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Abstract.

Local image features can be assumed to be drawn from an un-
known distribution. For image classification, such features are com-
pared through the histogram-based model or the metric-based model.
By quantizing these local features into a set of histograms, the
histogram-based model is convenient and has vectorial representa-
tion of image but information could be lost in vector quantization.
Unlike the histogram-based model, the metric-based model estimates
the metrics over the underlying distribution of local features immedi-
ately, achieving better predictive performance. However, the model
requires higher computational cost and loses the benefit of vectorial
representation of image.

To retain the advantages of these two models, this paper proposes
the (doubly) randomized distribution features that represent the un-
derlying distribution of local features in each image as a vectorial
feature by utilizing random Fourier feature. We prove the conver-
gences of the similarity and distance based on the randomized distri-
bution feature. Remarkable advantages of the randomized distribu-
tion feature are that it has vectorial representation and thus computes
efficiently as the histogram-based model. Besides, it provides rig-
orous theory guarantee and competitive performance as the metric-
based model. Compared with several state-of-the-art algorithms, ex-
periments in three real-world datasets justify that our proposed ap-
proaches attain competitive classification accuracy with faster com-
putational speed. Furthermore, we indicate that our proposed fea-
tures can utilize the methods in learning based on vectors, which are
broadly studied in traditional machine learning domain, to deal with
the problems in learning based on distribution.

1 Introduction

Image representation plays a crucial role in computer vision do-
mains. Generally, images could be represented by a set of high-
dimensional, unordered and finite local features. For example, the
shapes of object are characterized by a set of local descriptors at
edges and corner points [11], and facial expressions are represented
by a set of local image patches containing action units [8]. To some
extent, these features in each image can be assumed to be drawn from
an unknown distribution [25, 34], leading to a learning task based on
distribution such as distribution regression with scalar response [32]
and distribution to distribution regression [30].

Under this assumption, existing approaches to image classification
are roughly categorized into two types: the histogram-based model
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and the metric-based one. The histogram-based model usually rep-
resents each image by the empirical, one-dimensional histogram that
enumerates the occurrence probability of each point set in the bag
of visual words. Here, the collection of these words is called a code-
book or dictionary. The disadvantages of this method are that the
size of codebook is difficult to select, and the computational cost of
generating the codebook by the quantization algorithms is expensive.
Besides, the information will be lost in the quantization process [34].
In contrast, the metric-based model estimates statistical metrics over
the underlying distribution of images with higher accuracy. The ad-
vantage of this model is that it does not require quantization tech-
niques and selecting the size of codebook, each of which could result
in the loss of performance in image classification. However, these
metrics suffer from high computational cost since they operate over
pairwise samples. Another drawback of the model is that the matrices
obtained by these metrics are only suitable for some specific learning
algorithms, e.g., kernel-based algorithms, but cannot be amenable for
off-the-shelf use with any standard learning algorithm [22].

In this paper, we propose the (doubly) Randomized Distribution
Feature (RDF) that could characterize the underlying distribution of
local image features of each image as a vector. In this way, the pro-
posed approaches achieve a vectorial representation of distribution,
and thus inherit the property of high efficiency of the histogram-
based model. Meanwhile, it can approximate the metrics defined on
distribution as the metric-based model. Specifically, the distribution
of local features is characterized as the mean of random Fourier fea-
tures which are a low-dimensional embedding representation of ker-
nel mapping function. As a result, the proposed approaches retain ad-
vantages from both the histogram-based model and the metric-based
model. We also prove the convergences of the similarity and distance
based on the randomized distribution feature in this paper. The exper-
imental results show that the proposed methods could achieve com-
petitive performance and reduce computational cost significantly.

The contributions of this paper are summarized here:

- We propose the (doubly) randomized distribution features that
represent the distribution of local features extracted from images
as a vector;

- We analyze the convergences of the similarity and distance based
on the randomized distribution feature;

- Experimental results show that the (doubly) randomized distribu-
tion features work better than BoW in vectorial representation,
and have competitive performance as the metrics defined over dis-
tributions directly. Most importantly, it is easy to implement and
computes much faster;

- The proposed method could make learning problems on distribu-
tion where each input is a distribution become our traditional ma-
chine learning problems, where each input is a vector.
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The paper is organized as follows. Section 2 briefly surveys the
associated algorithms that learn from the distribution. Section 3
presents the preliminaries of the metric-based model, especially the
similarity and distance between distributions. Section 4 introduces
the proposed (doubly) randomized distribution features, and theoret-
ically analyzes the convergences of the proposed approaches. Ex-
periments in Section 5 demonstrate a comprehensible comparison
between the performances of the proposed approaches and several
recently published methods. Finally, Section 6 presents a conclusive
summary.

2 Related works

Associated algorithms that deal with distributions could be roughly
divided into two categories: the histogram-based model and the
metric-based model. The most popular method in the histogram-
based model is the bag of word (BoW) [9]. By quantizing each lo-
cal feature into one of visual words by using K-means, BoW rep-
resents an image as one-dimensional histogram that enumerates the
occurrence probability of each local feature of images in the bag of
visual words. BoW suffers from high computational cost of gener-
ating codebook by K-means and the quantization process that the
information could be lost. Therefore, some recent researches are de-
voted to accelerating quantization process, such as hierarchical K-
means [28], KD-tree and random projection tree [7] and so on. To
alleviate the loss of information in the quantization process, several
researches attempt to learn more discriminant information from im-
ages by aggregating local descriptors [1, 16], learning a discriminant
codebook [28], and keeping fisher information [31], etc.

Alternatively, the metric-based model defines various metrics such
as similarity, distance and divergence between the distributions for
avoiding information loss of the histogram-based model. Specifi-
cally, mean map kernel (set kernel) [12, 40] measures similarities
among pairwise points. Distance metrics between two distributions
such as maximum mean discrepancy (MMD) [13, 25] and nonpara-
metric divergence [33, 34, 45] are commonly-used in machine learn-
ing and computer vision domains. Unlike the histogram-based model
where features must be quantized and vectorized, the metric-based
model can achieve better predictive performance since the compari-
son is done over the underlying distribution of local features. How-
ever, the metric-based model requires preserving the whole data sets
and calculating metric between training sets and a new unseen set,
which makes it infeasible even for a moderate-size problem. More-
over, the metric-based model is only suitable for some special learn-
ing algorithms that could use similarity/distance matrix between
samples. Though condensing local features of each image could im-
prove the speed and accuracy [45] , the aforementioned problem has
not been addressed in essence.

To address these issues, we propose an alternative way that rep-
resents the underlying distribution of images by random distribu-
tion feature, more concretely, by averaging random Fourier fea-
ture [36, 37]. Currently, two related works in literature employ ran-
dom Fourier feature to characterize the probability distribution in
cause-effect inference [22], and to construct match kernel heuristi-
cally [2]. Compared to these previous studies, the major difference in
this paper is that our work provides a theoretical analysis on the con-
vergences of the similarity and distance between images when using
random distribution feature. We also propose a doubly randomized
distribution feature to represent images for further promoting perfor-
mance.

3 Preliminary

In this section, we will introduce kernel embedding of the distribu-
tion and two metrics defined on distribution in details.

Following [22], the notations used in this paper are summarized
in Table 1. Assume that two images are represented by unknown
distributions P and Q separately, their local feature sets are S =
{xi}ni=1 ∼ P and T = {zj}mj=1 ∼ Q, respectively. Note that the
local feature x and z reside in a d-dimensional space and S∪T ∈ X .
In fact, S and T could construct their empirical distributions PS and
QT respectively, each of which is a set of local descriptors. For ex-
ample, these features can be extracted from the local regions of im-
ages by histogram of gradient (HOG) [6] or scale-invariant feature
transform (SIFT) [23].

Table 1. Notations used in this paper
E[ξ] Expected value of random variable ξ
P True distribution
S = {xi}ni=1 Point set randomly drawn from P
PS Empirical distribution of S
X Domain of random variable sampled from P and Q

κ Kernel function from X × X to R

Hκ RKHS induced by κ
μκ(P ) Kernel embedding of the distribution P
μκ(PS) Empirical kernel embedding of PS

κF Low-D representation of κ
μF
κ(P ) Low-D representation of μκ(P )

μF
κ(PS) Low-D representation of μκ(PS)

3.1 Kernel embedding of the distribution

Let P denote the probability distribution of some random variable X
taking value in a separable topological space (X , τX ). Then kernel
embedding of distribution P associated with a continued, bounded,
and positive-definite kernel function κ : X ×X → R is described as
follows:

μκ(P ) :=

∫
X
κ(x, ·) dP (x), (1)

where μκ(P ) is an element in the reproducing kernel Hilbert space
(RKHS) Hκ associated with kernel function κ [39].

Interestingly, a kernel function κ is said to be characteristic if the
mapping μκ is injective [43], i.e., ‖μκ(P )− μκ(Q)‖Hκ

= 0 iff
P = Q. In other words, kernel embedding of the distribution does
not lose any information about the distribution when equipped with
a characteristic kernel. An example of this kernel is the Gaussian
kernel. It will be used throughout this paper and is defined as follows:

κ(x, x′) = exp
(
− γ

∥∥x− x′∥∥2

2

)
, γ > 0. (2)

Since it is unrealistic to get both the true distribution P and
true embedding μκ(P ) in practice, we utilize a sample set S =
{xi}ni=1 ∼ P to construct the empirical distribution PS instead. As
a result, we approximate the empirical kernel embedding μκ(PS)
through PS :

μκ(PS) :=
1

n

n∑
i=1

κ(xi, ·) ∈ Hκ. (3)

As summarized in [26], the estimator in eq. (3) has several nice
properties: 1) kernel embedding of distribution could preserve all the
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information about distribution with characteristic kernel; 2) basic op-
eration on distribution can be done by means of inner products in
RKHSs; 3) no intermediate density estimation is required. There-
fore, many algorithms benefit from eq. (3) such as maximum mean
discrepancy [13], kernel dependency measure [14], Hilbert space em-
bedding of HMMs [41] and kernel Bayes’ rule [10]. Despite that
the estimator in eq. (3) can be improved by utilizing Stein’s phe-
nomenon [26], this estimator is commonly used in practice. Further-
more, the convergence of empirical kernel embedding μκ(PS) to the
embedding of its population μκ(P ) in RKHS norm has been proven
in [22].

3.2 Mean map kernel

Note that kernel embedding of distribution does not result in any loss
of information by using characteristic kernel. The similarity between
distribution P and Q, called mean map kernel (MMK), is defined as
inner product in RKHS [25]:

KMMK(P,Q) := 〈μκ(P ), μκ(Q)〉Hκ = Ex,z[κ(x, z)], (4)

where x ∼ P and z ∼ Q.
When we have the empirical distribution PS and QT of im-

ages, similarly, the empirical mean map kernel is calculated as fol-
lows [25]:

KMMK(PS , QT ) =
1

nm

n∑
i=1

m∑
j=1

κ(xi, zj). (5)

It can be seen that MMK is a way of essentially aggregating the
pairwise similarity over two local feature sets. It possesses many nice
theoretical properties, e.g., it is a positive-definite kernel [12, 25].
However, the computational complexity of this estimator in eq. (5) is
O(mnd) where d is the dimension of local feature.

3.3 Maximum mean discrepancy kernel

An alternative metric between two distributions, maximum mean dis-
crepancy (MMD) [12], is to measure the distance between two dis-
tributions. Based on the same property of characteristic kernel, the
distance between two distributions, referred as two-sample prob-
lem [13], is defined as a RKHS norm:

D(P,Q) := ‖μκ(P )− μκ(Q)‖Hk
(6)

=
[
Ex,x′κ(x, x′) + Ez,z′κ(z, z

′)− 2Ex,zκ(x, z)
]1/2

,

where two independent random variables x and x′ are drawn from P ,
and the other two independent random variables z and z′ are drawn
from Q. Furthermore, x is independent of z.

When we have the empirical distribution PS and QT , a biased (but
asymptotically unbiased) estimator of MMD is obtained based on the
law of large numbers:

D(PS , QT ) =

[
1

n2

n∑
i,j=1

κ(xi, xj) +
1

m2

m∑
i,j=1

κ(zi, zj)

− 2

mn

n,m∑
i,j=1

κ(xi, zj)

]1/2

. (7)

If combining MMD with a level-2 kernel [25], an alternative
similarity between two distributions, called MMD-based kernel

(MMDK) or Gaussian-type RBF kernel [5] will be obtained when
the Gaussian kernel defined in eq. (2) is used again. It is formulated
as a universal kernel [5]:

KMMD(PS , QT ) = exp
(− γ′ ‖μκ(PS)− μk(QT )‖2Hκ

)
= exp

(− γ′D2(PS , QT )
)
, (8)

where γ′ is a parameter for the level-2 kernel [25]. It is worth men-
tioning that although the combination of two level kernels makes
MMD kernel more flexible on learning procedure, tuning these two
bandwidths is very costly since the computational complexity of es-
timator in eq. (7) is O((m+ n)2d).

4 Randomized Distribution Feature

Since the kernel embeddings μκ(PS) ∈ Hκ are infinite dimensional
for some characteristic kernel functions, kernel matrices are often
used for dealing with the dual optimization problem. However, the
construction of kernel matrices needs at least O(n2) computational
and memory requirement, prohibitive for large n. Therefore, we em-
ploy the random Fourier feature to obtain a low-dimensional repre-
sentation of μκ(PS) [22] in order to avoid invoking the dual opti-
mization. Easy to implement, the proposed method possesses a lot
of additional advantages including vectorial representation, efficient
computation, nice theory guarantee and competitive performance.

Assume that kernel function κ is real-valued and shift-invariant,
Bochner’s theorem [38] shows that for any x, z ∈ X :

κ(x, z) = 2CκEw,b[cos(〈w, x〉+ b) cos(〈w, z〉+ b)], (9)

where w ∼ 1
Cκ

pκ, b ∼ U [0, 2π], pκ : X → R is the positive and
integrable Fourier transform of κ, and Cκ =

∫
X pκ(w) dw [22]. In

this paper, Gaussian kernel in eq. (2) which is a shift-invariant kernel
is approximated by eq. (9), if setting pκ(w) = N (w|0, 2γI) and
Cκ = 1 [22].

Sampling t times from pκ(w) and U [0, 2π], concretely, we have
the parameters {(wl, bl)}tl=1. The kernel mapping κ(x, ·) is then ap-
proximated by the following formula

κF(x, ·) =
√

2

t

[
cos

(〈w1, x〉+b1
)
, . . . , cos

(〈wt, x〉+bt
)]T ∈ R

t,

(10)
which is the low-dimensional representation of kernel mapping func-
tion κ(x, ·) in a t-dimensional space through random Fourier fea-
ture [36, 37]. This random Fourier feature has been widely used to
approximate kernel function in many applications [4, 20, 21] since
its computation is more efficient than those of kernel methods.

By eq. (10), the empirical kernel embedding μκ(PS) is further
approximated by

μF
κ(PS) =

1

n

n∑
i=1

κF(xi, ·) ∈ R
t. (11)

This estimator has been studied in cause-effect inference [22] and
heuristically used in match kernel [2]. Since it represents a distri-
bution by random Fourier feature into a vector, we call it the ran-
domized distribution feature (RDF) in this paper. It is noticeable that
this estimator is efficient because its computational complexity is
O(ndt).

In the following two subsections, we will show how to use RDF to
approximate the MMK and MMD between two distributions.
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4.1 RDF based similarity

Given the two local feature sets S and T from two images and the
sampled parameters {(wl, bl)}tl=1, vectorial feature IRDF of image
is represented by eq. (11). The similarity between two RDFs of im-
ages could be formulated as inner product:

KRDF = 〈μF
κ(PS), μ

F
κ(QT )〉. (12)

It is obvious that the similarity well approximates to MMK and is
easy to implement. The computational complexity of this similarity
is O((m+ n)dt) since it is linear with respect to the size of sample
sets. The convergence of the similarity based on RDF to MMK is
justified in the following theorem.

Theorem 1 For any shift-invariant kernel κ, for the given two em-
pirical distributions PS of P and QT of Q on X ,respectively, and
any δ > 0, we have

∣∣∣KMMK(P,Q)−KRDF(PS , QT )
∣∣∣

≤ 2

√
2 log(

2

δ
)(
1

n
+

1

m
+

1

t
),

(13)

with the probability greater than 1 − δ over {xi}ni=1, {zj}mj=1, and
{(wl, bl)}tl=1.

Furthermore, the expected absolute error is

E

∣∣∣KMMK(P,Q)−KRDF(PS , QT )
∣∣∣

≤ 2

√
2π(

1

m
+

1

n
+

1

t
).

(14)

Proof to this theorem is attached in Appendix. Theorem 1 shows that

the similarity based on RDF converges to MMK at a rate of O(m− 1
2 )

(O(n− 1
2 )) with respect to the size of samples and O(t−

1
2 ) with re-

spect to the dimension of low-dimensional embedding space.

4.2 Doubly RDF based similarity

This subsection introduces how to approximate the MMD by RDF.
Similar to the introduction of MMD at Sec 3.3, the distance between
two distributions represented by RDF is formulated as the Euclidean
distance:

DRDF(PS , QT ) =
∥∥∥μF

κ(PS)− μF
κ(QT )

∥∥∥ . (15)

Compared to MMD in eq. (7), this distance can be computed ef-
ficiently since the computational complexity of this distance is
O((m + n)dt), which is linear with respect to the size of sample
sets. The convergence of DRDF(PS , QT ) to the MMD D(P,Q) is
shown in the following theorem.

Theorem 2 For any shift-invariant kernel κ, s.t., supx∈X κ(x, x) ≤
1, for the given two empirical distributions PS of P and QT of Q on
X , respectively, and any δ > 0, we have

DRDF2
(PS , QT )−D2(P,Q)

≤ [ 1
n
+

1

m

]
+ 4

√
log(

1

δ
)(
9

n
+

9

m
+

16

t
),

(16)

with the probability greater than 1 − δ over {xi}ni=1, {zj}mj=1 and
{(wl, bl)}tl=1.

Furthermore, the expected error is

E

[
DRDF2

(PS , QT )−D2(P,Q)
]

≤ [ 1
n
+

1

m

]
+

√
2π(

9

n
+

9

m
+

16

t
).

(17)

The proof for this can be seen in the Appendix. Theorem 2 im-
plies that the distance based on RDF converges to MMD at a rate of

O(m− 1
2 ) (O(n− 1

2 )) with respect to the size of samples and O(t−
1
2 )

with respect to the dimension of low-dimensional embedding space.
Once RDFs of images are constructed, the similarity between two

images is also formulated as

κ′(μF
κ(PS), μ

F
κ(QT )) = exp

(− λ′DRDF2
(PS , QT )

)
, (18)

which approximates to MMD kernel.
However, there is still a level-2 kernel κ′ contained in this simi-

larity. It is observed that eq. (18) can also be represented in a low-
dimensional embedding space again by using the random Fourier
feature, we thus propose an alternative way to represent the image
as a vector by using the random Fourier feature twice, called doubly
randomized distribution feature (DRDF) in this paper. It is defined
as follows:

IDRDF = κ′F(μF
κ(PS), ·) ∈ R

t′ , (19)

where κ′F : Rt → R
t′ and t′ is the dimension of low-dimensional

embedding space for approximating the RHKS Hκ′ associated with
kernel function κ′. In this way, the similarity in eq. (18) can be easily
calculated by following inner product:

KDRDF(PS , QT ) = 〈IDRDF
PS

, IDRDF
QT

〉. (20)

where the computational complexity of this estimator is O((m +
n)dt + tt′). Compared to eq. (8), there is no parameter to be tuned
in eq. (20), resulting in high efficiency of computing DRDF.

4.3 Summary of the proposed methods

To facilitate the understanding of the proposed methods, a workflow
is shown in Figure 1. As depicted in the figure, the local features of
sample image are assumed to be drawn from an unknown mixture
distribution which contains the scene features and human activity
features to describe the event [19]. From bottom to top, the similarity
would be more accurate as increasing dimension of low-dimensional
embedding space into infinity, but the computational cost will be-
come more expensive. From left to right, level of kernel increases
in the methods with more flexibility. Technically, the level of ker-
nel can be more than 2. Most importantly, each distribution is well
represented by a vector.

5 Experiment

This section presents the application of proposed methods on image
classification and distribution regression with scalar response.

5.1 Image Classification

In this section, we show the empirical performance of the proposed
(doubly) randomized distribution feature in three real-world image
classification tasks.

For image classification tasks, the images are represented as “sets
of features”(SOF), e.g., sets of unordered local feature vectors. The
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128-dim SIFT
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t
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t′

kF(x, ·) μFk (PS) k′F(μF(PS), ·)

Embedding kernel Level-2 kernel

k′(μk(PS), ·)
MMK MMDK

RDF DRDF

x ∼ P

k′(x′, ·)

k′F(x′, ·)

Figure 1. Workflow of the proposed methods. From bottom to top, the similarity would be more accurate and computational cost would be more expensive.
From the left to right, level of kernel increases in the methods. Note that the red star denotes the mean point of red points.

proposed methods convert SOF into a vectorial representation like
BoW. Therefore, it can be used off-the-shelf in conjunction with any
learning algorithm for subsequent image classification. In this paper,
we take multi-class SVM as the learning algorithm. For comparison,
several algorithms are chosen from the histogram-based model and
the metric-based model as follows:
The histogram-based model The BoW model is taken as the
baseline algorithm. When we employ linear kernel and Gaussian ker-
nel, the methods are called BoW L and BoW G respectively. For the
fair comparison with other methods, the Euclidean distance is used
in BoW G method. The number of visual words is set as 1000 unless
noted otherwise.
The metric-based model Three algorithms of the metric-based
model, MMK [25], MMDK [25] and the state-of-the-art nonpara-
metric divergence estimator NPKL [34], are employed for compar-
ison. MMK has only one parameter λ to be decided, and MMDK

has two parameters λ and λ′ for embedding kernel and level-2 ker-
nel respectively. As for NPKL [34], the nonparametric Rényi-α di-
vergence between two distributions is used to approximate the KL
divergence by setting α = 0.99. Compared to MMD, the divergence
estimated by NPKL is non-symmetric. Therefore, the kernel matrix
based on nonparametric divergence should be projected to be a sym-
metric positive semi-definite matrix by symmetrizing the estimated
Gram matrix and then projecting to the core of positive semi-definite
matrices [15].
The RDF-based model The proposed RDF and DRDF are calcu-
lated based on our proposed (doubly) randomized distribution fea-
ture. Both dimensions of low-dimensional embedding space t for
approximating embedding kernel and t′ for approximating level-2
kernel are set as 1000 in this paper unless noted otherwise. γ and γ′

in the Fourier transform pκ and pκ′ are calculated using the median
trick separately [22]. For a given t (and t′ when used), the similarity
matrix we used in experiments is the average of 10 times repetition
considering the random sample of w and b.
Parameter setting For BoW L, RDF and DRDF, we use their
similarity matrices directly. For other methods, γ in Gaussian kernel
defined in eq. (2) is chosen from γ0 ×{2−9, 2−8, . . . , 29}, where γ0
is estimated by median trick. The penalty to points within the mar-
gin C is chosen from {2−7, 2−6, . . . , 24}. C and (when used) γ are
chosen through joint 3-fold cross-validation on the training set. Note
that there are two γ for different level Gaussian kernel in MMDK, it
is pretty hard to tune these two γ by cross-validation because of the
high computational cost of MMDK. According to the strategy used
in [25], the best γ in MMK obtained by cross-validation is used for

embedding kernel in MMDK, the γ′ in level-2 kernel is then tuned
by cross-validation. Finally, the 5th nearest neighbor in these estima-
tors is used according to the suggestion in [34].
Feature extraction Local features are extracted as follows. The
SOF representation of an image is based on the dense SIFT descrip-
tors where step size 10 is used to sample image patches and the size
of each patch is 12 in this paper unless noted otherwise. We only
use the grayscale images to extract SIFT features and each image is
represented by a set of 128-dimensional feature vectors. In order to
reduce computational cost of the metric-based model, the dimension
of SIFT is reduced by principal component analysis in our experi-
ments, preserving 80% variance [34]. Note that each SOF may have
different size, depending on the size of image.
Assessing running time For assessing the computational effi-
ciency, each method was implemented in MATLAB� 2014b and
executed on a server which has a total RAM of 512 GB and four
AMD Opteron 6378 processors, each of which contains 16 cores.
The running time of each algorithm for constructing the similar-
ity/distance/divergence matrix is assessed in this paper.
Algorithm implementation Multi-class SVM in LibSVM pack-
age [3] is employed for image classification tasks in this paper. Be-
sides, feature extraction of image and K-means use the PHOW and
kmeans functions of the VLFEAT package [44] repectively. Further-
more, the code of NPKL is provided by [34] and the codes of MMK,
MMDK and the proposed (D)RDF are implemented in MEX C++
files which are invoked by MATLAB.

5.1.1 Description of three benchmarked datasets

In this subsection, we will describe three benchmarked datasets for
different image classification tasks.

ETH-80 dataset [17] is widely used for object classification. This
dataset contains 8 categories of objects. Each category has 10 dif-
ferent objects, and each object has 41 images from different view
angles. Here we can suppose that the images with different view an-
gles are drawn from the same distribution of that object. Moreover,
all the images from one category could empirically describe the dis-
tribution of that category. Following [34], we extract dense SIFT
descriptors in each patch of size 6 for the whole 3280 images in our
experiments. The purpose of this experiment is to classify these ob-
jects into the 8 categories. In order to save the computational cost of
the metric-based model, SIFT features are reduced to 29 dimensions
by PCA in this experiment. Thus, each image is represented by a set
of 576 29-dimensional features and this dataset produces 1, 889, 280
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Figure 2. Accuracies on (a) ETH-80 dataset, (b) OT dataset and (c) SE dataset.

SIFT features in total.
OT data set [29] we consider here is a widely used benchmark for

scene classification. In general, a scene image can be described by a
distribution of local features, e.g., the proportion of sky, water, tree,
etc. OT dataset includes 8 outdoor scene categories: coast, forest,
highway, inside city, mountain, open country, street and tall build-
ing. There are 2688 images in total, and each image is in 256× 256
pixels. The purpose of this dataset is to classify test images into
one of the categories. The original SIFT features are reduced to 30-
dimension by using PCA. A typical image is thus represented by 484
30-dimensional local features, which means a total of 1, 300, 992
SIFT features are extracted from this dataset.

UIUC Sport Event (SE) datasets [19] is considered in the third
experiment since the various foreground activities of this dataset
make it more difficult than other traditional scene classification, e.g.,
the OT dataset we used above. This dataset contains Internet im-
ages of 8 sport event categories: badminton, bocce, croquet, polo,
rock climbing, rowing, snowboarding, and sailing. Each image can
be viewed as a mixture distribution of scene features and human ac-
tivity feature to describe the event [19]. The number of images in
each category varies from 137 to 250. We use all the 1574 images in
experiments. As the size of images varies, the number of local fea-
tures in each SOF varies from 88 to 484. As a result, there are totally
535, 678 SIFT features, each of which is reduced to 34 dimension.

5.1.2 Classification accuracy

For fair comparison and saving computational cost of metric based
model, we employ 2-fold cross-validation to split data, which means
50% of data set for training and remaining 50% for testing. The av-
erage performance of 20 random runs is reported in Figure 2. From
these three experimental results, it can be seen that the metric- and
RDF-based methods outperform BoW model since the quantization
in BoW results in the loss of information—potentially a lot of infor-
mation. As the similarities based on RDF and DRDF are the approx-
imators to MMK and MMDK respectively, it is not difficult to see
that DRDF and RDF perform slightly worse compared with MMK

and MMDK. These results justify that our proposed (D)RDF achieve
competitive performance with the metric-based model and better per-
formance than that of BoW.

In order to show whether the differences between the proposed
methods and their corresponding versions in metric-based model are
significant, a paired t-test at the significant level 5% is performed on
these three real-world datasets. With this significant test, the result
shows that RDF and MMK achieve statistically same performance
on the ETH-80 and OT datasets. Meanwhile, DRDF and MMDK are

statistically significant on these three datasets. A possible reason is
that random Fourier feature is used twice in DRDF, leading to the
loss of much more information for prediction when compared with
RDF. Note that the t-test relies on the pre-specified dimension of
vectorial representation in the proposed methods. Theorem 1 and2
indicate that RDF and DRDF converge to MMK and MMDK re-
spectively as the dimension of vectorial representation increases.

Comparisons between algorithms in each model show that non-
linear feature, i.e. mapped into kernel feature space, achieves higher
accuracy than original feature space. It can be noticed that NPKL

achieves best performances on two of three datasets since its non-
parameric estimation of divergence based on k-nearest neighbor. Re-
member that the metric-based model suffers from the expensively
computational cost.

5.1.3 Effect of parameters

We examine the effect of parameters upon the performance of
the proposed (doubly) randomized distribution feature on ETH-80
dataset.
Dimension of vectorial representation For fair comparison, the
number of visual words in BoW, the dimension of embedding space
t in RDF and another dimension t′ in DRDF are set as the same
value since this is the dimension of vectorial representation of each
image. To analyze the influence of this value, we vary it from from
10 to 10000 and report the results in Figure 3(a). It can be seen that
1) the (doubly) randomized distribution feature work better than his-
togram representation of BoW and 2) all the algorithms converge
when the dimension is greater than 1000. Note that BoW has not de-
generated in performance as the dimension increases because 10000
is still small compared to the number of the all SIFT features ex-
tracted from this dataset.
Running time as the dimension increases Running time for con-
structing the similarity/distance matrices versus the dimension of
image representation is reported in Figure 3(b). Since BoW L and
BoW G spend almost the same time constructing similarity matrix
and distance matrix, we combine them as one to show their running
time. From Figure 3(b) it can be seen that the BoW needs higher
computational cost than RDF and DRDF, especially when the num-
ber of vectorial representation gets large. DRDF needs more time
than RDF slightly since the random Fourier feature is applied twice
in DRDF.
Effect of two dimensions t and t′ in DRDF To show the effect
of DRDF caused by two dimensions t and t′, a subset of 400 images
is used to tune these two dimensions in order to reduce storage size.
The effect of DRDF with various t and t′ is shown in Figure 3(c). It
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Figure 3. Figures are (a) Varying the dimension of vectorial feature of images; (b) Running time for constructing the similarity matrices; and (c) Sensitivity
of DRDF with respect to t and t′.

can be seen that both dimension t and t′ are important to the perfor-
mance of DRDF, and dimension t tends to have more impact on the
predictive performance compared to dimension t′. This conclusion
coincides with effect of the two bandwidths in MMDK [25].
Influence of dimension reduction In order to investigate the influ-
ence of dimension reduction via PCA, we also perform experiments
on raw SIFT features which are 128-D feature and show the exper-
imental results in Table. 2. Due to expensively computational cost
of the metric-based model, the performances of MMK, MMDK and
NPKL are not included here.

Table 2. Classification accuracies and their standard deviations (in brackets)
on three benchmarked datasets with raw SIFT features.

Datasets BoW L BoW G RDF DRDF

ETH-80 0.9464
(0.0165)

0.9508
(0.0127)

0.9612
(0.0091)

0.9730

(0.0113)

OT 0.8506
(0.0117)

0.8569
(0.0103)

0.8701
(0.0145)

0.8749

(0.0146)

SE 0.7444
(0.0245)

0.7553
(0.0261)

0.7807
(0.0229)

0.7880

(0.0160)

By comparing classification accuracies on raw SIFT features as
shown in Table. 2 and accuracies with pre-proceeding by keeping
80% variance as reported in Figure 2, we can see that each algorithm
gains slightly improvement on its raw SIFT feature. On average,
BoW-based algorithms improve about 1.5% while RDF-based ones
improve only about 0.5%. We notice that RDF-based algorithms still
achieve better performance than that of BoW-based algorithms on
raw SIFT features. This means that although reducing the dimension
of SIFT features is not a necessary step, it is worth doing this step so
that the proposed algorithms can attain lower computational cost in
the dimension-reduced space.

5.1.4 Running time over three datasets

In this subsection, we compare the running time of each algorithm
for constructing the similarity/distance/divergence matrices over the
aforementioned four datasets by using their whole samples.

Running time of each algorithm is reported in Table 3. We can
see that the metric-based algorithms consume more computational
time than other algorithms do for attaining good performance. Even
though BoW saves more time than the metric-based models, it has
the worst performance among these algorithms we used since a lot
of information may be lost in the quantization process. To conclude,
our proposed algorithms require less computational time yet achieve

Table 3. Running time among different algorithms (seconds).
Dateset BoW NPKL MMK MMDK RDF DRDF

ETH-80 146 10277 4066 11924 5.9 17.5
OT 114 5171 1812 5227 3.8 11.0
SE 70 1022 352 1045 2.0 4.7

Average 110 5490 2076 6065 3.9 11.0

competitive predictive performance as the metric-based models do.
More specifically, our proposed RDF and DRDF are at least 10 times
faster than BoW in vectorial representation with achieving higher
accuracies, and at least 500 times faster than the metric-based models
with competitive performance on average.

5.2 Application on learning problems on
distribution

Besides image classification, we also apply randomized distribution
feature to learning problems on distribution. Distribution regression
with scalar response [35] is considered here where each input is dis-
tribution and output is the scalar response. The setup of this exper-
iment is to learn the skewness of Beta distribution when given their
sample set. We generated 300 sample sets from Beta(a, b) distribu-
tions where a was varied between [3, 20] randomly and b was fixed
to be 3. We used 200 sample sets for training and 100 for testing.
Each sample set consisted of 500 distributed i.i.d. points drawn from
Beta(a, 3). Note that the skewness of Beta(a, b) can be calculated as
2(b−a)
(2+a+b)

√
1+a+b

ab
.

Figure 4. Skewness of Beta distribution

In this experiments, we used a 20-dimensional random distribution
feature to represent a Beta distribution and regressed this vectorial
representation to its skewness by least squared regression method.
Figure 4 displays the predicted values for the 100 test sample sets.
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Here we only report the result of RDF, because RDF has provided an
accurate representation of distribution, and DRDF is to some extent
a nonlinear regression with RDF. This experiment shows the pro-
posed method could make learning problem on distribution become
a traditional machine learning problem whose input is vector. More
real-world applications can be concluded as the learning problems on
distribution and benefited from our proposed features, such as count-
ing the pedestrian or cells from a given image [18] and detecting
anomaly group [27].

6 Conclusion and Discussion

In this paper, we introduce the randomized distribution feature to
represent distribution. In this manner, the underlying distribution of
local features extracted from images can be represented as a vector
in image classification. Furthermore, we propose an alternative way
to represent image by a doubly randomized distribution feature for
further improving predictive performance. We also justify the con-
vergences of the similarity and distance based on RDF. Our recom-
mended feature representation of images inherits the advantages of
both the histogram-based model and the metric-based model. It has
vectorial representation and computes efficiently like BoW model,
and has nice theory guarantee and competitive performance as the
metric-based model. Experiments in three benchmark datasets jus-
tify these strengths of our proposed approaches. Furthermore, the
proposed features could make learning problems on distribution be-
come traditional machine learning problems where each input is a
vector.

Compared with VLAD [1] / FV [31] that attempt to learn dis-
criminant information for image classification task, our proposed
method focuses on a general representation of distribution that could
suit for not only image classification, but also other tasks such as
distribution regression. To consider the data structure of distribu-
tion, a data-dependent random distribution feature based on Nyström
method [46] deserves further studying. Theoretically, it is also of in-
terest to derive tight error bound of convergence of similarity and
distance based on RDF according to [42].
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APPENDIX

Proof 1 ( to Theorem 1) The similarity based on RDF is calculated
as follows:

KRDF(PS , QT ) =
2

nmt

n,m,t∑
i,j,l=1

[
cos(〈wl, xi〉+bl) cos(〈wl, zj〉+bl)

]
.

Taking expectation over xi, zj , (wl, bl), we derive the following
equality

Exi,zj ,wl,blK
RDF(PS , QT )

=
1

nmt

n,m,t∑
i,j,l=1

Exi,zjEwl,bl2
[
cos(〈wl, xi〉+ bl) cos(〈wl, zj〉+ bl)

]

=Ex,zκ(x, z) = KMMK(P,Q), (21)

where Bochner’s theorem in eq. (9) is applied here. Eq. (21) indicates
that KRDF(PS , QT ) is an unbiased estimator of KMMK(P,Q).

By introducing a variable Δ to measure the difference between
KRDF(PS , QT ) and KMMK(P,Q), we have

Δ = KRDF(PS , QT )−KMMK(P,Q) (22)

=
1

nmt

n,m,t∑
i,j,l=1

[
2 cos(〈wl, xi〉+ bl) cos(〈wl, zj〉+ bl)− Ex,zκ(x, z)

]
.

We first provide an upper bound on the difference between Δ
and its expectation. Note that changing either of xi, zj , (wl, bl) in
eq. (22) results in changes in magnitude of at most 4

n
, 4

m
, or 4

t
,

respectively. We can then apply McDiarmid’s theorem [24], given
a denominator in the exponent of n( 4

n
)2 + m( 4

m
)2 + t( 4

t
)2 =

16mn+nt+mt
mnt

, to obtain

P
[∣∣Δ− Exi,zj ,wl,blΔ

∣∣ ≥ ε
]
≤ 2 exp

( −mntε2

8(mn+ nt+mt)

)
.

Let δ = 2 exp( −mntε2

8(mn+nt+mt)
) > 0, we get ε =

2
√

2 log( 2
δ
)( 1

n
+ 1

m
+ 1

t
). Remember that Exi,zj ,wl,blΔ = 0 as

shown in Eq. (21), thus at least 1− δ, we have

∣∣Δ∣∣ ≤ 2

√
2 log(

2

δ
)(
1

n
+

1

m
+

1

t
). (23)

So we derive the first inequality of theorem. Next we will derive
the second inequality, i.e., the expected absolute error between
KRDF(PS , QT ) and KMMK(P,Q). The expected absolute error is

E
∣∣Δ∣∣ =

∫ ∞

0

P
[∣∣Δ∣∣ ≥ ε

]
dε (24)

≤
∫ ∞

0

2 exp
( −mntε2

8(mn+ nt+mt)

)
dε = 2

√
2π(

1

m
+

1

n
+

1

t
).

Here eq. (24) is from the fact that expectation over non-
negative probability distribution, i.e., E[X] =

∫∞
0

xfX(x) dx =∫∞
0

P [X ≥ x] dx, ∀x ≥ 0. �

Proof 2 ( to Theorem 2) This proof resembles Proof 1. We first
bound the differerence between DRDF2

(PS , QT ) and D2(P,Q) by
introducing a variable Δ as follows

Δ = DRDF2
(PS , QT )−D2(P,Q)

Similarly, changing either of xi, zj or (wl, bl) results in changes
in magnitude of at most 12

n
, 12

m
, or 16

t
, respectively. Applying Mc-

Diarmid’s theorem [24] gives a denominator in the exponent of
n( 12

n
)2 +m( 12

m
)2 + t( 16

t
)2 = 256mn+144t(n+m)

mnt
, to obtain

P
[
Δ− Exi,xi′ ,zj ,zj′ ,wl,blΔ ≥ ε

]
≤ exp

(
− mntε2

128mn+72t(n+m)

)
.

Different from Proof 1, DRDF2
(PS , QT ) is asymptotically unbiased

estimator and the expectation over the difference is bounded by

Exi,xi′ ,zj ,zj′ ,wl,blΔ ≤ 1

n
+

1

m
.

Thus, we have the following inequality

P
[
Δ ≥ [

1

n
+

1

m
] + ε

]
≤ exp

(
− mntε2

128mn+ 72t(n+m)

)
.

The two inequalities in Theorem 2 can be derived from above in-
equality similarly to Proof 1. �

A detailed version of proof to theorems 1 and 2 can be
found at http://www.iipl.fudan.edu.cn/˜zhangjp/
supp/rdf_sup.pdf.
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