δ(c, e). In other words, we require that the
primary vote of e is less than or equal to the number of votes in which
c is ranked higher than e, or c appears and e does not. If it is the case
that f(e) > Δ(c, e), we need to change the relative counts by the
amount f(e) − Δ(c, e) for this order of elimination to be feasible.
Let l1(c, e) denote a lower bound on the number of votes that must
be modified to achieve the elimination of e before c.

l1(c, e) = max(0, �f(e)−Δ(c, e)

2
�) (9)

Example 2 Consider the partial elimination order π′ = [c2] in the
election of Table 1. To realise an elimination order ending in c2, all
other candidates must be eliminated prior to c2’s election. To ensure
that c1 appears before c2 in the elimination sequence, we count all
votes that could possibly be in c2’s tally at the point at which c1 is
eliminated – this is denoted Δ(c2, c1) and defined in Equation 7.
In this example, Δ(c2, c1) = 10. The smallest number of votes that
c1 could have in their tally upon elimination is their initial tally (or
primary vote) f(c1), defined in Equation 8. Here, f(c1) = 26. For
c1 to appear before c2 in the elimination sequence, we must change
the votes so that, at the very least, the minimum number of votes that
c1 could have (upon elimination) is less than the maximum number
of votes c2 could have. Equation 8 computes this ‘minimal number’
of required vote changes, l1(c2, c1). Here, l1(c2, c1) = 8.

Since each candidate e ∈ C \ π′ has been eliminated prior to each
c ∈ π′, we can compute a lower bound on the number of votes
that must be modified to realise an elimination order ending in π′,
b1(π

′), as shown in Equation 10. In contrast to the DISTANCETO

LP, our lower bound does not consider the order in which candidates
are eliminated in π′, but computes a lower bound on the number of
votes we must alter to ensure that the candidates in π′ are the last
candidates standing. The DISTANCETO LP, however, operates on a
reduced election profile in which all candidates not in π′ have been
eliminated, and their votes redistributed. It computes the manipula-
tion required to realise π′ in this setting.

b1(π
′) = max{l1(c, e) | c ∈ π′, e ∈ C \ π′} (10)

Example 3 (Example 2 cont.) For the partial order π′ = [c2], we
compute lower bounds on the smallest number of vote changes re-
quired to eliminate each candidate ci (i
= 2) prior to c2’s election,
l1(c2, ci). The largest l1(c2, ci) becomes our lower bound, b1(π′),
on the number of votes we must change to realise an elimination or-
der ending in [c2]. In this example, b1(π′) = 8. DISTANCETO would
assign a lower bound of 0 to π′ as in a reduced election involving
only c2, no votes need be changed to ensure they are elected.

The bound b1 can be tightened. Consider the partial elimination
order π′, for which all candidates e ∈ C \π′ are eliminated before all
c ∈ π′. We know that e has at least f(e) votes in its tally. Candidate c
may not have, in their tally, all votes which have been counted toward
Δ(c, e) (those in which c appears before e, or c appears, but e does
not). Some of these votes may lie in the tallies of other candidates
in π′, who have not yet been eliminated. We define ΔS(c, e) as the
maximum number of votes that c can have in their tally at the time
e is eliminated, where S = {e} ∪ π′ denotes the minimal set of
candidates that must be ‘still standing’ at this time.

ΔS(c, e) = | [b | b ∈ B, c = first(pS(b)] | (11)

M. Blom et al. / Efficient Computation of Exact IRV Margins 483

To realise a situation in which candidate e ∈ C \ π′ is elimi-
nated prior to candidate c ∈ π′, we require that f(e) ≤ ΔS(c, e). If
f(e) > ΔS(c, e) then we must modify at least l2(c, e, π′) votes.

l2(c, e, π
′) = max(0, �f(e)−ΔS(c, e)

2
�) (12)

Equation 13 defines a tighter lower bound on the number of votes
in B that must be changed to ensure that π′ ⊂ C are the last re-
maining candidates, b2(π′). Note that l2(c, e, π′) ≥ l1(c, e), for all
π′ ⊂ C, c ∈ π′, and e ∈ C \ π′. Hence, b2(π′) ≥ b1(π

′) for all
π′ ⊂ C. Both b1(π

′) and b2(π
′) are independent of the order of can-

didates in π′.

b2(π
′) = max{l2(c, e, π′) | c ∈ π′, e ∈ C \ π′} (13)

Example 4 Consider the partial elimination order π′ = [c3, c1].
Our first lower bound on the number of manipulations required to
realise an elimination order ending in π′, b1(π′), equals 0. To com-
pute this we evaluate l1(ci, cj) for i = 1, 3, and j = 2, 4, and
take the maximum result. These values represent the smallest num-
ber of manipulations required to eliminate c2 and c4 before candi-
dates c3 and c1. To compute our second lower bound, b2(π′), we
evaluate l2(ci, cj , π

′) for i = 1, 3, and j = 2, 4 (via Equation 12),
and take the maximum result. We find that l2(ci, cj , π′) = 0 for all
i and j with the exception of l2(c3, c2, π′) which equals 1. Hence,
b2(π

′) = 1. DISTANCETO assigns π′ a lower bound of 0.

4.2 A Branch-and-Bound Algorithm: margin
Figure 2 outlines our algorithm, denoted margin, for computing ex-
act margins in IRV elections. This algorithm shares the basic struc-
ture as MRSW [16], both being branch-and-bound algorithms.

An initially empty priority queue Q of partial elimination orders is
maintained throughout the algorithm (step 1). An upper bound on the
number of votes that must be modified to realise a winning candidate
other than cw is initialised to the last round margin of the election,
LRMB (step 2). A partial order π′ = {c} for all c ∈ C \ cw (i.e.,
we do not consider orders that will end in the winning candidate) is
inserted into Q with a score given by b2(π

′) of Equation 13 iff that
score is lower than the current upper bound (steps 5–7). If this score
is larger or equal to the upper bound, π′ and all its descendents are
pruned (will not be explored). MRSW adds these orders to Q with a
score of 0 (as in a reduced election involving only one candidate c,
no votes need to be altered to ensure that c wins).

We repeatedly select the partial order π′ in Q with the smallest
score (i.e., the smallest lower bound on the size of the manipulation
required to realise an elimination order ending in π′). This order is
removed from Q (step 10), and is expanded. It is at this point that
we evaluate π′ with the DISTANCETO LP (step 13). We have found,
from experimentation, that DISTANCETO can provide a higher bound
than b2, albeit infrequently. If the revised bound from DISTANCETO

is larger or equal to the current upper bound, π′ is pruned from the
tree in step 14–15 (i.e., it is not added to Q). Otherwise, we consider
each candidate c ∈ C \ π′ and create new order π in which c is
eliminated just prior to the first candidate in π′ (step 17). If π is
a complete order, containing all candidates, we compute the exact
number of vote changes required to realise π with DISTANCETO.
If this number is lower than the current upper bound, U is replaced
with the smaller number (step 19). If π is a partial order, we compute
b2(π) as defined in Equation 13 (step 20). If this lower bound is
lower than the current upper bound, π is inserted into Q (steps 21–
22), otherwise it and its descendents are pruned from the search.

margin(C, B, cw)
1 Q := ∅
2 U := LRMB
3 for(c ∈ C \ {cw})
4 π′ := [c]

5 l := b2(π
′)

6 if(l < U)
7 Q := Q ∪ {(l, π′)}
8 while Q
= ∅
9 (l, π′) := argminQ

10 Q := Q \ {(l, π′)}
11 U := expand(l, π′, U,Q, C,B)
12 return U

expand(l, π′, U,Q, C,B)
13 l′ := max{l, DISTANCETO(π′, C,B)}
14 if(l′ ≥ U)
15 return U

16 for(c ∈ C \ π′)
17 π := [c] ++π′

18 if(|π| = |C|)
19 return min{U,DISTANCETO(π,C, B)}
20 l′′ = max{l′, b2(π)}

21 if(l′′ < U)
22 Q := Q ∪ {(l′′, π)}
23 return U

Figure 2. MOV computation for an IRV election B with candidates C and
winner cw ∈ C; # denotes where our algorithm differs from MRSW [16].

The b2 bound is not guaranteed to generate a tighter bound than
DISTANCETO (although in practice we find that it is tighter in a ma-
jority of instances). In using our lower bounding rules to select partial
orders for expansion, and evaluating DISTANCETO only on these se-
lected orders, we reduce the number of LPs solved by our algorithm.
MRSW evaluates the DISTANCETO LP for each child formed upon
the expansion of a node.

When all elimination orders have been examined, or pruned, mar-
gin terminates (step 12), returning U , which now equals the smallest
number of vote changes required to alter the outcome of election B.

4.3 Comparing MRSW and margin: An Example

Consider the IRV election of Table 1. Figure 3a records the partial
elimination orders considered by MRSW when computing the MOV.
Each node denotes an elimination order that is traversed and eval-
uated by MRSW, with its score recorded. MRSW first considers the
partial orders [c2], [c3], and [c4], assigning each a score of 0. The up-
per bound on the manipulation size required to change the election
outcome is set to 2 votes (the last round margin). MRSW considers
the children of node [c3] – [c2, c3] with a score of 5, [c1, c3] with
a score of 11, and [c4, c3] with a score of 0. These scores are ob-
tained by solving DISTANCETO. Nodes [c2, c3] and [c1, c3] can be
pruned as their scores are higher than the current upper bound. Node
[c4, c3] is expanded, creating children [c2, c4, c3] with a score of 0
and [c1, c4, c3] with a score of 6 (consequently pruned). The leaf
node [c1, c2, c4, c3] is then visited and assigned a score of 11 (also
pruned). MRSW continues to expand nodes in this manner as shown

M. Blom et al. / Efficient Computation of Exact IRV Margins484

����������

���	������

���
������

���	���������

���
��������

������������

���	����������� ���
��	����������

���
�����������

������	������

���
��	�����
�

�����	������

������
������

���	��
������

�����
�����	

������	��
������

�����	��
������

���	�����
�����

��������
������

��������	��
�����

���	�������
�����

���
�����	�����	

��������	������

�

�

�

��

��

��

��

��

�

�

�

	

�

��

��

�	
�

��

��

��

�� ��

(a)

����������

���	������

����������

�����������������

���	���������

����������������	

���	������������

���������������� ���	���������������

�

�

�

�

�

�

�	

�
 ��

(b)

Figure 3. Traversal of elimination orders by (a) MRSW, and (b) margin,
recording the sequence in which orders are evaluated (circled), and the score

given to each order, for the election of Table 1.

in Figure 3a, visiting 23 nodes and solving 20 LPs (the children of
the root node have a value of 0 as in a reduced election with one
candidate, no votes need to be changed to ensure they are elected).

Our algorithm visits and evaluates the nodes shown in Figure 3b,
reporting beside each node the score we assign to it. Nodes [c3], [c2],
and [c1], are assigned scores of 4, 8, and 0, respectively. Nodes [c3]
and [c2] are immediately pruned as their scores are larger than the
current upper bound of 2. This allows us to concentrate on elimina-
tion orders ending in c1. Nodes [c3, c1], [c2, c1], and [c4, c1], are
assigned scores of 0, 3, and 0 (when [c3, c1] and [c4, c1] are se-
lected for expansion, DISTANCETO is solved for these nodes and
their scores revised to 1 and 2, respectively). Node [c3, c1] is ex-
panded, visiting nodes [c2, c3, c1] and [c4, c3, c1] with scores of 3
and 1. The leaf [c2, c4, c3, c1] is given a score of 1 by solving DIS-
TANCETO. The upper bound is updated to 1. DISTANCETO is then
solved for node [c4, c1], assigned a score of 0 by our bounding rules,
obtaining a revised lower bound of 2. As this is greater than the cur-
rent upper bound, [c4, c1] can be pruned immediately. Our algorithm
assigns scores to 9 nodes, but solves only 4 LPs in the process –
DISTANCETO is solved at a node only when it has been selected for
expansion, or if it is a leaf node. Scores assigned by our lower bound-
ing rules are used to determine which nodes to select for expansion.

5 Computational Results

We have evaluated our improved algorithm (Figure 2) on 29 IRV
elections held in the United States, and 93 IRV elections involved in
the 2015 NSW state election (lower house). We contrast the perfor-
mance of our approach on this data set with that of MRSW. Execu-
tion was performed on a machine with four 2.10 GHz CPUs, 7.7 GB
of memory, and with a 72 hour timeout. CPLEX 12.5.1 was used to
solve all LPs. Table 2 reports, for each election considered, the num-
ber of candidates and votes cast, the number of calls to DISTANCETO

made by MRSW and by our algorithm (denoted margin), the com-
putation time (in milliseconds) of the two algorithms, the MOV and
the last-round margin. Of the 93 IRV elections in the 2015 NSW state
election, 4 reported a MOV that differed from its last round margin.

Our algorithm substantially reduces both the number of calls to
DISTANCETO and computation time. For example, we are able to
compute the MOV of the 2007 San Francisco Mayoral election,
where MRSW timed out after 72 hours. In generating these results,
our algorithm uses the tighter b2 pruning rule of Equation 13. In the
majority of instances considered, pruning with b2 was either faster,
or as fast, as pruning with b1. The b2 rule is more costly to com-
pute, however, than b1. In the 2007 San Francisco Mayoral election,
for example, 1300 ms are used to compute the margin when prun-
ing with b2 (solving 94 LPs). In contrast, 1139 ms are used when
pruning with b1, even though 970 LPs are solved in the process. For
the Aspen 2009 City Council race, however, 1241 ms are used when
pruning with b1 and 1039 ms when pruning with b2. For the Pierce
2008 County Assessor instance, 17 ms and 9 ms are used when prun-
ing with b1 and b2, respectively. The full table of results comparing
the performance of b1 and b2 has been omitted for brevity.

In the 93 IRV elections of the 2015 NSW state election, MRSW
computed the MOV in 14 to 354,007 ms, solving 21 to 23,768 LPs.
Our margin algorithm computed margins in 1 to 35 ms, solving 1 to
13 LPs. Table 2 reports the results of 16 of these IRV elections – in
4 of which (Ballina, Maitland, Lismore, and Willoughby) the MOV
differs from the last round margin. The number of candidates in each
election range from 5 to 8. MRSW, in general, requires more time to
compute margins in elections with more candidates.

We have additionally applied margin to all instances of the Pre-
fLib data set3 that can be interpreted as an election (261 instances).
The number of candidates and votes cast in these instances range
from 3 to 2819, and 4 to 15,101, respectively. Margin computation
in all instances with more than 500 candidates is trivial, with only 4
votes cast. With a 30 minute time limit, margin computes margins
in all but 10 instances, while MRSW fails in 30 instances. In the 10
instances for which margin fails to compute a margin in 30 minutes,
it finds lower and upper bounds on the margin that differ by up to 9
votes in 7/10 instances and by 22 to 789 votes in the remainder.

6 Variations: Voter Control

Suppose some votes are lost during an election. We extend margin
to determine the minimum number of votes that must be added to
change an election outcome as follows. We first remove the division
by two when calculating the last round margin (Definition 4), and l1,
b1, l2, and b2 of Equations 9–13 (in this setting, manipulations can
only add votes). We then modify the DISTANCETO LP to calculate
the minimum number of vote additions required to enforce a certain
elimination order. To do so, we interpret variable qR as the number
of votes with ranking R ∈ R added to the election. We set mR = 0
for R ∈ R, and remove Constraint (4) which forces the number of
votes to remain constant. If the computed MOV is larger than the
number of lost votes, then their inclusion could not have altered the
election outcome. In the 2013 election of candidates to six seats in
Western Australia’s Senate a discrepancy of 1,375 initially verified
votes was discovered during a recount (resulting from a lost ballot
box) [18]. The election result was overturned, and a repeat election
held in 2014. While Single Transferable Vote (STV) is used in Aus-
tralian Senate elections – a more complex scheme than IRV – this
case demonstrates the impact of such mistakes when they occur.
3 http://www.preflib.org/

M. Blom et al. / Efficient Computation of Exact IRV Margins 485

|C| # Votes MRSW margin MRSW margin MOV LRM Election Name
Cast LPs LPs Time (ms) Time (ms)

2 45,986 1 0 1 1 15,356 15,356 Berkeley 2010 Auditor
2 15,243 1 0 1 1 4,830 4,830 Oakland 2010 D2 School Board
2 14,040 1 0 1 1 4,826 4,826 Oakland 2010 D6 School Board
2 23,494 1 0 1 1 8,338 8,338 San Leandro 2010 D3 City Council
3 122,268 6 1 1 1 17,081 17,081 Oakland 2010 Auditor
3 15,243 6 1 1 1 2,175 2,175 Oakland 2010 D2 City Council
3 23,494 6 1 1 1 742 742 San Leandro 2010 D5 City Council
4 4,862 22 1 4 1 364 364 Berkeley 2010 D7 City Council
4 5,333 23 2 4 1 878 878 Berkeley 2010 D8 City Council
4 14,040 24 2 4 1 2,603 2,603 Oakland 2010 D6 City Council
4 43,661 19 1 3 1 2,007 2,007 Pierce 2008 City Council
4 159,987 19 1 3 1 8,396 8,396 Pierce 2008 County Auditor
5 312,771 49 4 9 1 2,027 2,027 Pierce 2008 County Executive
5 2,544 65 1 12 1 89 89 Aspen 2009 Mayor
5 6,426 85 1 17 1 1,174 1,174 Berkeley 2010 D1 City Council
5 5,708 64 1 12 1 517 517 Berkeley 2010 D4 City Council
5 13,482 49 1 9 1 486 486 Oakland 2012 D5 City Council
5 28,703 65 2 13 1 2,332 2,332 San Leandro 2012 D4 City Council
7 23,494 292 1 81 1 116 116 San Leandro 2010 Mayor
7 312,771 312 19 98 9 1,111 3,650 Pierce 2008 County Assessor
7 26,761 351 19 111 8 386 684 Oakland 2012 D3 City Council
8 23,884 4,989 2 3,905 2 2,329 2,329 Oakland 2010 D4 City Council
8 57,492 7,737 2 6,772 2 8,522 8,522 Berkeley 2012 Mayor
8 34,180 1,301 2 666 2 423 423 Oakland 2012 D1 City Council
11 122,268 26,195 4 90,988 18 1,013 1,013 Oakland 2010 Mayor
11 2,544 15,109 224 64,705 1,039 35 162 Aspen 2009 City Council
17 101,431 — 234 timeout 5,067 10,201 10,201 Oakland 2014 Mayor
18 149,465 — 94 timeout 1,300 50,837 50,837 San Francisco 2007 Mayor
36 79,415 — 2 timeout 1,173 6,949 6,949 Minneapolis 2013 Mayor

5 44797 130 1 37 2 8235 8235 Seat of Lakemba, NSW 2015 lower house
5 45467 1,071 1 2,326 2 8,495 8495 Seat of Liverpool, NSW 2015 lower house
5 47348 130 1 36 2 10,806 10,806 Seat of Manly, NSW 2015 lower house
6 47,933 222 13 161 12 4,012 5,446 Seat of Maitland, NSW 2015 lower house
6 47,208 173 8 107 9 209 1,173 Seat of Lismore, NSW 2015 lower house
6 47,370 655 12 502 11 10,160 10,247 Seat of Willoughby, NSW 2015 lower house
7 47,865 380 11 652 35 1,130 1,267 Seat of Ballina, NSW 2015 lower house
7 48,358 867 1 1,693 9 3,132 3,132 Seat of Newcastle, NSW 2015 lower house
7 45497 710 1 1,323 9 3,536 3,536 Seat of Newtown, NSW 2015 lower house
7 48065 1071 1 2,326 10 4253 4253 Seat of Lake Macquarie, NSW 2015 lower house
8 47,590 7,091 1 79,637 22 4,069 4,069 Seat of Clarence, NSW 2015 lower house
8 47,803 21,054 1 190,066 18 7,311 7,311 Seat of Hawkesbury, NSW 2015 lower house
8 48,571 9,923 1 100,143 21 4,974 4,974 Seat of Swansea, NSW 2015 lower house
8 46,756 23,768 2 354,007 34 8,574 8,574 Seat of Murray, NSW 2015 lower house
8 48,002 4,106 1 29,211 20 2,576 2,576 Seat of Penrith, NSW 2015 lower house
8 42,892 2,369 1 11,243 18 2,864 2,864 Seat of Sydney, NSW 2015 lower house

Table 2. Running times and margins computed for 29 IRV elections in the United States, and 16/93 IRV elections held in the 2015 NSW state election (lower
house), using MRSW and margin. Cases where the margin of victory (MOV) differs from the last round margin (LRM) are in bold

In Australian state and federal elections, each polling station has
a book containing the names and addresses of all voters in the re-
gion. As each voter casts their vote, their name is struck off by hand.
This does not prevent a voter from voting more than once at multi-
ple polling stations. In the 2013 Australian federal election, the Aus-
tralian Electoral Commission (AEC) ‘investigated almost 19,000 in-
stances of multiple voting’ [1]. In this situation we know the number
of invalid votes, but not which votes are invalid. If this total exceeds
the minimum number of votes that, if removed, change the result
of the election, we know these invalid votes may have influenced
the outcome. To determine this number, we extend margin as fol-
lows. The division by two in our definition of last round margin, and
bounding rules, is removed. Variable mR becomes the number of

cast votes with ranking R ∈ R that we will delete. We set qR = 0
for R ∈ R, and remove Constraint (4). We replace qR with mR in
the DISTANCETO objective, as we seek to minimise the number of
deleted votes required to realise an alternate outcome.

Our margin algorithm, when applied to our suite of IRV instances,
is able to find the MOV in both the addition- and deletion-only set-
tings, with runtimes similar to those in Table 2. Table 3 reports, for
each election in Table 2, the number of candidates and votes cast, the
number of calls to DISTANCETO made by MRSW and margin, in
the addition-only setting, together with the computation time (in mil-
liseconds) of the two algorithms, the MOV and the last-round margin.

M. Blom et al. / Efficient Computation of Exact IRV Margins486

|C| # Votes MRSW margin MRSW margin MOV LRM Election Name
Cast LPs LPs Time (ms) Time (ms)

2 45,986 1 0 1 1 30,711 30,711 Berkeley 2010 Auditor
2 15,243 1 0 1 1 9,660 9,660 Oakland 2010 D2 School Board
2 14,040 1 0 1 1 9,651 9,651 Oakland 2010 D6 School Board
2 23,494 1 0 1 1 16,675 16,675 San Leandro 2010 D3 City Council
3 122,268 6 1 1 1 34,162 34,162 Oakland 2010 Auditor
3 15,243 6 1 1 1 4,349 4,349 Oakland 2010 D2 City Council
3 23,494 6 1 1 1 1,484 1,484 San Leandro 2010 D5 City Council
4 4,862 22 1 2 1 728 728 Berkeley 2010 D7 City Council
4 5,333 24 2 2 1 1,756 1,756 Berkeley 2010 D8 City Council
4 14,040 24 2 2 1 5,205 5,205 Oakland 2010 D6 City Council
4 43,661 19 1 2 1 4,014 4,014 Pierce 2008 City Council
4 159,987 19 1 2 2 16,792 16,792 Pierce 2008 County Auditor
5 312,771 49 4 4 1 4,054 4,054 Pierce 2008 County Executive
5 2,544 65 1 6 1 177 177 Aspen 2009 Mayor
5 6,426 79 1 7 1 2,348 2,348 Berkeley 2010 D1 City Council
5 5,708 62 1 5 1 1,033 1,033 Berkeley 2010 D4 City Council
5 13,482 49 1 4 1 972 972 Oakland 2012 D5 City Council
5 28,703 62 2 6 1 4,664 4,664 San Leandro 2012 D4 City Council
7 23,494 292 1 35 1 232 232 San Leandro 2010 Mayor
7 312,771 312 19 53 7 2,221 7,299 Pierce 2008 County Assessor
7 26,761 351 19 70 6 771 1367 Oakland 2012 D3 City Council
8 23,884 3,801 2 1,714 2 4,657 4,657 Oakland 2010 D4 City Council
8 57,492 5,693 2 2,465 2 17,044 17,044 Berkeley 2012 Mayor
8 34,180 1,186 2 315 2 845 845 Oakland 2012 D1 City Council
11 122,268 23,541 4 45,285 21 2,025 2,025 Oakland 2010 Mayor
11 2,544 13,943 220 50,117 862 70 323 Aspen 2009 City Council
17 101,431 — 224 timeout 4,812 20,402 20,402 Oakland 2014 Mayor
18 149,465 — 94 timeout 1,273 101,674 101,674 San Francisco 2007 Mayor
36 79,415 — 2 timeout 1,176 13,898 13,898 Minneapolis 2013 Mayor

5 44797 123 1 36 1 16,470 16,470 Seat of Lakemba, NSW 2015 lower house
5 45467 121 1 35 1 16,989 16,989 Seat of Liverpool, NSW 2015 lower house
5 47348 116 1 30 1 21,612 21,612 Seat of Manly, NSW 2015 lower house
6 47,933 213 13 194 15 8,023 10,892 Seat of Maitland, NSW 2015 lower house
6 47,208 173 8 134 11 417 2345 Seat of Lismore, NSW 2015 lower house
6 47,370 503 12 449 14 20319 20493 Seat of Willoughby, NSW 2015 lower house
7 47,865 385 11 945 50 2,259 2,534 Seat of Ballina, NSW 2015 lower house
7 48,358 819 1 2,182 8 6,264 6,264 Seat of Newcastle, NSW 2015 lower house
7 45,497 632 1 1,624 14 7,072 7,072 Seat of Newtown, NSW 2015 lower house
7 48,065 1,005 1 3,031 14 8,506 8,506 Seat of Lake Macquarie, NSW 2015 lower house
8 47,590 4,663 1 50,983 33 8,137 8,137 Seat of Clarence, NSW 2015 lower house
8 47,803 12,963 1 130,655 27 14,621 14,621 Seat of Hawkesbury, NSW 2015 lower house
8 48,571 6,679 1 62,190 31 9,948 9,948 Seat of Swansea, NSW 2015 lower house
8 46,756 11,624 2 156,357 38 17,147 17,147 Seat of Murray, NSW 2015 lower house
8 48,002 3,389 1 25,774 33 5,151 5,151 Seat of Penrith, NSW 2015 lower house
8 42,892 2,304 1 14,119 26 5,727 5,727 Seat of Sydney, NSW 2015 lower house

Table 3. Running times and margins computed for each of the IRV elections of Table 2, using MRSW and margin, under the restriction that votes can only
be added (not deleted or modified). Cases where the margin of victory (MOV) differs from the last round margin (LRM) are in bold.

7 Concluding Remarks

We have presented an algorithm, denoted margin, for computing
IRV margins that significantly outperforms the current state-of-the-
art. Our algorithm can efficiently compute the MOV in all IRV in-
stances for which we could obtain data. This includes a number of
instances for which the current state-of-the-art approach could not
compute the margin, in a reasonable time frame of 72 hours. The sig-
nificance of this work is that automated margin computation is now
practical for IRV elections with a large number of candidates. We
have presented two easily computed lower bounds on the degree of
manipulation required to realise an elimination order ending in a spe-
cific sequence. This allows us to prune large portions of the space of

possible alternate elimination orders when computing IRV margins.
Moreover, we have described how our margin algorithm can be used
to determine whether lost votes, or invalid votes (e.g., from electors
voting multiple times), could have influenced an election outcome.

IRV has several extensions, including various forms of the Single
Transferable Vote (STV). STV is used to elect candidates to the Aus-
tralian Senate, in all elections in Malta, and in most elections in the
Republic of Ireland [14]. The extension of our algorithm for com-
puting margins in IRV elections to STV elections, where candidates
are elected to multiple seats, and the votes of elected candidates are
redistributed at a fractional value, is a topic of future research. Pre-
liminary results suggest that our margin algorithm can be adapted to
apply to STV, using a non-linear version of DISTANCETO.

M. Blom et al. / Efficient Computation of Exact IRV Margins 487

REFERENCES

[1] ABC. Thousands admit to multiple votes in 2013 federal elec-
tion. www.abc.net.au/news/2014-02-26/thousands-admit-to-
multiple-votes-in-2013-federal-election/5284230, 2014. Ac-
cessed: August 2015.

[2] J. J. Bartholdi III and J. B. Orlin. Single transferable vote re-
sists strategic voting. Social Choice and Welfare, 8(4):341–354,
1991.

[3] J. J. Bartholdi III, C. A. Tovey, and M. A. Trick. How hard is it
to control an election? Mathematical and Computer Modelling,
16(8):27–40, 1992.

[4] R. Bredereck, J. Chen, P. Faliszewski, A. Nichterlein, and
R. Niedermeier. Prices matter for the parameterized complex-
ity of shift bribery. In Proceedings of the National Conference
on Artificial Intelligence (AAAI), pages 1398–1404, 2014.

[5] R. Bredereck, P. Faliszewski, R. Niedermeier, and N. Talmon.
Large-scale election campaigns: combinatorial shift bribery. In
Proceedings of the International Conference on Autonomous
Agents and Multiagent Systems (AAMAS), pages 67–75. Inter-
national Foundation for Autonomous Agents and Multiagent
Systems, 2015.

[6] R. Bredereck, P. Faliszewski, R. Niedermeier, and N. Talmon.
Complexity of shift bribery in committee elections. arXiv
preprint arXiv:1601.01492, 2016.

[7] D. Cary. Estimating the margin of victory for instant-runoff
voting. In USENIX Accurate Electronic Voting Technology
Workshop: Workshop on Trustworthy Elections, USENIX As-
sociation Berkeley, CA, USA, 2011.

[8] V. Conitzer, J. Lang, and T. Sandholm. How many candidates
are needed to make elections hard to manipulate? In Proceed-
ings of the 9th Conference on Theoretical Aspects of Rationality
and Knowledge, pages 201–214, Bloomington, Indiana, USA,
2003. ACM.

[9] V. Conitzer, T. Sandholm, and J. Lang. When are elections with
few candidates hard to manipulate? Journal of the ACM, 54(3):
14, 2007.

[10] E. Elkind, P. Faliszewski, and A. Slinko. Swap bribery. In
Algorithmic Game Theory, pages 299–310. Springer, 2009.

[11] P. Faliszewski, E. Hemaspaandra, and L. A. Hemaspaandra.
The complexity of bribery in elections. In Proceedings of
the National Conference on Artificial Intelligence (AAAI), vol-
ume 6, pages 641–646, 2006.

[12] P. Faliszewski, E. Hemaspaandra, and L. Hemaspaandra. How
Hard Is Bribery in Elections? Journal of Artificial Intelligence
Research, 35:485–532, 2011.

[13] P. Faliszewski, Y. Reisch, J. Rothe, and L. Schend. Complexity
of manipulation, bribery, and campaign management in Buck-
lin and fallback voting. Proceedings of the International Con-
ference on Autonomous Agents and Multiagent Systems (AA-
MAS), 29(6):1091–1124, 2015.

[14] D. Farrell and I. McAllister. Australia: The Alternative Vote in
a Compliant Political Culture. In M. Gallagher and P. Mitchell,
editors, The Politics of Electoral Systems, pages 79–97. Oxford
University Press, Oxford, 2005.

[15] M. Lindeman and P.B. Stark. A gentle introduction to risk-
limiting audits. IEEE Security and Privacy, 10:42–49, 2012.

[16] T. R. Magrino, R. L. Rivest, E. Shen, and D. A. Wagner. Com-
puting the margin of victory in IRV elections. In USENIX
Accurate Electronic Voting Technology Workshop: Workshop
on Trustworthy Elections, USENIX Association Berkeley, CA,

USA, 2011.
[17] N. Narodytska and T. Walsh. The computational impact of par-

tial votes on strategic voting. In Proceedings of the European
Conference on Artificial Intelligence (ECAI), pages 657–662,
2014.

[18] Parliament of Australia. The disputed 2013 WA Senate elec-
tion. www.aph.gov.au/About Parliament/Parliamentary Dep-
artments/Parliamentary Library/FlagPost/2013/November/The
disputed 2013 WA Senate election, 2013. Accessed: April
2016.

[19] R. Richie. Instant Runoff Voting: What Mexico (and Others)
Could Learn. Election Law Journal, 3:501–512, 2004.

[20] J. Rothe and L. Schend. Challenges to complexity shields that
are supposed to protect elections against manipulation and con-
trol: a survey. Annals of Mathematics and Artificial Intelli-
gence, 68(1-3):161–193, 2013. ISSN 1012-2443.

[21] A. Sarwate, S. Checkoway, and H. Shacham. Risk-limiting au-
dits and the margin of victory in nonplurality elections. Statis-
tics, Politics, and Policy, 4(1):29–64, January 2013.

[22] L. Xia. Computing the margin of victory for various voting
rules. In Proceedings of the ACM Conference on Electronic
Commerce (EC), pages 982–999, 2012.

M. Blom et al. / Efficient Computation of Exact IRV Margins488

