
Repetitive Branch-and-Bound Using Constraint
Programming for Constrained Minimum

Sum-of-Squares Clustering

Tias Guns1 and Thi-Bich-Hanh Dao2 and Christel Vrain2 and Khanh-Chuong Duong2

Abstract. Minimum sum-of-squares clustering (MSSC) is a widely
studied task and numerous approximate as well as a number of exact
algorithms have been developed for it. Recently the interest of inte-
grating prior knowledge in data mining has been shown, and much
attention has gone into incorporating user constraints into clustering
algorithms in a generic way.

Exact methods for MSSC using integer linear programming or
constraint programming have been shown to be able to incorporate a
wide range of constraints. However, a better performing method for
unconstrained exact clustering is the Repetitive Branch-and-Bound
Algorithm (RBBA) algorithm. In this paper we show that both ap-
proaches can be combined. The key idea is to replace the internal
branch-and-bound of RBBA by a constraint programming solver,
and use it to compute tight lower and upper bounds. To achieve this,
we integrate the computed bounds into the solver using a novel con-
straint. Our method combines the best of both worlds, and is generic
as well as performing better than other exact constrained meth-
ods. Furthermore, we show that our method can be used for multi-
objective MSSC clustering, including constrained multi-objective
clustering.

1 INTRODUCTION

Cluster analysis or clustering is an important task in data mining,
which has various applications in different domains such as biology,
chemistry, medicine or business. Given a set of objects, cluster analy-
sis aims at partitioning the objects into homogeneous subsets, called
clusters. The homogeneity is usually formulated by an optimization
criterion. One of the most used criterion is minimizing the Within-
Cluster Sum of Squares (WCSS), which is defined by the sum of
the squared Euclidean distances from each object to the centroid of
the cluster to which it belongs. In order to make the clustering task
more accurately fit the problem at hand, prior user knowledge has
been integrated into the clustering process by means of user-defined
constraints.

Minimum sum-of-squares clustering (MSSC) has been proven to
be NP-Hard [1] and has been studied in numerous works. The well-
known k-means algorithm as well as other dedicated heuristic algo-
rithms find a local optimal for this criteria [21]. They have been also
extended to integrate different user constraints but they can fail to

1 KU Leuven, Department of Computer Science, Celestijnenlaan 200A, Leu-
ven, Belgium, email: tias.guns@cs.kuleuven.be

2 Univ. Orléans, INSA Centre Val de Loire, LIFO EA 4022, F-
45067, Orléans, France, email: thi-bich-hanh.dao@univ-orleans.fr, khanh-
chuong.duong@univ-orleans.fr, christel.vrain@univ-orleans.fr

find a solution that satisfies all the constraints even when such a so-
lution exists. On the other hand, general and declarative frameworks
using generic optimization tools offer the flexibility of handling a
wide variety of user constraints, and finding an exact solution of the
problem whenever one exists. As a consequence, this precludes the
use of these approaches on large datasets, but finding an exact so-
lution may be of high importance on small but valuable datasets.
Different frameworks have been proposed, based either on Integer
Linear Programming with column generation [4] or on Constraint
Programming [9].

On the other hand, Brusco [6] proposed a simple yet effective
method for unconstrained MSSC: the Repetitive Branch-and-Bound
Algorithm (RBBA). It computes increasingly tight bounds on the
MSSC score by repetitively searching for the optimal solution, start-
ing from a small subset of points up to the full set of all points. In this
work we show how the idea of clustering with RBBA can be com-
bined with the ideas of clustering with constraint programming [9].

Our contributions are as follows:

• We extend RBBA using Constraint Programming (CP) to support
user-defined constraints. The key idea is to use CP in each branch-
and-bound step and we show that this eases the modeling of a
range of user constraints;

• The use of CP enables the computation of (constrained) lower
bounds and upper bounds for the non-linear MSSC, and we de-
velop a novel CP constraint that incorporates these bounds;

• We show that the resulting method is generic yet better performing
than other exact constrained clustering methods.

• We experimentally illustrate the interest of our framework by its
use in a multi-objective constrained clustering setting that min-
imizes WCSS and maximizes the split between clusters. To the
best of our knowledge, this framework is the first one to support
this bi-criterion clustering and different kinds of user-constraints.

Outline. Section 2 gives the preliminaries and Section 3 reviews re-
lated work. Section 4 presents RBBA and the extension we propose
to integrate user constraints. Section 5 presents a framework using
CP to achieve the extension of RBBA. Section 6 is devoted to the
experiments and comparisons of our method with other existing ap-
proaches. Section 7 discusses perspectives and concludes.

2 PRELIMINARIES

Let us consider a dataset of N objects O in an Euclidean space. Let
d be the Euclidean distance (d(o, o′) = ||o − o′||). Minimum Sum-
of-Squares Clustering (MSSC) aims at finding a partition Δ of the

ECAI 2016
G.A. Kaminka et al. (Eds.)

© 2016 The Authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/978-1-61499-672-9-462

462

objects into K clusters C1, ..., CK such that: (1) ∀k ∈ {1, . . . ,K},
Ck �= ∅, (2)

⋃
k
Ck = O, (3) ∀k �= k′, Ck ∩ Ck′ = ∅ and (4) the

Within-Cluster Sum of Squares (WCSS) is minimized. The WCSS
criterion is defined by:

WCSS(Δ) =
∑

k∈{1,...,K}

∑
o∈Ck

d(o,mk)
2 (1)

where for each k ∈ [1,K], mk is the centroid (mean) of the cluster
Ck. Equivalently [14, 16]:

WCSS(Δ) =
∑

k∈{1,...,K}

1

2|Ck|
∑

o,o′∈Ck

d(o, o′)2 (2)

There exists other optimization criteria, such as min-
imizing the Within-Cluster Sum of Dissimilarities cri-
terion (WCSD =

∑
k∈{1,...,K}

∑
o,o′∈Ck

d(o, o′)),
minimizing the maximal diameter D of the clusters
(maxDiam = maxk∈{1,...,K} maxo,o′∈Ck

d(o, o′)) or max-
imizing the minimal split S between clusters (minSplit =
mink,k′∈{1,...,K},k �=k′ mino∈Ck,o

′∈Ck′ d(o, o
′)).

In applications, the user can have prior knowledge or requirements
on the objects. For instance, the labels of a subset of objects can be
known or an upper bound on the number of objects in each cluster can
be required. Prior knowledge is integrated into the clustering process
by user-defined constraints that have to be satisfied. User constraints
can be instance-level, specifying requirements on pairs of objects, or
cluster-level, giving requirements on the clusters. Instance-level con-
straints, introduced first in [25], are used most often. They are either
must-link (ML) or cannot-link (CL) constraints on pairs of objects,
which states that the objects must be or cannot be in the same clus-
ter. Different kinds of cluster-level constraints also exist, the most
popular ones being:

• A diameter constraint sets an upper bound γ on the cluster diame-
ter: ∀k ∈ {1, . . . ,K}, ∀o, o′ ∈ Ck, d(o, o′) ≤ γ. This constraint
can be expressed by cannot-link constraints: each pair of objects
o, o′ having d(o, o′) > γ must be in different clusters.

• A split constraint sets a lower bound δ on the separation be-
tween clusters: ∀k �= k′ ∈ {1, . . . ,K}, ∀o ∈ Ck, ∀o′ ∈ Ck′ ,
d(o, o′) ≥ δ. This constraint can be expressed by must-link con-
straints: each pair of objects o, o′ having d(o, o′) < δ must be in
the same cluster.

• A density constraint requires that each object has in its neighbor-
hood of radius ε at least m objects belonging to the same cluster
as itself: ∀k ∈ {1, . . . ,K}, ∀o ∈ Ck, ∃o1, .., om ∈ Ck \ {o},
d(o, oi) ≤ ε, or at least m% objects: ∀k ∈ {1, . . . ,K}, ∀o ∈ Ck,
|{oi∈Ck|d(o,oi)≤ε}|
|{oi∈O|d(o,oi)≤ε}| ≥ m

100
.

• A minimal (maximal) capacity constraint requires each cluster to
have at least (at most, resp.) a given α (β, resp.) number of objects:
∀k ∈ {1, . . . ,K}, |Ck| ≥ α (or |Ck| ≤ β, resp.).

Constraint Programming (CP) is a constraint-based satisfaction
and optimization framework. A constraint optimisation problem is
expressed as a quadruple (V,D,C, f) where V is a set of variables
and each variable v ∈ V must take a value from its domain D(v).
The set C is a set of constraints over (a subset of) the variables V .
The function f is an objective function defined over V and a solution
that maximizes/minimizes f is an optimal solution.

Typical constraint solvers use depth-first branch-and-bound
search. Each node in the search tree represents a partial solution
consisting of a domain D′ where ∀v ∈ V : D′(v) ⊆ D(v). In

each node of the search tree, the constraint solver tries to propagate
each constraint. Propagation is achieved when a constraint reduces
the domains of its variables by removing those values that violate
the constraint. For example, a constraint X > 2 can remove from
D(X) = {1, 2, 3, 4, 5} the values 1 and 2. Constraint solvers contain
many different constraints, from logical to arithmetic and domain-
specific constraints, such as for scheduling, each with its own prop-
agation algorithm. If a propagator detects that the current partial so-
lution cannot be extended to a full solution, namely when the do-
main of a variable becomes empty, the search backtracks. A solution
is reached when the domain of each variable is reduced to a single
value: ∀v ∈ V : |D(v)| = 1 and none of the constraints is violated.
When a solution is reached, a new bound on the objective function
is added stating that the next solution must score better than the cur-
rently best solution. Due to this branch-and-bound search, constraint
solvers are exact: the search stops when it has proven that no better
solution exists.

3 RELATED WORK

Constrained Minimum Sum-of-Squares Clustering has been stud-
ied in both heuristic and exact approaches. Among the heuristic ap-
proaches, even in the case without user constraints, the k-means al-
gorithm as well as numerous other heuristic algorithms find a lo-
cal optimal [21]. Considering must-link and cannot-link constraints,
the k-means algorithm has been extended to COP-kmeans [26] or
LCVQE [20]. However, when the number of constraints increases,
such algorithms either fail to find a solution satisfying all the con-
straints even if one exists, or they find solutions that do not satisfy all
the constraints.

Exact approaches for MSSC without user constraints use branch-
and-bound search [18, 5, 6], dynamic programming [17, 23], Integer
Linear Programming (ILP) and column generation [13, 3], a cutting
plane algorithm [29] or a branch-and-cut semi-definite programming
[2]. There exists few exact methods for MSSC that can handle user
constraints [4, 9]. They are based on a generic optimization tool, so
that different kinds of user constraints can be expressed. Extending
[3], a framework based on ILP and column generation has been pro-
posed in [4]. Using Constraint Programming (CP), a generic frame-
work has been developed in [9], with a global constraint to compute
and prune the search space for the WCSS criterion of MSSC.

Constrained clustering settings using an objective function differ-
ent from WCSS have also been developed. A framework using ILP
is proposed in [19]; it requires a set of clusters to be given in advance
and considers different criteria to choose the best clustering from
candidate clusters. A SAT based framework has been developed for
constrained clustering for the diameter and the split criteria [11]. A
well-performing CP based framework is developed in [7, 8] that in-
cludes diameter, split and sum of squared distances criteria, as well
as user constraints.

Our work extends the Repetitive Branch-and-Bound Algorithm
(RBBA) [6]. This algorithm finds a global optimal for MSSC with-
out user constraints. We show that the methodology can be combined
with a CP framework to obtain an efficient method that can easily in-
corporate user constraints.

4 EXTENDING RBBA TO
USER-CONSTRAINTS

We first explain the bound used in RBBA and the standard RBBA
algorithm. We then show the validity of the bounds under user con-

T. Guns et al. / Repetitive Branch-and-Bound Using Constraint Programming for Constrained Minimum Sum-of-Squares Clustering 463

straints and how to extend the algorithm to support constraints in a
generic way.

Let O be a set of N points. Let Δ be a partition of O into at most
K clusters. For any subset S ofO, let ΔS denote the projection of Δ
onto the objects in S and WCSS(ΔS) the WCSS value of ΔS . Let
WCSS∗(S) = minΔ(WCSS(ΔS)). Let us note that in ΔS some
clusters of Δ may become empty.

4.1 Lower Bound Inequalities Without
User-Constraints

The bounds used in RBBA rely on the following result [18]. Let S
be a subset of O, and let S1 and S2 be such that S = S1 ∪ S2 and
S1 ∩ S2 = ∅ (non-overlapping). We have:

WCSS(ΔS) ≥WCSS(ΔS1) +WCSS(ΔS2) (3)

Since WCSS∗(S2) = minΔ(WCSS(ΔS2)), so WCSS∗(S2)
is the smallest WCSS value for all partitions of S2 into at most K
clusters. Hence we have:

WCSS(ΔS2) ≥WCSS∗(S2) (4)

and hence [6]:

WCSS(ΔS) ≥WCSS(ΔS1) +WCSS∗(S2) (5)

Eq. (5) can be used during the search for an optimal partition of S
as follows. Let us suppose that we have previously built a partition
of S, thus giving an upper bound for WCSS∗(S), that we have cur-
rently built a partial solution ΔS1 and that we know an optimal so-
lution of WCSS∗(S2). If WCSS(ΔS1)+WCSS∗(S2) is greater
than the actual upper bound, then the partial solution ΔS1 can never
lead to a better solution than the current upper bound.

4.2 Repetitive Branch-and-Bound Algorithm

The Repetitive Branch-and-Bound Algorithm (RBBA) [6] is pre-
sented in Algorithm 1.

Algorithm 1: RBBA input: objects O, number clusters K

1 OrderPoints(O)
2 OK ← {oN−K+1, . . . , oN}
3 Δ∗

K ← Init(OK)
4 Wn ← 0, ∀n ∈ {1, . . . ,K}
5 for n = K + 1 to N do

6 On ← On−1 ∪ {oN−n+1}
7 Δn ← Greedy Extension(On,Δ

∗
n−1)

8 Un ←WCSS(Δn)
9 Δ∗

n ← BaB Search(On, Un,W)
10 Wn ←WCSS(Δ∗

n)

Points in O are first ordered following an heuristic by
OrderPoints(O). Different heuristics can be used for ordering points,
they will be presented in Subsection 4.5. We assume that according
to the ordering, points are named by their index i ∈ [1, N]. On is
composed of the last n points according to this order.

In this algorithm, Δn indicates any partition ofOn into at most K
clusters and Δ∗

n denotes the optimal partition of On into at most K
clusters. This algorithm starts with the set OK of the last K points
and Init(OK) creates Δ∗

K by putting each point alone in a cluster.

The optimal value WCSS(Δ∗
n) is stored in Wn for each n, and the

first K values W1, . . . ,WK are 0 (each point in its own cluster).
The algorithm next iterates by adding to the setOn one point each

time, from the point N−K down to the first point;On represents this
set of last n points oN−n+1, . . . , oN ; Greedy Extension(On,Δ

∗
n−1)

greedily finds a partition Δn for On, by adding the new point to the
previous best partition Δ∗

n−1 so that the value WCSS is minimally
increased. The value WCSS(Δn) constitutes an upper bound Un

for WCSS(Δ∗
n). BaB Search(On, Un,W) is a branch-and-bound

algorithm which searches for a global optimal partition Δ∗
n on the

set of points On, using Un as an upper bound and exploiting Eq. (5)
with the Wi values (i < n) as lower bounds. Let om = oN−n+1

be the new point added at this step. The branch-and-bound search
considers the points in On in the order om, om+1, . . . , oN and tries
to assign them to clusters.

Let us consider an arbitrary step when a point number p (m ≤ p <
N) is assigned to a cluster. Let S1 be the set of points {om, ..., op}
and S2 be {op+1, ..., oN}. All the points in S1 have already been
assigned and hence WCSS(ΔS1) is known. All the points in S2

are currently unassigned, however, WCSS∗(S2) has been computed
in a previous step of RBBA and stored in W|S2|; Un is the current
upper bound. Eq. (5) is used and if WCSS(ΔS1)+WCSS∗(S2) ≥
Un, we cannot extend ΔS1 to a solution having WCSS better than
Un. Therefore BaB Search will not continue to extend ΔS1 and the
branch is pruned. When p = N , the partition Δ is complete and Un

is set to WCSS(Δ). When the entire search space is explored, the
last complete partition found is the optimal solution.

This algorithm takes advantage of the optimal solutions previously
computed to provide lower bounds in the branch-and-bound search.
Also important are the upper bounds found by the greedy extension,
they are often tight (meaning that the greedy extension is the optimal
partitioning). Because of these tight bounds, even though the algo-
rithm runs the branch-and-bound search N times, it is nevertheless
one of the best exact algorithms for minimum sum-of-squares clus-
tering. A similar search method was proposed for valued (soft) CSPs
with an additive objective function, called Russian Doll Search [24].

4.3 Lower Bound Inequalities With
User-Constraints

We now study the conditions under which Eq. (5) is still valid
in the presence of a set of user constraints C on O. Given a set
of points S ⊆ O and a set of constraints C on S, S(S,C) de-
notes the set of all partitions ΔS of S satisfying C. We denote by
WCSS∗(S, C) the optimal WCSS of S ⊆ O under constraint set
C, that is, WCSS∗(S, C) = min({WCSS(ΔS)|ΔS ∈ S(S, C)}).
We denote by WCSS(ΔS , C) the WCSS value of a partition ΔS

under the condition that it satisfies the constraint set C.
One can see from this that Eq. (4) still holds when considering a

set of constraints C: WCSS(ΔS , C) ≥WCSS∗(S, C). Indeed, any
ΔS ∈ S(S, C) will have a score equal or worse than the optimal one
satisfying C.

The main question is then under what conditions Eq. (3), and
hence (5), holds in the presence of constraints. Eq. (3) is always
true, but the difficulty is that when considering a projection ΔSi of
ΔS with Si ⊂ S, some constraints may become ill-defined or even
be violated for ΔSi , even if they are satisfied by ΔS . For instance,
let us consider 5 points {a, b, c, d, e}, two cannot-link constraints
CL(a, b) and CL(b, c) and a minimal size constraint specifying that
each class must have at least 2 points. Let ΔS = {{a, c}, {b, d, e}},
S1 = {a, b} and S2 = {c, d, e}. Then ΔS1 = {{a}, {b}} and

T. Guns et al. / Repetitive Branch-and-Bound Using Constraint Programming for Constrained Minimum Sum-of-Squares Clustering464

ΔS2 = {{c}, {d, e}}. The constraint CL(a, b) is satisfied on S1

whereas CL(b, c) is undefined on both S1 and on S2. Moreover the
minimal size constraint is satisfied on ΔS but it is no longer satisfied
on S1, nor on S2. The question is hence, given a set of constraints C
on S which ΔS satisfies, what set of constraints CSi can be put on
S1 and S2 such that Eq. (5) is still valid?

In general, given a set of C of constraints put on objects of S, we
can restrict the set CSi with Si ⊆ S to those constraints for which all
objects in the constraint are in the set Si. For example, one can add
to Si all instance-level constraints whose two objects are both in Si.
In the previous example, CL(a, b) can be considered on S1 whereas
CL(b, c) cannot. If a partition ΔS satisfies a set of constraints C,
then its projection onto Si (ΔSi) will satisfy the subset of constraints
CSi . Therefore

WCSS(Δ, C) ≥WCSS(ΔS1 , CS1) +WCSS∗(S2, CS2) (6)

Many cluster-level constraints involve all variables and hence
with this approach cannot be considered until the very end. How-
ever, for two constraint sets C1 and C2 such that C1 ⊆ C2,
then S(S,C2) ⊆ S(S,C1) and therefore WCSS∗(S,C1) ≤
WCSS∗(S,C2). Hence, including more constraints can lead to
tighter lower bounds.

In order to incorporate some cluster-level constraints, we distin-
guish those that are anti-monotonic from those that are not. A con-
straint c is said to be anti-monotonic if when satisfied by a partition
ΔS , it is satisfied by all the projections ΔSi , with Si ⊆ S. In other
words, let vc be the function that tests whether c is satisfied on a parti-
tion. Then an anti-monotonic constraint satisfies the following prop-
erty: if Δ is a partition on S and Si ⊆ S then vc(ΔSi) ≥ vc(Δ).
As an example, a maximal size constraint is anti-monotonic whereas
a minimal size constraint is not.

Let Ca be the anti-monotonic constraints in C. Then, since ΔS2

satisfies the constraints on CS2 and the anti-monotonic constraints of
C, and similarly for S1, we have:

WCSS(Δ, C) ≥WCSS(ΔS1) +WCSS(ΔS2) (7)

≥WCSS(ΔS1 , CS1 ∪ Ca) +WCSS∗(S2, CS2 ∪ Ca) (8)

A constraint solver can additionally reason over partial solutions,
namely over the domain of a set of variables. A constraint solver is
guaranteed not to reject a partial solution that can be extended to a
full solution, while it can reject partial solutions that provably can not
satisfy a constraint (such as an anti-monotonic constraint and more).
This will ease searching for a partial solution ΔS1 in branch-and-
bound search, without needing to identify CS1 ∪ Ca each time S1

changes.

4.4 RBBA with User Constraints

Let C be the set of all constraints on O. We assume that the set C is
satisfiable on O, ie. there exists a partition Δ of O that satisfies C.
The extension of RBBA to incorporate user constraints is presented
in Algorithm 2.

After ordering points, Algorithm 2 constructs an initial partition
ΔK of at most K clusters taking constraints CK = COk into account.
It does so by putting each point that can be in its own cluster in a
separate cluster (if there is a must-link, the two points must be put in
the same cluster). Among all such partitions, the one with smallest
WCSS(ΔK) is chosen. Since C is satisfiable on O, the partition
Δ∗

K must exist.

At each step n, for the set On of the last n points, Algorithm 2
searches in the solution space S(On, Cn). There are different options
for the constraint set Cn. As discussed in the previous section, Cn
can be COn or COn ∪ Ca. We note that the more constraints that
are considered at one step, the tighter the lower bound for the next
step would be. At the last step, when ON = O, the full set of user
constraints C, anti-monotonic or not, will be considered.

Feasible Extension tries to extend the best partition of the pre-
vious step Δ∗

n−1 to a partition Δn of On that satisfies Cn. If
such an extension Δn exists, then WCSS(Δn) is an upper bound
for WCSS(Δ∗

n). Otherwise, the upper bound is set to ∞. Con-
strained BaB(On, Cn, Un,W) performs a branch-and-bound search
to find an optimal partition among all the partitions that satisfy the
set of constraints Cn. It uses Un as the initial upper bound and W for
the lower bounds, in the same way as BAB Search in Algorithm 1.

Algorithm 2: Extended RBBA
input: objects O, number clusters K, constraint set C

1 OrderPoints(O)
2 OK ← {oN−K+1, . . . , oN}
3 Δ∗

K ← Init(OK , CK)
4 WK ←WCSS(Δ∗

K)
5 for n = K + 1 to N do

6 On ← On−1 ∪ {oN−n+1}
7 Δn ← Feasible Extension(On, Cn,Δ∗

n−1)
8 if Δn exists then

9 Un ←WCSS(Δn)

10 else

11 Un ←∞
12 Δ∗

n ← Constrained BaB(On, Cn, Un,W)
13 Wn ←WCSS(Δ∗

n)

4.5 Ordering of Points

Algorithms 1 and 2 start by ordering points and they do branch-and-
bound for an increasing set of points following this order. Different
orders can be used. In RBBA [6], the nearest-neighbor separation
heuristic is used: at each step of the ordering, the two points that
have the smallest distance among all pairs of points are withdrawn
from the set of points and are placed at opposite ends in the ordering.
This heuristic is aimed at putting easy-to-cluster points near the end
of the RBBA process, to avoid introducing disruptive points near the
end of the process and hence having to do much search there.

The ordering that we will use is based on the furthest-point-first
(FPF) algorithm [15]. This algorithm starts by choosing the furthest
point from all points and stores it as the first point in the ordering.
It then assigns this point as the head of all other points. At each
iteration, the point i that is the furthest to its head is marked as the
next point in the order, and all the unmarked points that are closer to
i than to their head change their head to i. This ordering tends to put
points that are far from each other early in the ordering, also aiming
to consider disruptive points earlier in the process.

5 A FRAMEWORK USING CONSTRAINT
PROGRAMMING

We present a framework to achieve Algorithm 2. In this framework,
CP is used both to do complete branch-and-bound search for each

T. Guns et al. / Repetitive Branch-and-Bound Using Constraint Programming for Constrained Minimum Sum-of-Squares Clustering 465

clustering step (Constrained Bab) and to construct a feasible cluster-
ing if one exists (Feasible Extension). We also present improvements
for enhancing the computation of lower and upper bounds.

5.1 A Basic CP Model for Constrained BaB

Constrained BaB(On, Cn, Un,W) in Algorithm 2 aims at finding a
clustering Δ∗

n on On that satisfies Cn and that minimizes the sum-
of-squares WCSS.

The CP model for this task is inspired by the model for constrained
clustering in [8], the main difference being the objective. In order to
define the assignment of points to clusters, integer value variables
G1, . . . , Gn with Dom(Gi) = {1, ..,K} are introduced. Gi = k
means that point i is assigned to the cluster number k. This formu-
lation ensures that a point can never belong to two clusters. A com-
plete assignment of the variables Gi therefore defines a partitioning.
However, different assignment can represent the same partitioning
but with a permutation on the cluster indices used. In order to break
this kind of symmetry and to enforce that each partition corresponds
to one complete assignment, the CP constraint precede(G, [1, ...,K])
is used [8]. This constraint enforces that point number 1 is in clus-
ter number 1, and point number i can only have cluster number k
if there is a point j < i with the same cluster number, or if k − 1
is the highest used cluster number so far. For the objective, we in-
troduce a floating point variable V to represent the sum-of-squares
of the clustering defined by the variables G. The domain of V is
initially [0, Un). The bounds of V are updated by a novel global con-
straint V = sumSquares(G, d,W), where d is the (precomputed)
distance between each pair of points, and W contains the previous
WCSS* values (as per Algorithm 2).

Additional constraints can be expressed over the G variables, in-
cluding the user constraints defined in Section 2. Instance-level con-
straints are expressed by Gi = Gj for a must-link constraint and
Gi �= Gj for a cannot-link constraint on i, j. A maximal cluster
size constraint, following its formal definition, is expressed by K CP
cardinality constraints: #{i ∈ [1, N] | Gi = k} ≤ β for each
k ∈ [1,K]. Each of these constraints enforces that the number of
variables Gi that are assigned to k must not exceed β. Other con-
straints can be modelled following their formal definition as well,
see [8] for more examples.

According to the principle of RBBA, the variable order used dur-
ing search instantiates (branches over) the variables G1, . . . , Gn in
increasing order of their index.

5.2 A Novel Sum-of-Squares Constraint

The filtering algorithm for constraint V = sumSquares(G, d,W)
is detailed in Algorithm 3. Because of the variable order, at any time
the propagator is called, there is an index p (1 ≤ p < n) such that
G1, .., Gp are instantiated and Gp+1, ..., Gn are not.

Algorithm 3 enforces bound consistency for V by first computing
a lower bound for V . The values sum[k] and size[k] represent re-
spectively the sum of squared distances between any two points in
the cluster k and the number of points in that cluster. The value V1

represents the sum of squares of the partial clustering formed by the
first p assigned points, using Equation (2). Since Wn−p represents
the minimal WCSS value for the last n − p points (the unassigned
points Gp+1, ..., Gn), according to Equation (6) and (8), V1+Wn−p

is a lower bound for V (line 15). Since V.lb ≤ V < V.ub, a fail-
ure will occur if V1 +Wn−p ≥ V.ub (line 12) leading the search to
backtrack. Otherwise the lower bound V.lb is revised.

Algorithm 3 exploits also W to do a look ahead to filter the do-
main of Gp+1. Each value s[k] represents the contribution of point
p+ 1 in case it is assigned to cluster k. For each k ∈ Dom(Gp+1),
that is, all clusters k not forbidden for this point because of another
constraint, if point p + 1 is assigned to the cluster k, V ′

1 is the re-
vised value of V1. So V ′

1 represents the sum of squares of the partial
clustering formed by the first p+1 points. Since Wn−p−1 represents
the minimal WCSS value for the last n− p− 1 points, according to
Equation (6), if V ′

1 + Wn−p−1 ≥ V.ub then a failure would occur.
This means point p+ 1 cannot be assigned to cluster k. The value k
is then removed from Dom(Gp+1).

Algorithm 3: Filtering of: “V = sumSquares(G, d,W)”
input: V,G, d,W with G1, ..., Gp assigned, Gp+1 unassigned
// computation of lower bound for V

1 for k = 1 to K do

2 sum[k]← 0; size[k]← 0; s[k]← 0

3 for i = 1 to p do

4 k ← Gi.val()
5 size[k]← size[k] + 1
6 for j = i+ 1 to p do

7 if Gj .val() == k then

8 sum[k]← sum[k] + d(i, j)2

9 V1 ← 0
10 for k = 1 to K do

11 V1 ← V1 + sum[k]/size[k]

12 if V1 +Wn−p ≥ V.ub then

13 return Failure

14 else

15 V.lb← max(V.lb, V1 +Wn−p)

// look ahead to filter Dom(Gp+1)
16 for i = 1 to p do

17 s[Gi.val()]← s[Gi.val()] + d(i, p+ 1)2

18 foreach k in Dom(Gp+1) do

19 V ′
1 ← V1−sum[k]/size[k]+(sum[k]+s[k])/(size[k]+1)

20 if V ′
1 +Wn−p−1 ≥ V.ub then

21 remove k from Dom(Gp+1)

The complexity of this algorithm is O(p2), due to the computa-
tion of sum and size. It can be reduced to O(p) when the arrays
sum and size are stored and computed incrementally over different
propagation runs.

5.3 Other Improvements

5.3.1 Must-link Constraints

Must-link constraints agglomerate related points to the same cluster.
Therefore to make better use of this kind of constraint, first of all the
transitive closure of all the must-link constraints is computed. This
defines a set of super-points or ML-blocks [10]. Instead of cluster-
ing the set of initial points, we search for a clustering on the set of
ML-blocks. Given a set of N initial points, assume that there are M
ML-blocks to be considered (M ≤ N). The distance between two
ML-blocks bi, bj is defined as d(bi, bj) =

√∑
o∈bi,o′∈bj

d(o, o′)2.

Each block bi has also its weight w(i) =
∑

o,o′∈bi
d(o, o′)2/2 and

T. Guns et al. / Repetitive Branch-and-Bound Using Constraint Programming for Constrained Minimum Sum-of-Squares Clustering466

its size s(i) which is the number of initial points in it. A block bi
that contains only one point has w(i) = 0 and s(i) = 1. Instance-
level constraints that remain to be satisfied are only cannot-link con-
straints. A cannot-link constraint is defined on two blocks bi, bj if
there exists a cannot-link constraint on two points o, o′ such that
o ∈ bi and o′ ∈ bj .

Using blocks means that in the model of Subsection 5.1, each vari-
able Gi corresponds to a block bi. All user constraints can be rede-
fined on blocks. For instance, a minimal cardinality constraint states
that each cluster should have at least α initial points. To express this
constraint, we define an array T , where each variable Gi is repeated
s(i) times. The size of T is therefore N and the minimal cardinality
constraint has to be expressed by |{j ∈ {1, . . . , N} | Tj = k}| ≥ α
for k ∈ [1,K]. Algorithm 3 can also be adapted to take into account
size and weight of blocks.

5.3.2 Finding a Feasible Extension

Without user constraints, Greedy Extension(On,Δ
∗
n−1) is found by

adding the new point to the previous best clustering Δ∗
n−1. This typ-

ically yields a good upper bound, often even being the optimal value.
For Feasible Extension(On, Cn,Δ∗

n−1) in Algorithm 2, one has to
additionally take the user constraints into account, since the cluster-
ing Δn must satisfy all Cn constraints.

We aim at finding a good feasible clustering that satisfies all the
user constraints quickly. To achieve this, the same model as described
in Subsection 5.1 is used with one restriction, namely that the last
n − 1 variables G2, . . . , Gn are assigned to the value they had in
clustering Δ∗

n−1; this mimics a greedy strategy as only one variable
can be decided, corresponding to adding the point to an existing clus-
ter. If no such extension of the clustering exists, the clustering Δn is
undefined and its WCSS value is∞.

5.3.3 Local vs. Full Constraint Sets

Let C be the set of all user constraints on the whole set of points
{o1, . . . , oN}. There may be instance-level constraints (must-link or
cannot-link constraints) or cluster-level constraints (cardinality, den-
sity constraints etc.). At each step n, Constrained BaB finds a clus-
tering that minimizes the WCSS value and that satisfies the set of
constraints Cn. We propose two different ways to define the set Cn in
the constraint solver, following the discussion in Section 4.3.

Local model Let On be the set of points to cluster at step n. The
simplest way is to define Cn by COn , the set of user constraints on a
(sub)set of the elements of On. One can see that for n = N , ON =
O and hence we will consider the set CO = C of all constraints.

Full model To obtain tighter bounds, we can take anti-monotonic
constraints into account too. However, we can also use CP capabili-
ties to reason over partial solutions, to let it consider all constraints
at every step. In this case, at each iteration n ≤ N , Constrained BaB
operates on the full set of N variables and all the user constraints in C
are considered in the model. However, since we are interested in find-
ing a best clustering on the last n points of G only, the constraint sum-
Squares is defined only on the last n variables GN−n+1, . . . , GN .
The branching is also on these n variables only.

The interest of such a full model is that it can allow to prune ear-
lier cases that cannot be extended to a full solution. Let us take an
example with 3 points a, b, c (N = 3), K = 2 and two cannot-
link constraints CL(a, b) and CL(a, c). In step n = 2, the two last

points are considered, O2 = {b, c}. The local model that is defined
on Gb, Gc has no constraint (C2 = ∅) and will return a clustering
Δ2 where each point is in one cluster. The clustering Δ2 cannot be
used anymore at the next step, where the constraints cannot-link are
taken into account. Meanwhile, the full model at each step has the 3
variables Ga, Gb, Gc and two constraints Ga �= Gb and Ga �= Gc.
At step n = 2, even though only two variables Gb, Gc are instanti-
ated, the existence of Ga in the model prevents b and c to be in two
different clusters, since otherwise Dom(Ga) = ∅. The full model
can therefore yield better, higher but more realistic, lower bounds for
the WCSS attainable in later iterations.

6 EXPERIMENTS

We compare CPRBBA to other state-of-the-art exact clustering ap-
proaches: original RBBA3 [6], CPClustering 2.14 [9] using CP with
one phase branch-and-bound search and CCCG-0.5.15 [4] using Inte-
ger Linear Programming and column generation. Both unconstrained
and constrained settings are considered. We also show the interest
of our generic approach by its use in a multi-objective constrained
clustering setting, which minimizes the WCSS and maximizes the
separation between clusters.

CPRBBA is developed using the Gecode6 framework, version
4.3.3. Due to the computational demand of exact clustering we use
small but classic datasets from the UCI repository7 with the true
number of class labels, except for the Hatco dataset [6] which has
an unknown number of classes, see Table 1. All experiments are
performed on Intel Xeon E3-1225 CPUs running Ubuntu 14.04; a
time limit of 30 minutes is used and a memory limit of 4 giga-
bytes (which is never reached). Codes and examples are available
on http://www.cp4clustering.com.

6.1 Unconstrained Clustering

As noted before, the performance of (CP)RBBA can change depend-
ing on the ordering of the variables used. We compare in Table 1
CPRBBA (local model) with 4 different orderings: order in which
the points are read from the input file (input), average of 5 random
orderings (random), nearest-neighbor separation as used in RBBA
(NNS), and the furthest-point first ordering (FPF). We see that the
best ordering can differ from dataset to dataset. In the following, we
use the FPF strategy as it has the smallest average runtime.

We now compare CPRBBA to RBBA [6], to CPClustering using
CP [9] and CCCG using column generation [4]. Other unconstrained
exact methods have no publicly available implementation, but the
respective experiments point to RBBA as being the fastest for small
values of k, as is typical in data mining.

The results are shown in Table 2. We can see that both RBBA and
CPRBBA are better than the recent CPClustering and CCCG meth-
ods in case no constraints are added, and that the difference in run-
time between RBBA and CPRBBA is in accordance to the difference
in ordering used as reported in Table 1.

6.2 Clustering with User-Constraints

We compare CPRBBA with CPClustering and CCCG, supporting
also user constraints.
3 http://www.psiheart.net/QuantPsych/monograph.html
4 http://www.cp4clustering.com/
5 https://dtai.cs.kuleuven.be/CP4IM/cccg/
6 http://www.gecode.org
7 http://archive.ics.uci.edu/ml/

T. Guns et al. / Repetitive Branch-and-Bound Using Constraint Programming for Constrained Minimum Sum-of-Squares Clustering 467

dataset N K input random NNS FPF
ruspini 75 4 0.06 0.00 0.01 0.01
soybean 47 4 773.91 10.01 0.80 1.28
hatco 100 2 0.19 0.02 0.07 0.05
hatco 100 3 4.68 0.69 0.55 0.20

hatco 100 4 980.35 556.33 78.37 7.52

hatco 100 5 1800+ 1800+ 1800+ 1636.41

iris 150 3 1800+ 0.95 2.30 1.33
wine 178 3 1800+ 1800+ 16.37 53.57
seeds 210 3 1800+ 491.03 1353.26 170.67

breast 569 2 1167.62 1800+ 1800+ 1800+
average 1012.7 645.9 505.2 367.1

Table 1. Runtimes in seconds of CPRBBA for different point
orderings.

K CCCG CPClustering RBBA CPRBBA
ruspini 4 1800+ 0.41 0.01 0.01

soybean 4 1800+ 1.21 0.38 1.28
hatco 2 1800+ 1.74 0.03 0.05
hatco 3 1800+ 186.18 0.29 0.20

hatco 4 1800+ 1800+ 53.95 7.52

hatco 5 1800+ 1800+ 1800+ 1636.41

iris 3 1800+ 583.19 1.14 1.33
wine 3 1800+ 1800+ 7.86 53.57
seeds 3 1800+ 1800+ 542.74 170.67

breast 2 1800+ 1800+ 1800+ 1800+

Table 2. Runtimes in seconds of different exact methods

Instance-level constraints We randomly sampled a number of
must-link (ML) and cannot-link (CL) constraints from the true class
labels of the datasets. Two points are randomly taken and depend-
ing on whether they have the same label or not, a ML or a CL con-
straint is created. This is repeated until the required ML/CL number
is reached.
ML constraints only. We observe in Table 3 that CPRBBA outper-
forms the other two exact constrained clustering methods, CCCG
and CPClustering. For must-link constraints, there is no difference
between using -full or -local models because of the use of must-link
blocks. In only one case (a 50-constraint set for the wine dataset),
CPRBBA is not able to find a solution within the timeout.

#c CCCG CPClustering CPRBBA-local CPRBBA-full
iris 10 1800+ (5) 341.59 (0) 0.81 (0) 0.86 (0)
iris 50 1800+ (5) 135.32 (0) 0.23 (0) 0.25 (0)
iris 100 47.20 (0) 1.20 (0) 0.01 (0) 0.01 (0)

iris 150 0.20 (0) 0.07 (0) 0.01 (0) 0.01 (0)

wine 10 1800+ (5) 1800+ (5) 258.54 (0) 259.30 (0)
wine 50 1800+ (5) 1800+ (5) 363.34 (1) 363.62 (1)
wine 100 1800+ (5) 1800+ (5) 1.19 (0) 1.23 (0)
wine 150 10.60 (0) 18.92 (0) 0.13 (0) 0.13 (0)

Table 3. Runtimes averaged over 5 random samples of #c must-link
constraints; between brackets number of runs that timed-out

(counted as 1800 seconds in average).

CL constraints only. The results for cannot-link constraints are shown
in Table 4. Adding CL constraints can make the problem much
harder. Here too CPRBBA outperforms the others, which is in line
with the time difference in the unconstrained case. As more con-
straints are added, an optimal solution can be found in the given time-
out for fewer sampled constraint sets (see number between brackets),
leading to higher average runtimes.

#c CCCG CPClustering CPRBBA-local CPRBBA-full
iris 10 1800+ (5) 727.32 (0) 1.69 (0) 1.79 (0)
iris 50 1800+ (5) 1694.03 (4) 63.94 (0) 64.07 (0)
iris 100 1800+ (5) 497.90 (0) 368.41 (1) 15.40 (0)

iris 150 1800+ (5) 643.72 (1) 721.29 (2) 361.57 (1)

iris 250 1800+ (5) 1094.49 (3) 1080.66 (3) 0.74 (0)

wine 10 1800+ (5) 1800+ (5) 622.89 (1) 625.64 (1)
wine 25 1800+ (5) 1800+ (5) 1310.99 (2) 1326.51 (2)
wine 50 1800+ (5) 1800+ (5) 1697.94 (4) 1706.36 (4)
wine 100 1800+ (5) 1800+ (5) 1800+ (5) 1800+ (5)

Table 4. Runtimes averaged over 5 random samples of #c
cannot-link constraints; between brackets number of runs that

timed-out (counted as 1800 seconds in average).

These results extend to the combination of must-link and cannot-
link constraints (not shown).

Cluster-level constraints Table 5 shows runtimes for different
datasets when adding a minimal or a maximal cluster size constraint.
We can see that CPRBBA can handle such constraints well, and
better than CPClustering. CPRBBA-full considers more constraints
than CPRBBA-local in between iterations, and can hence provide
tighter bounds. However, we observe that for some datasets, obtain-
ing tighter bounds requires more search in one iteration to get them,
thus loosing the benefits of the tighter bounds in subsequent itera-
tions, and thus leading to overhead. For the iris dataset, the effort
of searching for a tighter bound does pay of in the experiments. We
observe similar results for a maximum cluster size constraint.

K min size cpclus. cprbba-local cprbba-full
ruspini 4 17 1.08 0.02 1.17
ruspini 4 18 270.00 9.00 24.06
soybean 4 10 1.28 1.39 1.78
soybean 4 11 1800+ 1563.12 1652.13
iris 3 38 564.86 1.32 1.67
iris 3 42 693.38 9.23 2.45

iris 3 46 933.23 341.23 18.46

iris 3 50 1508.77 1800+ 294.75

K max. size cpclus. cprbba-local cprbba-full
ruspini 4 20 0.54 0.01 0.05
ruspini 4 19 1800+ 602.82 794.83
soybean 4 14 1.28 1.32 1.83
soybean 4 13 17.52 13.19 17.44
iris 3 62 589.92 1.31 1.67
iris 3 58 723.63 3.95 3.04

iris 3 54 973.09 96.78 18.31

iris 3 50 1483.88 1800+ 158.75

Table 5. Runtime in seconds for clustering with minimum (top) and
maximum (bottom) size constraint

6.3 Multi-Objective Constrained Clustering

Constraints offer a way to find solutions that better fit the problem
at hand. Changing the objective function is another way. Curiously,
whereas the aim of clustering is to find homogeneous as well as well-
separated clusters, most measures, including WCSS, express only
homogeneity. One solution is to use multi-objective optimization,
with one measure for homogeneity and one for well-separatedness.
The result is a set of Pareto optimal solutions, where a Pareto opti-
mal solution is one for which it is not possible to improve the value
of one criterion without degrading the value of the other one.

T. Guns et al. / Repetitive Branch-and-Bound Using Constraint Programming for Constrained Minimum Sum-of-Squares Clustering468

We propose an algorithm (Algorithm 4) to compute an exact set of
Pareto solutions for bi-objective WCSS/Split optimization, so as to
obtain both homogeneous and well-separated clusterings. It is based
on the ε-constraint algorithm [22] and is applicable to any complete
method that can optimize WCSS under must-link constraints. In this
algorithm, constrained single objective optimization (WCSS) is iter-
ated, each time with a condition on the best value of the other objec-
tive (minimal split) found so far. This minimal-split constraint can in
turn be translated into must-link constraints.

Algorithm 4: Bi-objective WCSS/Split

1 Pareto sols ← ∅
2 min split ← 0
3 repeat

4 Δ← Minimize WCSS(O, {Split > min split})
5 min split ← Split(Δ)
6 if Δ is not dominated in Pareto sols then

7 Pareto sols ← Pareto sols ∪ {Δ}
8 until no Δ was found;

In [12, 28, 27] the problem of finding the Pareto optimal solutions
for minimizing the maximal diameter of the clusters and maximizing
the minimal split between clusters is addressed, but without user-
constraints. To our best knowledge the only work that handles user-
constraints inside a multi-objective clustering problem is [8]. That
work does not consider the WCSS criterion, and the criteria used
often lead to thousands of equivalent clusterings corresponding to
each Pareto point. Algorithm 4 can be easily modified to incorporate
user-constraints, in case the Minimize WCSS algorithm supports it:
another set of user-constraints can simply be added to the split con-
straint at line 4.

Experiments Table 6 presents runtimes in seconds, number
of Pareto solutions and the maximal number of clusterings Δ′

corresponding to each Pareto solution Δ (i.e. WCSS(Δ′) =
WCSS(Δ) and Split(Δ′) = Split(Δ)). We can see here (last
column) that for each Pareto solution, there is always only one corre-
sponding clustering, which contrasts with the thousands of equivalent
solutions found in [8] for the Diameter/Split measure.

K time (s) #sols #c/s
ruspini 4 0.01 1 1
soybean 4 1.58 4 1
hatco 4 32.52 24 1
hatco 5 1979.38 22 1
iris 3 1.11 10 1
wine 3 100.58 9 1
seeds 3 178.62 17 1

Table 6. Runtime, # Pareto solutions, maximal number of
clusterings for each Pareto solution

Our framework can also be used for bi-objective WCSS/Split un-
der user constraints. To the best of our knowledge, it is the first
method to support this bi-criterion optimization both for instance-
and cluster-level constraints. Table 7 shows the results for differ-
ent use cases on the Iris dataset. For four of these cases, the exact
Pareto fronts are shown in Figure 1 (the two cases for 20 ML/CL
constraints with and without the minimal size constraint have the

same Pareto front). We can see here the interest of being able to han-
dle user-constraints during the optimization process. Indeed, in this
dataset, each ground truth cluster is of size 50, whereas in the un-
constrained use case, the Pareto solutions can give clusterings with
unbalanced clusters. For instance, the last point in the Pareto front
corresponds to a clustering with clusters of size 2, 50 and 98. The
constrained cases have the last Pareto solution with WCSS=86.5396
and Split=0.412311. This solution is common to all the 4 cases, and
the only corresponding clustering has clusters of size 49, 50, 51.

Use case time (s) #sols #c/s
unconstrained 1.11 10 1
20 ML/CL 13.68 7 1
40 ML/CL 9.66 8 1
size minimal 38 1.6 7 1
size minimal 40 1.8 4 1
20 ML/CL, size min 40 13.80 7 1
40 ML/CL, size min 40 9.75 8 1

Table 7. Results on Iris for bi-criterion constrained clustering cases

80 90 100 110 120 130 140

0.2

0.4

0.6

0.8

WCSS

Sp
lit

Unconstrained
20 ML/CL with/without smin 40

Size minimal 40

Figure 1. Pareto fronts for different cases on Iris

7 CONCLUSION

In this paper, we address one of the most popular constrained
clustering task, the constrained minimum sum-of-squares clustering
(MSSC). We extend the Repetitive Branch-and-Bound Algorithm,
one of the best method for MSSC without user constraints, to inte-
grate user constraints. The framework we propose is based on Con-
straint Programming (CP), which is used in each internal branch-
and-bound step, as well as in the computation of upper and lower
bounds. We propose two different CP models in order to have tight
lower bounds and construct a specific propagation mechanism to
make better use of the computed bounds. Experiments on classic
datasets show that our approach, even though being generic, is com-
petitive compared to a dedicated implementation of RBBA in the un-
constrained case. For constrained cases, our approach outperforms
the existing state-of-the-art exact approaches. Furthermore, we show
how its generality allows it to be used in a bi-objective constrained
clustering setting.

To further enhance the efficiency of the framework, one may have
to consider other ordering heuristics, including dynamic ones. More-
over, RBBA has been applied to clustering tasks with other optimiza-
tion criteria such as WCSD, to which our approach can be extended
as well. Our bi-objective approach can also be used with non-exact
constrained clustering methods, though the resulting Pareto front will
be an approximation. Lastly, a mix of Russian Doll Search and our
approach may lead to advances for both valued CSPs and clustering.

T. Guns et al. / Repetitive Branch-and-Bound Using Constraint Programming for Constrained Minimum Sum-of-Squares Clustering 469

REFERENCES

[1] Daniel Aloise, Amit Deshpande, Pierre Hansen, and Preyas Popat, ‘NP-
hardness of Euclidean Sum-of-squares Clustering’, Machine Learning,
75(2), 245–248, (2009).

[2] Daniel Aloise and Pierre Hansen, ‘An branch-and-cut SDP-based algo-
rithm for minimum sum-of-squares clustering’, Pesquisa Operacional,
29(3), 503–516, (2009).

[3] Daniel Aloise, Pierre Hansen, and Leo Liberti, ‘An improved column
generation algorithm for minimum sum-of-squares clustering’, Mathe-
matical Programming, 131(1-2), 195–220, (2012).

[4] Behrouz Babaki, Tias Guns, and Siegfried Nijssen, ‘Constrained clus-
tering using column generation’, in Proceedings of the 11th Interna-
tional Conference on Integration of AI and OR Techniques in Constraint
Programming for Combinatorial Optimization Problems, pp. 438–454,
(2014).

[5] Michael J. Brusco, ‘An enhanced branch-and-bound algorithm for a
partitioning problem’, British Journal of Mathematical and Statistical
Psychology, 56(1), 83–92, (2003).

[6] Michael J. Brusco, ‘A repetitive branch-and-bound procedure for min-
imum within-cluster sums of squares partitioning’, Psychometrika,
71(2), 347–363, (2006).

[7] Thi-Bich-Hanh Dao, Kanh-Chuong Duong, and Christel Vrain, ‘A
Declarative Framework for Constrained Clustering’, in Proceedings of
the European Conference on Machine Learning and Principles and
Practice of Knowledge Discovery in Databases, pp. 419–434, (2013).

[8] Thi-Bich-Hanh Dao, Khanh-Chuong Duong, and Christel Vrain, ‘Con-
strained clustering by constraint programming’, Artificial Intelligence,
DOI: 10.1016/j.artint.2015.05.006, (2015).

[9] Thi-Bich-Hanh Dao, Khanh-Chuong Duong, and Christel Vrain, ‘Con-
strained minimum sum of squares clustering by constraint program-
ming’, in Principles and Practice of Constraint Programming, CP
2015, Proceedings, pp. 557–573, (2015).

[10] Ian Davidson and S. S. Ravi, ‘Clustering with Constraints: Feasibility
Issues and the k-Means Algorithm’, in Proceedings of the 5th SIAM
International Conference on Data Mining, pp. 138–149, (2005).

[11] Ian Davidson, S. S. Ravi, and Leonid Shamis, ‘A SAT-based Frame-
work for Efficient Constrained Clustering’, in Proceedings of the 10th
SIAM International Conference on Data Mining, pp. 94–105, (2010).

[12] M. Delattre and P. Hansen, ‘Bicriterion cluster analysis’, IEEE Trans.
Pattern Anal. Mach. Intell., (4), 277–291, (1980).

[13] O. du Merle, P. Hansen, B. Jaumard, and N. Mladenovic, ‘An interior
point algorithm for minimum sum-of-squares clustering’, SIAM Jour-
nal on Scientific Computing, 21(4), 1485–1505, (1999).

[14] A. W. F. Edwards and L. L. Cavalli-Sforza, ‘A method for cluster anal-
ysis’, Biometrics, 21(2), 362–375, (1965).

[15] T. Gonzalez, ‘Clustering to minimize the maximum intercluster dis-
tance’, Theoretical Computer Science, 38, 293–306, (1985).

[16] Pierre Hansen and Brigitte Jaumard, ‘Cluster analysis and mathematical
programming’, Mathematical Programming, 79(1-3), 191–215, (1997).

[17] Robert E. Jensen, ‘A dynamic programming algorithm for cluster anal-
ysis’, Journal of the Operations Research Society of America, 7, 1034–
1057, (1969).

[18] W. L. G. Koontz, P. M. Narendra, and K. Fukunaga, ‘A branch and
bound clustering algorithm’, IEEE Trans. Comput., 24(9), 908–915,
(1975).

[19] Marianne Mueller and Stefan Kramer, ‘Integer Linear Programming
Models for Constrained Clustering’, in Proceedings of the 13th Inter-
national Conference on Discovery Science, pp. 159–173, (2010).

[20] Dan Pelleg and Dorit Baras, ‘K-means with large and noisy constraint
sets’, in Machine Learning: ECML 2007, volume 4701 of Lecture Notes
in Computer Science, pp. 674–682. Springer Berlin Heidelberg, (2007).

[21] Douglas Steinley, ‘k-means clustering: A half-century synthesis’,
British Journal of Mathematical and Statistical Psychology, 59(1), 1–
34, (2006).

[22] Vincent T’kindt and Jean-Charles Billaut, Multicriteria Scheduling,
Theory, Models and Algorithms, Springer, 2nd edn., 2005.

[23] B.J. van Os and J.J. Meulman, ‘Improving Dynamic Programming
Strategies for Partitioning’, Journal of Classification, (2004).

[24] Gérard Verfaillie, Michel Lemaı̂tre, and Thomas Schiex, ‘Russian doll
search for solving constraint optimization problems’, in Proceedings
of the Thirteenth National Conference on Artificial Intelligence and
Eighth Innovative Applications of Artificial Intelligence Conference,
AAAI 96, pp. 181–187, (1996).

[25] K. Wagstaff and C. Cardie, ‘Clustering with instance-level constraints’,
in Proceedings of the 17th International Conference on Machine Learn-
ing, pp. 1103–1110, (2000).

[26] Kiri Wagstaff, Claire Cardie, Seth Rogers, and Stefan Schrödl, ‘Con-
strained K-means Clustering with Background Knowledge’, in Pro-
ceedings of the 18th International Conference on Machine Learning,
pp. 577–584, (2001).

[27] J. Wang and J. Chen, ‘Clustering to maximize the ratio of split to diam-
eter’, in Proceedings of the 29th International Conference on Machine
Learning, (2012).

[28] Y. Wang, H. Yan, and C. Sriskandarajah, ‘The weighted sum of split and
diameter clustering’, Journal of Classification, 2(12), 231–248, (1996).

[29] Y. Xia and J. Peng, ‘A cutting algorithm for the minimum sum-of-
squared error clustering’, in SDM, (2005).

T. Guns et al. / Repetitive Branch-and-Bound Using Constraint Programming for Constrained Minimum Sum-of-Squares Clustering470

