
Observation-Based Multi-Agent Planning with
Communication

Luca Gasparini and Timothy J. Norman and Martin J. Kollingbaum1

Abstract. Models of decentralized online planning vary in the in-
formation that individual agents use to make local action decisions.
Some models consider only local observations, eschewing coordina-
tion through communication. Others use communication to ensure
that all agents are aware of the action decisions of others, but as-
sume costless and delay-free communication. In this paper, we pro-
pose a model of online planning (OB-MAP) that uses estimates of the
value of communicating to manage coordination through communi-
cation as costs vary. We compare this approach to existing models
in widely employed benchmark problems, demonstrating that OB-
MAP performs significantly better in many scenarios regardless of
varying (including infinite) cost of communication.

1 Introduction

Decentralized planning problems are often modelled as Decen-
tralized Partially Observable Markov Decision Processes (Dec-
POMDPs), where multiple agents, each with a local view of the
environment, must coordinate their actions in a decentralized fash-
ion in order to optimize some reward [1]. Goldman and Zilberstein
[6] have demonstrated, however, that even approximately solving a
Dec-POMDP is intractable. One of the reasons for this complexity
is that the number of possible joint-histories grows doubly exponen-
tially with the horizon. In order to address this problem, a number of
online planning algorithms [4, 5, 13, 15] have been proposed, which
interleave planning and enactment. These algorithms heuristically es-
timate the long-term value of an action and use some of the informa-
tion available at runtime in order to make planning more tractable.
The majority of existing algorithms (such as [5, 13, 15]) plan in such
a way that each agent always has full knowledge of what actions are
being performed by its team-mates. This is referred to as strict coor-
dination, and is often argued to be a necessary condition for effective
planning in decentralized settings [15]. In order to guarantee strict
coordination, however, agents must be limited in the extent to which
they exploit local observations. The argument is as follows. If agents
start with a common belief (a probability distribution) about the state
of the environment, and use the same planning algorithm, they will
agree on a common joint action to be performed. Since each agent
potentially receives a different local observation at each time step, if
they take into account these observations, their beliefs may diverge.
Each agent will, therefore, plan for a different joint-action, and will
have incorrect beliefs about the actions of its team-mates. As a result,
strict coordination is not guaranteed.

In contrast to strict coordination models, Chechetka and Sycara [4]
propose BaGa-S, which extends BaGa (Bayesian Games approxima-

1 Department of Computing Science, University of Aberdeen, Aberdeen, UK,
l.gasparini@abdn.ac.uk, tnorman@acm.org, m.j.kollingbaum@abdn.ac.uk

tion algorithm) [5] in order to take advantage of local observations.
BaGa-S has been shown to provide significant advantages over strict
coordination models in some scenarios. These scenarios are, how-
ever, those in which local observations provide the best evidence for
good local action decisions to maximise the reward. In contrast, we
show that this approach performs significantly worse in domains that
require a tighter coordination, supporting the strict coordination ar-
gument, albeit in an important class of problem domains.

Another important issue to consider when planning at runtime is
whether and when agents should communicate their local observa-
tions as opposed to action decisions. By sharing observation histo-
ries, a coalition of agents can synchronize on a common belief, and
take advantage of this information while maintaining strict coordina-
tion. Then, in algorithms that trade off strict coordination for a more
opportunistic exploitation of local observations, communication can
be used to re-synchronize agents’ beliefs once coordination is lost.

In this paper, we argue that agents are faced with an important
trade-off between maintaining (almost) strict coordination, and ex-
ploiting local observations to maximize their expected reward. We
analyse this trade-off by comparing the performance of different al-
gorithms in widely employed benchmark scenarios. We propose an
algorithm, OB-MAP, that attempts to capture the best of both worlds.
While OB-MAP does not guarantee strict coordination, we show ex-
perimentally that it performs at least as good as strict coordination
algorithms, and is able to take advantage of local observations in sce-
narios that favour a more opportunistic planning approach. We also
propose a heuristic that takes into account the value of communica-
tion in order to decide whether or not agents should communicate.

Before formalising OB-MAP, analysing its complexity, and eval-
uating its performance, in the following section we provide neces-
sary technical background. We present a précis of the Dec-POMDP
approach to multi-agent planning, and then give details of the two
on-line planning models that we use to represent the state-of-the-art
in on-line planning algorithms.

2 Background

A Dec-POMDP [1] is a tuple, 〈I, S, b0, {Ai}, P, {Ωi}, O,R〉 where:

• I is a set of agents, and S is the set of states;
• b0 is an initial belief state, i.e. a probability distribution over pos-

sible initial states;
• Ai is a finite set of actions available to agent i and �a =

〈a1, . . . , an〉 is a joint-action consisting of one action for each
agent;

• P (sj |si,�a) represents the probability that taking joint-action �a in
state si will result in a transition to state sj ;

ECAI 2016
G.A. Kaminka et al. (Eds.)

© 2016 The Authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/978-1-61499-672-9-444

444

• Ωi is a finite set of local observations oi available to agent i and
�Ω is the set of joint observations �o consisting of one local obser-
vation for each agent;

• O(�o | sj ,�a) specifies the probability of observing �o when per-
forming a joint-action �a that leads to a state sj ;

• R : S × �A → R is a reward function, and R(si,�a) specifies the
reward obtained by performing �a in si.

We define a local history hi for agent i up to time t as a sequence of
interleaved local actions and observations. hi = (a0

i , o
1
i , a1, . . . , o

t
i)

and a joint-history as a tuple �h consisting of one local history for
each agent �h = 〈h0, . . . , hn〉. A belief state at time t, bt : S → R,
is a function that represents the probability that the system is in each
state. Given a belief bt at time t, the belief state at time t+1 after the
agents have executed joint-action �ai and received joint-observation
�oj can be computed as follows:

bt+1(s) =

∑
s′

bt(s′) · P (s|s′,�ai)O(�oj |s,�ai)∑
s′,s′′

bt(s′) · P (s′′|s′,�ai)O(�oj |s′′,�ai)
(1)

We denote the updated belief state as p(∗|bt,�ai, �oj). The denomi-
nator corresponds to the probability of observing �oj after perform-
ing �ai from belief bt. Where we are interested in the expected joint
observation, we also use the explicit notation p(�oj |bt,�ai). A local
policy for agent i is a mapping from local histories to actions. A lo-
cal policy ut

i ∈ U t
i for an horizon length t can be represented as a

tree where each node represents an action, and each edge of the tree
an observation. We denote with aut

i
the local action prescribed by

a local policy ut
i and with ut

i(oi) the sub-policy (for horizon length
t − 1) that should be followed after receiving an observation oi. A
joint-policy �ut ∈ �U t is defined as consisting of one local policy for
each agent. We denote with �a�ut the joint action prescribed by policy
�ut and with �ut(�o) the joint sub-policies that the agents follow after
receiving joint observation �o. The value of executing a joint-policy
�u, from a state s with t steps to go can be computed recursively as
follows:

V (�u t, si) = R(si,�a�u t) +∑
sj ,�o

P (sj |si,�a�u t)O(�o|sj ,�a�u t)V (�u(�o), sj) (2)

Given a belief state, solving a Dec-POMDP means finding a joint-
policy �q that maximizes

∑
s b(s)V (�q, s).

Goldman and Zilberstein [6] demonstrated that even approxi-
mately solving a Dec-POMDP is intractable (NEXP-COMPLETE).
A great deal of research on offline planning for Dec-POMDPs, there-
fore, focuses on tractable approximate algorithms that do not pro-
vide a guarantee on solution quality. A different body of work has
explored heuristic-based online planning for Dec-POMDPs. These
algorithms interleave planning and execution, and use heuristics to
make decisions on what actions to perform next. The long-term ex-
pected value of executing joint-action �aj from a belief state bi is
Q(bi,�aj). This Q function can be computed, for example, by per-
forming an l-step lookahead and assuming that the state of the system
becomes fully observable after the l-th step.

Given our aim is to propose a model of on-line planning that ef-
fectively balances the trade-off between maintaining coordination
through communication and exploiting local observations, we choose
as our comparators MAOP-COMM [15] and BaGa-S [4].

Wu et al. [15] propose the MAOP-COMM algorithm for online
planning in Dec-POMDPs with communication. At each step, each

agent maintains a pool of possible joint-histories H (one local history
per agent), each associated with a probability and a joint belief; that
is, the belief that would be obtained by an hypothetical agent that has
complete knowledge of all the agents’ histories. Given a joint-history
�ht, we denote b�ht to be the belief associated with �ht, and p(�h) to be
its probability.

Each agent approximates a one-step lookahead policy �π that maps,
for each agent, a local history to an action. We denote πi to be the
local component of �π and πi(hi) to be the action associated with
history hi. Given a joint-history �h = 〈h0, . . . , hn〉 the joint-action
executed will be �π(�h) = 〈π0(h0), . . . , πn(hn)〉. The objective is to
find a policy �π that optimizes the following value function:

V (�π) =
∑
�h∈H

p(�h)Q(b�h, �π(
�h)) (3)

In order to efficiently find a policy, it is initialized randomly, and
then each agent improves its local policy by assuming the policies of
other agents are fixed. Improvement terminates when an equilibrium
among the local policies is found; i.e. when no agent can improve its
own policy. After each action, all the histories in the pool are updated
by considering the corresponding action and every possible observa-
tion, and all the joint beliefs are updated. Coordination is guaranteed
because each agent will maintain the same set of possible histories,
and they use the same seed for a pseudo-random generator to initial-
ize the policies. In MAOP-COMM, agents decide to communicate
if they receive an observation that is inconsistent with their current
history pool. Formally, given the current history pool H , a local ob-
servation oi, and a small number ε, an agent decides to communicate
if and only if:

max
�h∈H,�o−i

(∑
s′∈S

O(〈oi, �o−i〉|s′,�a)
∑
s∈S

P (s|�a, s′)b�h(s)
)

< ε (4)

The rationale for this is that agents should communicate when they
receive an unexpected observation.

While MAOP-COMM guarantees coordination, we argue that this
comes at a cost. In order to ensure that agents reach the same equi-
librium, each agent i must consider all their own possible previous
histories, whereas only one history has been observed. This informa-
tion, in fact, is not generally available to the other agents. Moreover,
by taking into account an observation oi, an agent is often able to in-
fer additional knowledge about the probability of other agents’ histo-
ries. Even though the current action of an agent depends on its local
history, the fact that MAOP finds equilibria among all possible histo-
ries, and uses only information that is available to all agents, it results
in policies that cannot take full advantage of local observations.

BaGa-S (Subjective Bayesian Game approximation algorithm) [4]
attempts to make use of local observations in a more opportunis-
tic way. In BaGa-S agents consider only histories that are consistent
with their local observations. Agent i estimates the best action for the
other agents in each history a∗

−i(�h) (Equation 5) and then finds its
best response a∗

i (Equation 6).

a∗
−i(�h) = arg max

a−i∈A−i

(
max
ai

Q(b�h, ai)

)
(5)

a∗
i = arg max

ai∈Ai

∑
�h

p(�h)Q(b�h, 〈ai, a
∗
−i(�h)〉) (6)

After executing an action and receiving an observation, each agent
updates its belief pool by considering, from each possible joint be-
lief, the estimated action of other agents and all the possible joint-
observations that are compatible with its local observation. In order

L. Gasparini et al. / Observation-Based Multi-Agent Planning with Communication 445

to limit the exponential growth of the belief history, BaGa-S uses
weighted k-means clustering to find, after each update, a fixed num-
ber of beliefs that represent the distribution over possible histories.
k-means clustering divides joint beliefs into k clusters and maintains
only the centre of each cluster as a representation of it. The clus-
ters are found such that the sum of the distance of each belief from
the corresponding centre is minimized. The centre of each cluster is
a belief where the probability of each state is the weighted average
among the probabilities of that state given the beliefs in the cluster,
with the weights being the probability of each history. Given two
possible beliefs b1, and b2, held by an agent i, a distance measure for
joint beliefs can be defined as:

d(b1, b2) =

√∑
s

(b1(s)− b2(s))2 · p(h2) (7)

Intuitively, this estimates the expected loss of information obtained
by merging b2 with b1. We multiply the distance only by p(h2) be-
cause this merging represents a loss of information only if the true
belief is b2.

Note that, each agent takes into account its local observation in
updating the belief pool, and so the pools maintained by different
agents may diverge at runtime. This, in turn, will lead to different
policies being computed for each agent and a further divergence in
the belief pools. As pointed out by Wu et al. [15], this might lead to
arbitrarily bad outcomes. On the other hand, taking into considera-
tion local observations in computing a plan might prove beneficial in
scenarios where only loose coordination is necessary.

3 OB-MAP

We now present Observation Based Multi-Agent Planning (OB-
MAP), an online planning algorithm that provides a good balance be-
tween opportunistic exploitation of information and the maintenance
of a certain degree of coordination. We argue that BaGa-S fails to do
this because, when an agent i is planning, it doesn’t consider the fact
that agents other than i also have only a partial view of the environ-
ment. In Equation 5, for example, they assume that other agents are
able to observe the current joint belief. Moreover, the clustering of
histories only takes into account the distance among joint beliefs. It
has been demonstrated by Oliehoek et al. [12] that in order for the
clustering of joint-histories to be lossless, one should merge only his-
tories that are equivalent both in terms of joint beliefs, and in terms of
the probability distribution over joint histories held by other agents.
Merging only equivalent histories only allows for limited reduction
in the size of the joint-histories pool, especially in large scenarios
where the number of possible histories grows very quickly with the
execution horizon. Our aim is to define a distance metric that ap-
proximates the lossless criterion and to use it in standard clustering
algorithms to perform a more aggressive clustering while still mini-
mizing the loss of information.

In order to do that, while updating the belief pool we also keep
track of the local belief of each agent in each history. Formally we
define a belief-node nk as a tuple:

nk = 〈�hk, bk0 , b
k
1 , . . . , b

k
n, p

k〉 (8)

where �hk is a joint-history, bk0 is the joint belief associated with the
joint history, bki with 1 ≤ i ≤ n is the local belief for agent i and pk

is the probability associated with the node. Given a local belief, bti ,
for agent i at time t, the joint-action �at and the local observation oti ,

the local belief for i at time t+ 1 can be computed as follows:

bt+1
i (s) = p(s|bti,�at, oti) =∑

s′,o−i

bt(s′)p(s|s′,�at)O(〈oti, o−i〉|s,�at)

∑
s′,s′′,o−i

bt(s′)p(s′′|s′,�at)O(〈oti, o−i〉|s′′,�at)

(9)

where o−i is a tuple consisting of local observations for all agents
other than i. The update procedure is similar to the one for a joint be-
lief, but considers all possible joint-observations that have oi as a lo-
cal component. We refer to the updated local belief as p(∗|bti,�at, oti).
Note that, while the update considers only the local component of an
observation, the complete joint-action is needed.

3.1 Planning

In common with BaGa-S, when planning, each agent estimates the
local action that will be taken by the other agents in each joint his-
tory and finds the best response. In doing so, however, it takes into
account the fact that if a set of joint histories is associated with the
same local history for agent j, the agent will not be able to distin-
guish among them, and will choose the same action for all of them.
A local policy π is defined in the same way as in MAOP-COMM;
i.e. a mapping from local histories to local actions. Let h(nk, i) de-
note the local history for agent i in the node nk. Given the current
set of belief nodes Ni held by an agent i, and a history hj for agent
j different from i, agent i estimates the local action performed by j
by finding the joint action that maximizes the following:

πj(hj) = arg max
aj∈Aj

⎛
⎜⎜⎜⎝max

a−j

∑
nk∈Ni s.t.

h(nk,j)=hj

Q(bk0 , 〈aj ,�a−j〉) · pk

⎞
⎟⎟⎟⎠
(10)

For each agent, j, we consider together all the nodes that are as-
sociated with the same local history for j. These nodes, therefore,
represent joint beliefs that are indistinguishable from j’s perspective.
We assume that j will select, for all these nodes, the action that max-
imises the expected reward over all the associated joint beliefs.

After an agent has estimated all the actions of other agents, it finds
the local action that maximizes its expected reward over all possible
nodes. Suppose we take π−i to denote the joint policy that maps each
node nk to a joint action that is left unspecified for agent i and that
associates the action πj(h(n

k, j)) to each agent j other than i. Now,
we can estimate the best action for agent i, thus:

a∗
i = arg max

ai∈Ai

∑
nk∈Ni

q(bk0 , 〈ai, π−i(n
k)〉) · pk (11)

The expected value of local action a∗
i corresponds to∑

nk∈Ni
q(bk0〈a∗, π−i(nk)〉) · pk. When describing the rea-

soning of agent i we will use πi(n
k) to denote the policy that assign

a∗
i to every node nk and π to denote the joint policy that assigns to

each node nk the joint action 〈a∗
i , π−i(n

k)〉.
There is an important point of comparison to note here regard-

ing the OB-MAP and BaGa-S models. If there are only two agents,
and assuming the same clustering technique is used by them both,
the plan computed by our algorithm will be identical to that com-
puted by BaGa-S. Consider, for example, the point of view of agent
1. Since agent 1 only maintains beliefs that are compatible with its
local history, each belief node in the pool must be associated with

L. Gasparini et al. / Observation-Based Multi-Agent Planning with Communication446

Algorithm 1 Belief propagation

Input: N t
i , π−i, oi

Output: N t+1
i

1: N t+1
i = ∅

2: for all nk ∈ N t
i do

3: �a = π(nk)
4: for all o−i ∈ Ω−i do

5: �o = 〈oi, o−i〉
6: b0(∗) = p(∗|bk0 ,�a, �o)
7: p = p(�o |bk0 ,�a)
8: for all 0 ≤ j ≤ n do

9: bj(∗) = p(∗|bkj ,�a, �o [j])
10: hj = (hk

j , πj(n
k), �o [j])

11: end for

12: �h = 〈h1, . . . , hn〉
13: N t+1

i = N t+1
i ∪ 〈�h, b0, b1, . . . , bn, p〉

14: end for

15: end for

a different history for agent 2, otherwise the two nodes would be
equivalent. When estimating the action of agent 2, each belief-node
will be considered separately and Equations 10 and 11 (OB-MAP)
are equivalent to Equations 5 and 6 (BaGa-S). When there are more
than 2 agents, two beliefs in the pool might have the same history for
agent 2, but a different one for, for example, agent 3.

After an action is taken and an observation received, the nodes in
the belief pool need to be propagated. We consider each node in the
pool, with the estimated joint action and, for each joint-observation
compatible with the local observation received, we update the joint-
history and all the joint and local beliefs. We refer to the set of all
possible joint observations as Ω−i, with the i-th component left un-
specified, and we refer to the local component of a joint observation
�o associated with agent j as �o [j]. Algorithm 1 specifies how this pool
of belief nodes is updated.

3.2 Clustering

After propagating the beliefs, we perform clustering in order to main-
tain a bounded number of beliefs. The distance metric for belief
nodes is defined as:

d(nk, nl) =

√∑
s

(
max
0≤i≤n

(bki (s)− bli(s))
2

)
· pl (12)

This captures the idea that, for each state, we take the maximum dis-
tance among all pairs of corresponding (joint or local) beliefs. More-
over, instead of using weighted k-means clustering, we use a modi-
fied k-medoid clustering. This algorithm partitions Ni into k clusters
and finds, for each cluster Cj = {nk, . . . }, the node n̄Cj that min-
imizes the sum of the distances of each other element of the cluster
from n̄Cj . Formally:

n̄Cj = arg min
nk∈Cj

∑
nl∈Nk

d(nl, nk) (13)

We refer to node n̄Cj as the medoid of the cluster. Since the medoid
is an actual data-point, k-medoids is more robust to outliers and
noise, which are important to consider in planning problems. For
each cluster, we retain the one node at the medoid of the cluster,
defined as follows:

n
Cj
∗ =

〈
�hCj , b̄0, . . . , b̄n, p

Cj
∗

〉
(14)

where:

- b̄0, . . . , b̄n are the joint and local beliefs of the medoid node n̄Cj .
- p

Cj
∗ =

∑
nk∈Cj

pk is the sum of all the probabilities of the nodes
in the cluster.

- �hCj = 〈hCj

1 , . . . , h
Cj
n 〉 consists of, for each agent, the local his-

tory that appears with highest probability in the cluster. Formally,
if Hi denotes the set of possible local histories for agent i:

h
Cj

i = arg max
hi∈Hi

∑
nk∈Cj s.t.

h(nk,i)=hi

pk (15)

3.3 Communication Heuristics

We consider agents that can communicate in order to share their lo-
cal histories and synchronize on a common joint belief. This enables
agents to obtain more precise information about the current state of
the environment and to restore coordination when this is lost due to
misaligned belief pools. We assume that communication comes at
a cost (a negative reward), and we propose a heuristic technique to
adaptively make decisions on whether or not to communicate, based
on the current level of uncertainty and the expected value obtained
from communication. Given a communication cost Rc, and the cur-
rent belief node pool Ni, agent i can estimate the expected value
obtained by communicating as follows:

Vc = −Rc +
∑

nk∈Ni

pk ·max
�a∈ �A

Q(bk0 ,�a) (16)

Informally, since after communicating each agent will have full
knowledge about the current joint belief, we assume that the agents
can choose a different joint-action for each joint belief. Each agent
finds the best action for each belief-node and averages over their ex-
pected values. The agent then subtracts the cost of communication
and, if the resulting Vc is greater than the estimated value without
communication, it chooses to communicate. Note that, since the ac-
tion chosen for other agents when updating the belief pool are only an
estimate, and because of the clustering, the actual joint belief might
not be present in the belief-node pool. Moreover, from the point of
view of agent i, the heuristic does not take into account the value
obtained by other agents when they receive i’s local history, but only
the value obtained by i when it receives other agent’s observations.
We will demonstrate experimentally that this heuristic works well in
practice and provides an efficient way to estimate the added value of
communication.

Algorithm 2 specifies the main function of the OB-MAP planner.
The belief-node pool is initialized with a single node corresponding
to the empty history and that is assigned the initial beliefs b0 of all the
agents (Line 1). The computePolicy function (Line 3) estimates the
actions of other agents and finds the best response according to Equa-
tions 10 and 11. ComputeCommValue finds the expected value after
communication by applying Equation 16. If this value is higher than
the estimated value without communication the agent will communi-
cate with its team-mates in order to sync their true histories and find
a common joint belief. If communication occurs, the agents must re-
compute their policies taking into account the true joint belief (Lines
4-9). After executing their part of the policy (the local action found
as best response) and receiving an observation, the agents will prop-
agate the current belief-nodes and use k-medoid clustering to find k
belief nodes that best represent all the possible histories.

L. Gasparini et al. / Observation-Based Multi-Agent Planning with Communication 447

Algorithm 2 Main OB-MAP execution function

Input: b0, Rc, k
1: N = {〈(), b0, b0, . . . , b0, 1〉}
2: for t = 0 to T do

3: π = computePolicy(N)
4: VC = computeCommValue(N,Rc)
5: if VC ≥ V (π) then

6: 〈bt, ht〉 = sync()
7: N = {〈ht, bt, bt, . . . , bt, 1〉}
8: π = computePolicy(N)
9: end if

10: execute best local response.
11: o = received observation
12: N = propagateBeliefs(N, π, o)
13: N = cluster(N, k)
14: end for

3.4 OB-MAP Complexity

Before presenting an empirical analysis of our model, we analyse
its runtime complexity for both belief propagation and belief node
clustering. At each step, the size of the set of beliefs N is bounded
by k, the number of clusters specified for the k-medoids algorithm.
When expanding the beliefs we take each of these k beliefs, consider
the action given by the policy π(nk) and, for each observation that
is compatible with the observed oi, we update the joint belief and all
the local beliefs. This gives a time complexity of

O(|Ω−i| · k · |I| · |S|2)

where S2 is the belief update, and |Ωi| = ∏
j∈I\{i} |Ωi|.

For k-medoids, we use the Partitioning Around Medoid (PAM)
[8] algorithm, which performs O(I · (k · (N − k)2)) comparisons,
where I is the number of iterations performed by the algorithm, N is
the initial number of beliefs, and k the number of clusters. Since, as
discussed above, the number of data points is |Ω−i|·k, and each com-
parison (Equation 12) takes |I| · |S|, the complexity of the clustering
phase is:

O(I · |Ω−i|2 · k3 · |S| · |I|)
The complexity of the process of computing a policy will depend on
the heuristics employed, but, in general, we evaluate | �A| · k actions
at each step. For the large majority of problems, runtime is domi-
nated by the clustering phase (which we confirmed experimentally),
and PAM is not the most efficient algorithm that could be employed.
CLARANS, for example, is an efficient clustering model designed
for mining large data sets. Although our problem is to solve a large
number of small clustering problems, it was analysed to be “a few
times faster than PAM” [11] for small data sets, and hence could be
employed to further optimise OB-MAP.

4 Evaluation

In order to effectively evaluate the OB-MAP model, we consider a
number of widely-employed benchmark problems. We pitch OB-
MAP against two state-of-the-art algorithms: one that uses com-
munication to synchronise agents’ beliefs to maintain coordina-
tion (MAOP-COMM), and one that exploits only local observations
(BaGa-S). Furthermore, in order to provide a fair comparison, in each
benchmark we assess relative performance where communication is
cost-free (OB-MAP versus MAOP-COMM under the same assump-
tions) and where no communication is permitted (OB-MAP versus

BaGa-S under the same assumptions, and also MAOP-COMM with
no communication).

In all the benchmark problems, we used a multi-step lookahead
MDP-based Q heuristic, QMDP . The heuristic is defined as follows,
where VMDP (s) is the expected value of the optimal policy for the
underlying MDP, starting from state s:

QMDP (b,�aj , l) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∑
s,s′

b(s)(R(s,�a) + P (s′|s,�aj)VMDP (s
′)) if l ≤ 1∑

s′
[b(s′)R(s′,�a)] +

∑
�ok

[p(�ok|bti,�aj)

max
�al

{Q(b�ai,�ok ,�al, l − 1)}]
if l > 1

(17)

Essentially the heuristic assumes full communication for l steps
and full observability after that. A better approximation could be ob-
tained by using a POMDP policy, which assumes full communica-
tion, but partial observability, over the whole problem horizon.

The benchmark problems that we used are:

• The decentralized tiger problem [10]. In this scenario, two agents
are in a corridor facing two doors: “left” and “right”. Behind one
door lies a hungry tiger and behind the other lies a treasure. Each
agent can either open one of the doors or listen for the presence
of the tiger. After each step, each agent receives a noisy observa-
tion about the position of the tiger. By listening, agents increase
their probability of receiving the correct observation. The agents
minimize their loss if they jointly open the door with the tiger and
maximize their reward if they jointly open the treasure door. After
either door is opened the problem is reset.

• The variant of 3x3 grid problem presented by Amato et al. [2]. In
this problem two agents can move along 4 directions in a 3x3 grid
world. Each agent only receives noisy observations about neigh-
bouring walls. The objective of the agents is to meet in either the
top-left or bottom-right cell.

• The stochastic Mars rover problem [3]. In this scenario, two agents
must perform different experiments at certain research sites. Some
of these sites may require multiple agents performing an experi-
ment together in order to get the most scientific value, while other
sites may require a specific tool to be used by a single agent. Pos-
itive rewards are given for successfully performing experiments
at each site and the task is completed when all experiments have
been conducted.

In order to verify our claim that the approximate planning model
described by Equations 10 and 11 improves upon BaGa-S for sce-
narios with more than 2 agents, we compared our approach against
standard BaGa-S and BaGa-S with our medoids-based clustering ap-
proach in the following scenarios:

• A 3 agent version of the decentralized tiger problem.
• A 3 agent version of the broadcast channel problem [7]. In this

problem, 3 agents attempt to send messages over a shared chan-
nel. Each agent has a buffer of at most one message. The channel
can deliver only one message at a time. Moreover the channel ran-
domly switches between a functional and a non-functional state.
If only one agent attempts to send a message, the channel is func-
tioning, and the buffer of that agent has one message, the agents
receive a reward of +1. If no message is delivered because the
channel is not functioning, because of a collision, or because the
agent trying to send a message has an empty buffer, the agents
obtain a reward of −s, where s is the number of agents that at-
tempted to send a message. At each step each agent receiving a
noisy observation signalling whether there has been a collision, a
successfully delivered message, or the state of the channel.

L. Gasparini et al. / Observation-Based Multi-Agent Planning with Communication448

Figure 1. The 2-Agent Decentralized Tiger Scenario

For all the scenarios we used an horizon of 100 steps.

Table 1. The 2-Agent Decentralized Tiger Scenario

MAOP-COMM OB-MAP BaGa-S

RC 0 5 NO 0 5 NO NO

R
−62.9 −185.3 −207.0 207.3 −6.7 −128.8 −174.1
±138.2 ±136.6 ±30.7 ±30.8 ±117.6 ±54.9 ±28.7

C
24.5 24.5 0 36.3 7.6 0 0
±4.1 ±4.1 ±0 ±2.4 ±3.3 ±0 ±0

T[ms] 0.65 0.65 0.80 0.53 0.57 0.61 1.07

Table 1 presents results for the 2-agent decentralized tiger sce-
nario. The table summarises the average and standard deviation over
100 trials of the reward (R), the number of communication steps
(C) and the average execution time per agent per step (T[ms]) for
the three algorithms with varying cost of communication (Rc). For
both BaGa-S and OB-MAP we maintained 20 clusters. Since BaGa-
S does not consider communication, we report only the results in the
absence of communication (NO). In Figure 1 we present the distribu-
tion of reward for each algorithm and for varying cost of communi-
cation. Notice that the frequency of communication does not change
with the communication cost in MAOP-COMM. This is due to the
fact that MAOP-COMM only allows us to specify whether agents can
or cannot communicate, and communication cost is not taken into ac-
count. In order to simulate different communication costs we simply
subtracted from the obtained reward the total cost of communication.
Comparing the results of BaGa-S and MAOP (i.e. MAOP-COMM
with no communication) we can see that this scenario favours a more
opportunistic approach over guaranteed coordination. The OB-MAP
planner has a better average than either of the other algorithms, and
it makes better use of communication when available in compari-

son with MAOP-COMM. Since the results are not normally dis-
tributed, we tested them for significance using the Kruskall Wallis
test with post-hoc analysis consisting of Bonferroni corrected Mann-
Whitney tests. We obtained an asymptotic p-value of 0.000 both for
the comparison with MAOP-COMM and with BaGa-S2. The execu-
tion times for OB-MAP are comparable, but slightly lower than those
for MAOP-COMM and almost half of those for BaGa-S.

Table 2. The 3x3 Grid Scenario

MAOP-COMM OB-MAP BaGa-S

RC 0 0.1 NO 0 0.1 NO NO

R
25.4 22.2 15.6 25.3 21.7 21.5 6.88
±1.4 ±1.8 ±3.2 ±1.2 ±2.7 ±3.9 ±5.7

C
32.2 32.2 0 68.3 0.6 0 0
±4.6 ±4.6 ±0 ±3.0 ±0.7 ±0 ±0

T[ms] 0.77 0.77 72 7.09 90.0 71.19 86.45

Table 2 and Figure 2 summarize the results for the 3x3 Grid sce-
nario. For this scenario we used the QMDP heuristic with lookahead
equal to 1 and we set the number of clusters to 20 for both BaGa-S
and OB-MAP. In this scenario MAOP-COMM performs better than
BaGa-S. We believe that this is because this scenario requires tighter
coordination among team-mates; see discussion of the strict coordi-
nation argument above. Our approach performs significantly better
(asymptotic p-value of 0.000) than either MAOP-COMM or BaGa-S
in the absence of communication. When communication is available,
however, the results for OB-MAP are not significantly different from
MAOP-COMM (asymptotic p-value of 0.508).

2 The p-value of 0.000 denotes 0 to the precision available from the statistical
analysis tool used.

Figure 2. The 3x3 Grid Scenario

L. Gasparini et al. / Observation-Based Multi-Agent Planning with Communication 449

Table 3. The Stochastic Mars Rover Scenario

MAOP-COMM OB-MAP BaGa-S

RC 0 2 NO 0 2 NO NO

R
150.9 119.7 43.5 284.6 222.6 141.9 110.0
±8.8 ±10.2 ±15.8 ±12.01 ±29.8 ±61.9 62.1

C
15.5 15.5 0 30.9 15.9 0 0
±3.3 ±3.3 ±0 ±3.2 ±1.7 ±0 ±0

T[ms] 0.7 0.7 434.3 3.5 12.8 31.5 27.9

Table 3 and Figure 3 report results for the Stochastic Mars Rover
Scenario. This represents another situation in which BaGa-S signif-
icantly outperforms MAOP-COMM in the absence of communica-
tion. OB-MAP, however, performs better than either MAOP (asymp-
totic p-value of 0.000) or BaGa-S (asymptotic p-value of 0.005) in
the absence of communication. When communication is available,
OB-MAP significantly out-performs MAOP-COMM (asymptotic p-
value of 0.000) and adapts well to more costly communication. Note
that, since all the scenarios discussed so far include only two agents,
the differences between OB-MAP and BaGa-S are only due to the
different clustering methods used.

In Table 4 we present the results for the comparison between
BaGa-S and OB-MAP algorithms on the 3-agent version of the tiger
scenario. We could not test MAOP-COMM in this scenario because
the implementation of MAOP-COMM used (kindly provided by the
authors) does not support scenarios with more than two agents. In
order to separate the effects of the clustering algorithm used, and
the different action selection mechanisms, we also analysed the be-
haviour of a version of BaGa-S that uses medoid clustering (BaGa-

S-medoids in Table 5). In our experiments, BaGa-S with k-medoids
agents always listened, without ever attempting to open any door.
This is the reason why their reward is always −303 (where -1 is

Figure 3. The Stochastic Mars Rover Scenario

Table 4. The 3-Agent Decentralized Tiger Scenario

OB-MAP BaGa-S BaGa-S-medoids

Rc 0 5 NO NO NO

R
577.6 200.3 -267.5 −299.6 −303.0
±58.0 ±39.9 ±133.9 ±11.1 ±0

C
61.0 34.0 0 0 0
±2.5 ±1.1 ±0 ±0 ±0

T[ms] 7.16 10.29 62.3 157.6 97.5

the cost of one agent listening). BaGa-S agents deviate only slightly
from this behaviour. OB-MAP behaves significantly better (asymp-
totic p-value of 0.000) than either BaGa-S or BaGa-S-medoids, while
the results of BaGa-S with medoids are not different from those of
BaGa-S (p-value of 1.000). We argue that this difference is due to
the fact that agents using the BaGa-S algorithm fail to correctly es-
timate the other agents’ actions, because they assume that the true
joint belief is known to them.

In Table 5 and Figure 5 we report results for the BaGa-S and OB-
MAP algorithms on the 3-agent Broadcast Scenario. In this scenario
BaGa-S-medoids performs considerably better than standard BaGa-
S. OB-MAP obtains better rewards than either standard BaGa-S (p
value 0.000) or BaGa-S-medoids (p value 0.040). The significance
of this difference between OB-MAP and BaGa-S-medoids confirms
that our planning algorithm better captures scenarios where there are
more than two agents.

Figure 4. The 3-Agent Decentralized Tiger Scenario

L. Gasparini et al. / Observation-Based Multi-Agent Planning with Communication450

Table 5. The 3-Agent Broadcast Scenario

OB-MAP BaGa-S BaGa-S-medoids

Rc NO NO NO

R
−3.72 −16.55 −6.75
±7.88 ±10.74 ±9.12

C
0 0 0
±0 ±0 ±0

T[ms] 520.7 300.0 514.0

Figure 5. The 3-Agent Broadcast Scenario

5 Discussion

Online decentralized planning under uncertainty has been the subject
of a number of prior studies. Roth et al. [14], for example, proposed
Dec-COMM, an approach to online planning that provides guaran-
teed coordination at the cost of completely ignoring observations
unless these have been shared with all the team-mates. In common
with OB-MAP, agents keep track of the possible joint beliefs of the
team and use a QMDP (or QPOMDP) heuristic to find an action that
maximizes the expected reward over all possible beliefs. In order to
guarantee that all agents will agree on the same action, they do not
take into account their local observation when propagating the pos-
sible beliefs. Agents decide to communicate their observations when
including these would result in choosing a different action.

BaGa-S builds upon BaGa [5]. In the BaGa algorithm, each agent

keeps track of all possible types (local histories) of all agents and
finds a policy mapping, for each agent type to actions. A policy rep-
resents an equilibrium; i.e. a situation where no agent can improve
the expected value of the policy by unilaterally changing their lo-
cal policy. Montemerlo proposed a number of heuristics for deciding
whether or not to communicate, some of which take into account
the cost of communication. They consider a model of communica-
tion where agents can decide to broadcast their own history to other
agents, without requiring other agents to also synchronize their his-
tory. In order to estimate the value of communication, each agent
prunes all the possible histories that are incompatible with its local
histories and find a policy for that belief pool.

In MAOP-COMM [15], agents perform one-step planning in a de-
centralized manner and estimate the long-term value from a belief us-
ing a QMDP heuristic. In order to find a locally optimal equilibrium
among agents’ policies, they use alternative maximization, where
each agent iteratively improves its policies assuming other agents’
policies are fixed. Agents communicate when they receive a local
observation that is inconsistent with their beliefs. While these algo-
rithms represent improvements in the way observations are taken into
account, the fact that the policy must represent an equilibrium be-
tween all histories, even those that are not compatible with an agent’s
local history, results in policies that are sometimes too conservative.
Moreover, by taking into account only joint histories that are com-
patible with an agent’s observations, we can decrease the number of
candidate histories and obtain better clusters.

As mentioned by Wu et al. [15], BaGa is not able to deal with sce-
narios as large as those used to evaluate our approach. This is due to
the fact that the clustering technique used in BaGa does not ensure
that only a bounded number of beliefs is retained at each step. More-
over, the results reported by Wu et al. [15] shows that MAOP-COMM
out-performs Dec-COMM in most situations. For these reasons we
used MAOP-COMM to compare OB-MAP against; it represents the
best available state-of-the-art algorithm.

Kaufman and Roberts [9] analyse the trade-off between using lo-
cal information and guaranteed coordination in multi-agent planning.
Their analysis, however, considered limited scenarios where the tran-
sition probabilities are uniform and therefore the value of observa-
tions is limited.

6 Conclusion

In this paper we have proposed OB-MAP, a novel algorithm for on-
line planning in Dec-POMDPs. The algorithm is inspired by BaGa-S
in terms of the use of local observations, but also enables value-aware
communication between agents to maintain coordination in domains
in which local observations are insufficient. This provides a balance
between approaches that guarantee strict coordination but fail to take
into account local information during planning, and approaches that
use local information but fail to maintain acceptable levels of coor-
dination in many scenarios. We propose a heuristic to decide when,
given the cost of communication, agents should communicate in or-
der to synchronize their histories and agree on a common joint belief.
We evaluated our approach on a number of benchmark scenarios and
we have shown that it performs significantly better than two algo-
rithms that best represent the state-of-the-art.

Acknowledgments

This research has been sponsored by SELEX ES. We thank Feng Wu
for providing the source code of the MAOP-COMM planner.

L. Gasparini et al. / Observation-Based Multi-Agent Planning with Communication 451

REFERENCES

[1] C. Amato, ‘Cooperative decision making.’, in Decision Making Un-
der Uncertainty: Theory and Application, ed., Mykel J. Kochenderfer,
chapter 7, MIT Press, (2014).

[2] C. Amato, J. S. Dibangoye, and S. Zilberstein, ‘Incremental policy gen-
eration for finite-horizon Dec-POMDPs’, in Proceedings of the 19th
International Conference on Automated Planning and Scheduling, pp.
2–9, (2009).

[3] C. Amato and S. Zilberstein, ‘Achieving goals in decentralized
POMDPs’, in Proceedings of The 8th International Conference on Au-
tonomous Agents and Multiagent Systems, pp. 593–600, (2009).

[4] A. Chechetka and K. Sycara, ‘Subjective approximate solutions for de-
centralized POMDPs’, in Proceedings of the 6th International Joint
Conference on Autonomous Agents and Multiagent Systems, p. 224,
(2007).

[5] R. Emery-Montemerlo, Game-Theoretic Control for Robot Teams,
Ph.D. dissertation, Rutgers, The State University of New Jersey, 2005.

[6] C. V. Goldman and S. Zilberstein, ‘Decentralized control of cooperative
systems: Categorization and complexity analysis’, Journal of Artificial
Intelligence Research, 22, 143–174, (2004).

[7] E. A. Hansen, D. S. Bernstein, and S. Zilberstein, ‘Dynamic program-
ming for partially observable stochastic games’, in Proceedings of
the 19th National Conference on Artificial Intelligence, pp. 709–715,
(2004).

[8] L. Kaufman and P. J. Rousseeuw, Finding groups in data: An introduc-
tion to cluster analysis, volume 344, John Wiley & Sons, 2009.

[9] M. Kaufman and S. Roberts, ‘Coordination vs. information in multi-
agent decision processes’, in Proceedings of the 5th Workshop on Multi-
agent Sequential Decision Making in Uncertain Domains, pp. 1–6,
(2010).

[10] R. Nair, M. Tambe, M. Yokoo, D. Pynadath, and S. Marsella, ‘Taming
decentralized POMDPs: Towards efficient policy computation for mul-
tiagent settings’, in Proceedings of the 18th International Joint Confer-
ence on Artificial Intelligence, pp. 705–711, (2003).

[11] R. T. Ng and J. Han, ‘CLARANS: A method for clustering objects for
spatial data mining’, IEEE Transactions on Knowledge and Data Engi-
neering, 14(5), 1003–1016, (2002).

[12] F. A. Oliehoek, S. Whiteson, and M. T. J. Spaan, ‘Lossless clustering of
histories in decentralized POMDPs’, in Proceedings of the 8th Interna-
tional Conference on Autonomous Agents and Multiagent Systems, pp.
577–584, (2009).

[13] M. Roth, R. Simmons, and M. Veloso, ‘Reasoning about joint beliefs
for execution-time communication decisions’, in Proceedings of the 4th
International Joint Conference on Autonomous Agents and Multiagent
Systems, pp. 786–793, (2005).

[14] M. Roth, R. Simmons, and M. Veloso, ‘What to communicate?
execution-time decision in multi-agent POMDPs’, in Distributed Au-
tonomous Robotic Systems 7, 177–186, Springer, (2006).

[15] F. Wu, S. Zilberstein, and X. Chen, ‘Online planning for multi-agent
systems with bounded communication’, Artificial Intelligence, 175(2),
487–511, (2011).

L. Gasparini et al. / Observation-Based Multi-Agent Planning with Communication452

