
Schema-Based Debugging of Federated Data Sources
Andreas Nolle1 and Christian Meilicke2 and Melisachew Wudage Chekol2 and

German Nemirovski1 and Heiner Stuckenschmidt2

Abstract. Information explosion leads to continuous growth of data
distributed over different data sources. However, the increasing num-
ber of data sources increases the risk of inconsistency. In such a fed-
erative setting, description logics can be applied to define a central
schema that serves as a conceptual view comprising and extending
the semantics of each data source. Consequently, each data source is
treated as a single knowledge base that is integrated in a federated
knowledge base. Following this idea, we propose an approach for
automated debugging of federated knowledge bases that targets the
identification and repair of inconsistency. We report on experiments
with a large distributed dataset from the domain of library science.

1 Introduction

The Linked Open Data (LOD) cloud grows continuously. However,
the more data is available, the higher is the probability of inconsis-
tency. Besides local clashes within data sources, two (or more) data
sources can be contradictory. In the context of library science, for
instance, one data source may catalogue a publication correctly as
a paper, whereas in another source it is mistakenly defined as pro-
ceedings. One approach to tackle this problem is the use of feder-
ated data or information integration, where a central schema serves
as a conceptual view that comprises and extends the semantics of
each integrated data source. As a consequence, the central schema
and its mappings to the different schemas which are used in the inte-
grated data sources represent the interface to the distributed data. By
using these mappings, original queries (mainly referring to the cen-
tral schema) can be transformed into queries referring to the related
schema of each data source. Thus, clients do not have to be aware of
the local schema in each integrated data source [24].

Let us illustrate this by the following example. We will use this
example throughout the remainder of the paper.

Example 1 Let T be a central schema and A1, A2, and A3 denote
three distributed data sources. T contains the following axioms.

Book � Paper � Publication Paper � ¬Book
Proceedings � Book Book � Paper � ¬SlideSet
∃isPartOf � Paper ∃isPartOf − � Proceedings

The three data sources contain the following assertions:
A1 A2 A3

Paper(I1) Paper(I1) SlideSet(I1)

isPartOf (I1,AI15) Proceedings(I1) SlideSet(I2)

Paper(I2) isPartOf (AI15, I1)

1 Albstadt-Sigmaringen University, Germany,
email: {nolle, nemirovskij}@hs-albsig.de

2 Research Group Data and Web Science, University of Mannheim, Germany,
email: {christian, mel, heiner}@informatik.uni-mannheim.de

The assertion that I1 is a Paper (in A1) and the assertion that I1 is
a SlideSet (in A3) are obviously in contradiction due to the axiom
Paper � ¬SlideSet in T . In addition, as the assertion Paper(I1)
can also be found in A2, it is also contradictory to A3. Furthermore,
we can entail this assertion in A1 from isPartOf (I1,AI15) and
the axiom ∃isPartOf � Paper in T .

Note that our example can easily be extended to the case where the
integrated data sources use different terminologies that are linked
by equivalence or subsumption axioms to an intermediary schema.
Without loss of generality, we will in the remainder of this paper as-
sume that there is only one central schema T which might be the
union of some data source specific schemas and an intermediary one
containing mappings between the data source specific vocabularies.
Furthermore, in our work, we will not address integration problems
related to the incoherency of T , i.e., we assume that T is coherent.
Note that there are other works that deal with debugging issues on
the terminological level, e.g., [10].

The main contribution of our approach is to exploit explicit but
also implicit redundancies caused by federating different sources to
verify or disprove assertions that are involved in logical conflicts and
to propose a resolution of these conflicts. In a setting with two or
more data sources, where each data source contains several thou-
sand assertions, it is challenging to propose a solution that takes the
dependencies between the involved conflicts in an appropriate way
into account. Based on techniques like query expansion (backward-
chaining) and by identifying inconsistencies via clash queries we first
collect all logical conflicts then we apply a two-phase debugging al-
gorithm to resolve the previously collected conflicts.

In particular, we apply a majority voting scheme. Based on this
approach we are able to resolve a subset of all conflicts in the first
phase of our debugging algorithm. The second phase uses the out-
come of the first phase to deduce a data source specific measure of
trust for certain types of assertions. Repairs of additional conflicts
can then be generated based on the statistical evidences gathered in
the first phase. We argue why our algorithm generates reasonable re-
pair plans and evaluate our approach against a large distributed LOD
dataset from the domain of library science.

The rest of the paper is organized as follows. In Section 2 we in-
troduce DL-LiteA as well as some fundamental terms and definitions
related to inconsistency detection in federated DL-LiteA knowledge
bases and conjunctive queries. In Section 3 we recall and extend our
previous approach of inconsistency detection in federated DL-LiteA
knowledge bases. Subsequently, we propose our algorithm for the
generation of repairs in Section 4 comprising the two phases of re-
solvable and learned repairs. In Section 5 we discuss some evaluation
results of our experiments with a large distributed LOD dataset. Be-
fore concluding in Section 7, we compare approaches related to our
work in Section 6.

ECAI 2016
G.A. Kaminka et al. (Eds.)
© 2016 The Authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/978-1-61499-672-9-381

381

2 Preliminaries

We briefly introduce our definition of federated DL-LiteA knowledge
bases (KBs), discuss basic notions related to inconsistency in DL
KBs, and describe conjunctive queries over DL-LiteA KBs.

2.1 Federated DL-LiteA Knowledge Bases

DL-Lite is a family of lightweight description logics proposed by
Calvanese et al. [4] with the aim to find a trade-off between expres-
siveness and reasoning complexity. This resulted in a family of lan-
guages comprising various DL-Lite logics where reasoning, such as
traditional DL reasoning services like checking KB satisfiability, can
be done in PTIME in the of size of the TBox and query answering
in AC0 in the size of the ABox. Furthermore, it has been shown that
members of the DL-Lite family are one of the maximal logics that
allow first-order logic (FOL)-rewritability of conjunctive query an-
swering and therewith a processing of query answering through stan-
dard database technology. For this study, we consider the sub-family
DL-LiteA, which has been especially designed for dealing efficiently
with huge amounts of extensional information.

In DL-LiteA concept, role, value-domain, and attribute expres-
sions are formed according to the following syntax:

B ::= ⊥C | A | ∃Q | δ(U) E ::= ρ(U)

C ::= �C | B | ¬B | ∃Q.C F ::= �D | T1 | . . . | Tn

Q ::= P | P− V ::= U | ¬U
R ::= Q | ¬Q

where �C denotes the top or universal concept, ⊥C the bottom or
empty concept, A an atomic concept, B a basic concept and C a gen-
eral concept. Similar to that, we have atomic roles denoted by P,
basic roles by Q and general roles by R. Atomic attributes are repre-
sented by U and general attributes by V whereas E denotes a basic
value-domain and F a value-domain expression. Furthermore, ∃Q
(unqualified existential restrictions) represent objects that are related
by role Q to some objects, ∃Q.C (qualified existential restrictions)
denote objects that are related by Q to objects denoted by concept
C, ¬ denotes the negation of concepts, roles or attributes and P− is
used to represent the inverse of role P. Concerning an attribute U
its domain is denoted by δ(U) and its range (set of values) by ρ(U).
Value domains are represented by T1 | . . . | Tn, where each Ti de-
notes a pairwise disjoint datatype of values and �D the universal
value-domain [4, 18]. In DL-LiteA a knowledge base K = 〈T ,A〉
consists of a TBox T also known as schema, and an ABox A, the
extensional knowledge part which represents a data source.

The TBox T contains a set of axioms of the form

B � C Q � R E � F U � V (funct Q) (funct U)

and the ABox A is a finite set of assertions of the form

A(a) P (a, b) U(a, v).

TBox assertions of the form B � C denotes concept inclusions,
Q � R role inclusion, E � F value-domain inclusion and U � V at-
tribute inclusion. Functionality assertions on roles and attributes in
T are denoted by (funct Q) and (funct U), respectively. TBox asser-
tions of the form B1 � B2 and Q1 � Q2 are called positive inclusions
(PI) whereas B1 � ¬B2 and Q1 � ¬Q2 negative inclusions (NI). For
ABox assertions a and b represent object constants and v represents
a value constant.

The semantics of DL-LiteA is given in terms of an interpretation
I = (ΔI , ·I), where ΔI (the domain) is a disjoint union of the two
non-empty sets ΔIO , the domain of objects, and ΔIV , the domain of

values; and ·I (the interpretation function) that maps each element in
the signature Σ (also known as alphabet or vocabulary) to a subset
of ΔIO and each value domain to a subset of ΔIV . DL-LiteA adopts
the unique name assumption (UNA), meaning that for every interpre-
tation I and constant pair c1 	= c2, we have cI1 	= cI2 . This means
that different constant names (encoded as IRIs) are interpreted differ-
ently and refer to different individuals. In terms of further semantics
we refer to the more precise definitions given in [4, 18].

In the context of federated settings, where each integrated data
source uses different terminologies that are linked by an intermediary
(central) schema, we can define a federated DL-LiteA KB as well as
federated ABox assertions as follows:

Definition 1 A federated DL-LiteA knowledge base is a DL-LiteA
knowledge base K with K = 〈Tc ∪

⋃
i∈F Ti,

⋃
i∈F Ai〉 where Tc is a

central TBox, each Ti is a TBox and Ai is an ABox in data source i
and F is a set of indices that refers to the federated data sources. A
federated ABox assertion is a pair 〈α, i〉 where α denotes an ABox
assertion stated in Ai. For compact presentation we will write only
T instead of Tc ∪

⋃
i∈F Ti and A instead of

⋃
i∈F Ai for the rest of

this paper.

2.2 Inconsistency in Description Logics

In description logics, an interpretation I that satisfies all KB asser-
tions in T ∪ A is called a model. The set of all models of K is
denoted by Mod(K) and if Mod(K) 	= ∅, we call K satisfiable or
consistent [2, 7]. Otherwise K is called inconsistent. K |= φ de-
notes that K logically entails or satisfies a closed first-order logic
sentence (formula) φ, if φI is true for every I ∈ Mod(K). If a set
of closed sentences denoted by F is entailed by K, we can also write
K |= F [21]. According to Kalyanpur et al. [11] an explanation (or
justification) for K |= φ is a subset K′ of K such that K′ |= φ while
K′′ 	|= φ for all K′′ ⊂ K′. An explanation can be understood as a
minimal reason that explains why φ follows from K. Analogously,
given an inconsistent knowledge base K, we are interested in expla-
nations for the inconsistency, i.e., minimal subsets K′ of K such that
Mod(K′) = ∅. More precisely, a minimal inconsistent subset (MIS)
denoted by K′ is a subset of K such that K′ is inconsistent while K′′
is consistent for all K′′ ⊂ K′. From our running example, we can see
that 〈T ,A1 ∪ A2 ∪ A3〉 is an inconsistent KB.

Example 2 One of the explanations for the inconsistency mentioned
in Example 1 is the set

{isPartOf (I1,AI15),SlideSet(I1),

Paper � ¬SlideSet , ∃isPartOf � Paper}.

A subset R ⊆ K is called a repair (or repair plan) of K, if K is
inconsistent and if K \ R is consistent. As shown in [20], a hitting
set over all MISs is a repair. Note that there is always a trivial repair
R = K. However, we are especially interested in those repairs that
remove a minimal number of assertions, i.e., R is a minimal repair if
R is a repair and each proper subset of R is not a repair.

2.3 Conjunctive Queries

A conjunctive query (CQ) q over a KB K is a Datalog expression of
the form q(x) ← conj (x, y). conj(x,y) denotes the body of q and is
a conjunction of atoms of the form A(x), P (x, y), x = y, or x 	= y
in which x and y are either constants in K or variables in x or y, and
A is a concept name or value-domain in K and P is a role or attribute

A. Nolle et al. / Schema-Based Debugging of Federated Data Sources382

name in K. In addition, x are distinguished variables that are part of
the head q(x) of a query q whereas y are non-distinguished variables
and do not occur in the head. If a variable does not correspond to the
set of distinguished variables and does not occur in at least two query
atoms, the variable is called unbound and is denoted by . Unions of
conjunctive queries (UCQ) are denoted by the expressions q(x) ←
conj1(x, y1), . . . , q(x) ← conjn(x, yn), where each conji(x, yi) is a
conjunctive query.

Example 3 The following query, over the KB in Example 1, selects
all papers that have been published in proceedings:

q(x) ← Paper(x), isPartOf (x,).

3 Inconsistency Detection

This section recalls our previous approach of efficiently detecting
inconsistency in federated KBs as first presented in [17]. We extend
this approach and focus on the generation of federated explanations.

3.1 Inconsistency Detection in DL-LiteA
To determine if a KB is consistent or not, we have to search for ABox
assertions, that are in conflict with the TBox or that are contradicting
each other given the TBox. Lembo et al. [14] identified a complete
set of six different patterns that cause clashes in DL-LiteA KBs:

(a) an instantiation of an unsatisfiable (incoherent) concept, role or
attribute such that T |= A � ¬A and A(a) ∈ A (respectively
T |= P � ¬P and P(a, b) ∈ A for roles, and T |= U � ¬U and
U(a, v) ∈ A for attributes)

(b) ABox assertions contradicting axioms that restrict the interrela-
tion of individuals such that T |= P � ¬P or T |= ∃P � ¬∃P
and P(a, a) ∈ A

(c) incorrect datatypes such that T |= ρ(U) � T, U(a, v) ∈ A and
vI /∈ TI

(d) ABox assertions contradicting negative inclusions such that, e.g.,
T |= A � ¬∃P and {A(a), P(a, b)} ⊆ A

(e) ABox assertions contradicting role functionality such that
(funct P) ∈ T and {P(a, b1), P(a, b2)} ⊆ A, where b1 	= b2

(respectively (funct P) ∈ T and {P(a1, b), P(a2, b)} ⊆ A,
where a1 	= a2, for the functionality of a inverse role)

(f) ABox assertions contradicting attribute functionality such that
(funct U) ∈ T and {U(a, v1), U(a, v2)} ⊆ A, where v1 	= v2

The distribution of huge amounts of data over several sources
makes state of the art methods for inconsistency detection, such
as tableau-based reasoning algorithms, hardly applicable (see [17]),
since they mostly require to have all the data in one place. We pro-
pose an alternative approach, comprising the formulation and evalu-
ation of federated clash queries.

3.2 Clash Query Generation

Based on the clash definitions given above and referring to the work
of Calvanese et al. [4] we define a mapping function ϕ to generate
queries for inconsistency detection out of relevant axioms from T .
The function ϕ maps concepts, roles and attributes into query atoms
as follows:

A �→ A(x) δ(U) �→ U(x,) P �→ P (x, y)
∃P �→ P (x,) ρ(U) �→ U(, y) P− �→ P (y, x)
∃P− �→ P (, x) T �→ T

Based on ϕ, the clash types (a)–(f) can be mapped into queries
(i)–(vi) as shown below:

(i) ϕ(A � ¬A) = q(x) ← ϕ(A),
ϕ(X � ¬X) = q(x, y) ← ϕ(X), where X ∈ {P,U},

(ii) ϕ(P � ¬P−) = q(x, y) ← ϕ(P), ϕ(P−) and
ϕ(∃P � ¬∃P−) = q(x) ← ϕ(∃P), ϕ(∃P−),

(iii) ϕ(ρ(U) � T) = q(x, y) ← U(x, y), datatype(y) 	= T ,
(iv) ϕ(C � ¬D) = q(x) ← ϕ(C), ϕ(D), where C,D ∈

{A, ∃P, ∃P−, δ(U)},
ϕ(R � ¬S) = q(x, y) ← ϕ(R), ϕ(S) and
ϕ(V1 � ¬V2) = q(x, y) ← ϕ(V1), ϕ(V2),

(v) ϕ(funct P) = q(x, y, z) ← P (x, y), P (x, z), y 	= z and
ϕ(funct P−) = q(x, y, z) ← P (y, x), P (z, x), y 	= z, and

(vi) ϕ(funct U) = q(x, y, z) ← U(x, y), U(x, z), y 	= z,

where A,P and U denote an atomic concept, an atomic role, and
an atomic attribute; x, y, z, are variables; ∃P, ∃P− and δ(U) are
concepts; R and S are roles; V1 and V2 are attributes; datatype(y)
is an external function which computes the datatype of a given data
value y; and T denotes a datatype of values, where each different
datatypes are pairwise disjoint. Except for the clash queries in (i), the
queries in (ii)–(vi) contain two atoms and an inequality constraint in
(v) and (vi) used as filters applied to the query answers. We refer to
the queries in (ii)–(vi) as two-atom queries.

Example 4 For the axiom Paper � ¬Book in Example 1, the map-
ping function ϕ generates the clash query: ϕ(Paper � ¬Book) =
q(x) ← Paper(x),Book(x).

According to the definition above, the mapping function ϕ gen-
erates UCQs that may contain inequalities (because of clash queries
in (v) and (vi)), that in general makes query answering intractable.
However, since those queries are of fixed length (two atoms and an
inequality expression), the complexity of checking KB satisfiability
by a reduction into query answering is in AC0 in the size of the ABox
and NLOGSPACE in the size of the KB as shown by Artale et al [1].

3.3 Clash Query Expansion

To ensure that all implicit knowledge is taken into consideration
when computing the answers, the original query is expanded. The
resulting set of expanded queries (UCQs) will contain atoms address-
ing all possible concepts, roles and attributes that implicitly provide
individuals of the originally requested type. For DL-LiteA KBs query
expansion (backward-chaining) of a general UCQ can be efficiently
done in PTIME in the size of the TBox [4].

Definition 2 Given a TBox T and a query q(x) in the signature of
T . An expansion of q(x) is a UCQ denoted by qexp(x) =

⋃
i qi(x),

that is a rewriting of q(x) w.r.t. T , such that 〈T ,A〉 |= q(a) iff A |=
qexp(a), for any ABox A and any tuple a of individuals in A.

Example 5 The expansion of the clash query in Example 4 is the
following UCQ:

qexp(x) ← Paper(x),Book(x),
qexp(x) ← Paper(x),Proceedings(x),
qexp(x) ← Paper(x), isPartOf (, x),
qexp(x) ← isPartOf (x,),Proceedings(x),
qexp(x) ← isPartOf (x,),Book(x),
qexp(x) ← isPartOf (x,), isPartOf (, x)

Subsumption axioms in DL-LiteA comprise only one element on
the left and one element on the right hand side, or can be normalized
to that form. Consequently, an expansion of a clash query is a UCQ

A. Nolle et al. / Schema-Based Debugging of Federated Data Sources 383

where each conjunct has one or at most two query atoms and an
inequality constraint.

Since qexp may comprise query atoms containing unbound vari-
ables, we replace those variables by new distinguished variables so as
to make precise distinctions between different instantiations of them.

3.4 Generating Federated Explanations

Computing all inconsistency explanations, introduced earlier as MIS,
requires to generate and expand all clash queries. The resulting UCQs
comprise not only the semantics of the central TBox but also of each
integrated data source. Thus, each atom of those queries may address
several data sources. Local MISs are detected by evaluating the ex-
panded queries directly against a data source. Federated MISs are
detected by distributing the atoms of the expanded queries as atomic
queries to the data sources. Consequently, we apply a simple federa-
tion algorithm where each query atom is evaluated at all data sources.

Example 6 According to that, the following federated queries
will be generated for the expanded query qexp(x,y) ← Paper (x),
isPartOf (y,x) (third conjunct of Example 5):

qexp(x, y) ← Paper(x), isPartOf (y,x)

q′(x) ← Paper(x) q′′(x, y) ← isPartOf (y,x)

A1, A2, A3 A1, A2, A3

The results of these queries are tuples of instances. However, we
are not interested in tuples of instances, but in the inconsistency ex-
planations (MIS) that can be derived from these results. Because of
that, the results of query pairs have to be joined and converted to
federated ABox assertions (see Example 7). Moreover, since we as-
sume that all of the terminological axioms are correct, we are only
targeting the subset of a MIS that contain only ABox assertions. In
the following we refer to such a subset of a MIS as a MISA (minimal
inconsistency preserving sub-ABox).

Example 7 The set of MISAs resulting from the evaluation of the
query in Example 6 is the set

{{〈Paper(I1), 1〉, 〈isPartOf (AI15, I1), 2〉},
{〈Paper(I1), 2〉, 〈isPartOf (AI15, I1), 2〉}}.

None of these operations has an impact on the complexity which
remains in AC0 in the size of the ABox and in NLOGSPACE in the
size of the whole KB, given a fixed set of data sources.

4 Repair Plan Generation

The generation of a repair plan is divided into two phases. In the first
phase we propose a partial repair plan following a simple majority
voting scheme (Section 4.1), while in the second phase (Section 4.2)
we try to repair the remaining conflicts following an approach guided
by the statistics gathered in the first phase.

4.1 Phase 1: Majority Voting

To resolve the identified contradictions we follow the assumption that
the more data sources are integrated, the higher is the probability that
correct assertions occur redundantly. Conversely, the probability that
an assertion is incorrect correlates with the number of contradictions
in which the assertion is involved.

Based on this assumption, we propose a greedy approach, given
in Algorithm 1, for generating repairs. The algorithm starts with the

Algorithm 1: GenerateResolvableRepairs(C)
Output: (partial) repair R resolved by majority voting
begin

R ← ∅
Cunary ← GetSingletonMISA(C)
foreach c ∈ Cunary do

R ← R∪ GetAssertion(c)
Cresolved ← GetResolvedMISAs(GetAssertion(c), C)
C ← C\Cresolved

while true do
Ccard ← DetermineCardinalities(C)
Cx ← GetResolvableMISAsWithMinCard(Ccard)
if Cx = ∅ then

break
foreach c ∈ Cx do

α ← GetAssertionWithMaxCard(c, Ccard)
R ← R∪ α

Cresolved ← GetResolvedExplanations(α, C)
C ← C\Cresolved

return R
end

trivial repair of a singleton MISA (resulting from clash type (b) or
(c)) by removing the only element in each singleton MISA. This re-
pair can also have an influence on the remaining steps, because the
element of a singleton MISA might also appear in a MISA with two
elements. The remaining part of the algorithm deals with a non triv-
ial repair of MISA with two elements. In the main loop the algorithm
first counts for each assertion in how many different MISAs it occurs.
We refer to the resulting number as a cardinality of an assertion. We
also compute the cardinality of a MISA which is defined as the sum
of the cardinalities of its two elements. We call MISAs that have ele-
ments with different cardinalities resolvable MISAs. With the help of
a majority voting heuristic, we can make a decision in favour of one
of the two elements of a resolvable MISA. We select all resolvable
MISAs with minimum cardinality and remove from these MISAs the
element with higher cardinality, which is the element that is involved
in more conflicts. Note that we resolve MISAs with minimum cardi-
nality first, to reduce the impact (of wrong decisions) on subsequent
decisions. After each removal operation we update the remaining set
of MISAs and repeat this procedure as long as resolvable MISAs can
be found. The algorithm terminates when no resolvable MISAs are
left to be repaired.

The algorithm is based on a heuristics that selects edges (MISAs)
with minimal weight and removes from such edges the vertex (as-
sertion) that is involved in more MISAs. Our algorithm runs in poly-
nomial time with respect to the number of vertices. It does not guar-
antee, even for the resolvable cases, to construct a minimal vertex
cover. The construction of a minimal vertex cover is known to be one
of Karps NP-complete problems [12].

Example 8 In our running example we have to deal with the feder-
ated assertions α1 to α8 listed as follows.

α1 = 〈Paper(I1), 1〉 α2 = 〈isPartOf (I1,AI15), 1〉
α3 = 〈Paper(I1), 2〉 α4 = 〈Proceedings(I1), 2〉
α5 = 〈isPartOf (AI15, I1), 2〉 α6 = 〈SlideSet(I1), 3〉
α7 = 〈Paper(I2), 1〉 α8 = 〈SlideSet(I2), 3〉
The set of MISAs C for this example is {{α1, α4}, {α1, α5},
{α1, α6}, {α2, α4}, {α2, α5}, {α2, α6}, {α3, α4}, {α3, α5},
{α3, α6}, {α4, α6}, {α5, α6}, {α7, α8}}. The assertion α1 has a

A. Nolle et al. / Schema-Based Debugging of Federated Data Sources384

cardinality of three because it appears in three MISAs; assertion α4

has a cardinality of four. Thus, MISA {α1, α4} has a cardinality of
seven. In the following we represent each assertion as a vertex in
a graph where each MISA is represented by an edge. This graph is
shown in the following to illustrate the iterations of Algorithm 1. Note
that we annotated the graph with assertion cardinalities, but omitted
MISA cardinalities due to the lack of space.

1
α7

1
α8

4

α4

3

α1

3

α2

5

α6

3
α3

4

α5

1
α7

1
α8

1

α1

1

α2

3

α6

1

α3

1
α7

1
α8

0

α1

0

α2

0

α3

As shown in the figure above, the algorithm needs three iterations to
construct a repair, i.e., to construct a vertex cover for the correspond-
ing conflict graph. Consequently, the resolvable repairs of our run-
ning example comprise α4, α5 and α6. Assertion α7 and α8 yield an
inconsistency, however, they are not conflicting with the other asser-
tions. This inconsistency cannot be resolved by Algorithm 1, because
α7 and α8 have the same cardinality which is one.

As illustrated in Example 8, the algorithm cannot resolve all logi-
cal conflicts. This will be the case, especially when the set of MISAs
contains some MISAs that are unresolvable (by comprising elements
having the same cardinalities) and are also not resolved during the
process of executing Algorithm 1 due to an overlap with a resolvable
MISA. Particularly, contradictory assertions of different values for a
functional role or attribute result in MISAs that are predestinated to
be unresolvable. How to deal with the remaining clashes is explained
in the next section.

4.2 Phase 2: Learned Repairs

In the second phase we use the statistical evidence, that is implicitly
available in the repair computed so far, to extend this repair. Sup-
pose that a large fraction of the assertions of type C(x) have been
removed from a data source Ai, while most of the assertions D(x)
in Aj have not been removed. Now suppose that we have a MISA
{〈C(a), i〉 , 〈D(b), j〉}. If we trust in the correctness of the repair
that we conducted so far, we are justified in removing 〈C(a), i〉 , be-
cause we have a higher trust in 〈D(b), j〉. Let us introduce the notion
of trust formally.

Definition 3 Given a federated knowledge base K = 〈T ,
⋃

i∈F Ai〉,
and a repair R computed by Algorithm 1. Let σ be either a concept,
a property or an attribute in the signature Σ of T , and let Ψ ⊆⋃

i∈F Ai be a set of federated assertions, then sas(σ,Ψ, i) is defined
as the subset of assertions in Ψ that use σ and originate from Ai.
The trust in σ with respect to i is defined as

trust(σ, i) = 1− |sas(σ,R, i)|
∣
∣sas(σ,

⋃
i∈F Ai, i)

∣
∣ .

Based on this definition we define the trust of a federated assertion
〈α, i〉 that uses σ as trust(〈α, i〉) = trust(σ, i).

Example 9 From the repair of Example 8 it follows that we have
trust(Paper, 1) = 1− 0

2
= 1 and trust(SlideSet, 3) = 1− 1

2
=

0.5. Thus, we remove α8 as a learned repair due to the fact that α7

has a higher trust.

This example shows how to apply the notion of trust to a single
MISA, however, the set of all remaining MISAs might still contain
overlapping MISAs. Therefore, we have to implement it as part of a
more general algorithm. In [19] the authors proposed a linear algo-
rithm for debugging terminological alignments. The proposed algo-
rithm can be applied to any debugging scenario where a complete set
of conflict sets, in our case the set of MISAs, is given. The algorithm,
which we sketch in the following, requires a complete ordering of
assertions that are involved in the remaining clashes. We derive this
ordering from the trust values.

The input to Algorithm 2 are the unresolved MISAs C, the previ-
ously computed repair R, and a trust-ordered list Atrust of all as-
sertions that occur in C. The algorithm iterates over Atrust in de-
scending order, thus, starting with an assertion α for which there is
no assertion with higher trust. In each iteration the algorithm deter-
mines all those MISAs that contain α. For each such MISA {α, β}
the assertion β is added to the repair R′ if the trust of β is lower
than the trust of α. Thus, we finally remove β for the reason that we
presented at the beginning of this section.

Algorithm 2: GenerateLearnedRepairs(C, R, Atrust)

Output: all learned repairs R′
begin

R′ ← ∅
foreach α ∈ Atrust do

C′ ← {{x, y} ∈ C | α ∈ {x, y}}
foreach {x, y} ∈ C′ do

β ← x if x 	= α otherwise y
if trust(α) > trust(β) then

R′ ← R∪ β
Cresolved ← {{x′, y′} ∈ C | β ∈ {x′, y′}}
C ← C\Cresolved

return R′
end

Algorithm 2 runs in the worst case in quadratic time with respect to
the number of vertices C (unresolved MISAs). Thus, the complexity
of the whole federated debugging approach, starting from the gener-
ation of the clash queries up to the the generation of resolvable and
learned repairs, runs in polynomial time.

Note that the algorithm will resolve all clashes if there is no MISA
comprising two assertions with the same trust value. However, this
will not always be the case. The repair of still remaining MISAs is
not addressed in this paper. A possible extension of our approach
could be the calculation of a general trust value for each data source
over all of its assertions. Alternatively, a user could decide upon the
problematic cases.

5 Experimental Evaluation

In order to evaluate the effectiveness of our approach we have set up
a large distributed LOD dataset from the domain of library science.
Specifically, we selected four LOD data sources, referred to as A1

to A4 in the following, and loaded their dumps into separate Virtu-
oso 7.2.2 instances (Open-Source Edition). In particular, these data

A. Nolle et al. / Schema-Based Debugging of Federated Data Sources 385

sources are FacetedDBLP3 (A1), BibSonomy4 (A2), RKB Explorer
ePrints Open Archives5 (A3), and RKB Explorer DBLP6 (A4).

Note that our implementation relies on the usage of standard
SPARQL interfaces and does not put any additional requirements on
the data sources. Since the OWL 2 QL profile is based on DL-Lite,
we have used it as specification language of our central TBox that
includes the TBoxes of each data source. Note that we have applied
some small modifications of the data source specific TBoxes to en-
sure that the federated TBox is coherent. Since the federated TBox
lacks some negative inclusions and functionality assertions, we have
added respective axioms to the central TBox.

In contrast to DL-LiteA (see Section 2.1), the standard ontology
language OWL, i.e., the OWL 2 QL profile, does not make the UNA,
however, OWL provides the explicit object property owl:sameAs to
express that two IRIs denote the same individual. Due to the fact
that LOD sources following this strategy to link same individuals,
we took the owl:sameAs assertions into account and modified our
dataset such that all individuals representing the same entity also
have the same IRI. Note that according to the work of Calvanese
et al. [6] it is, under some restrictions, even possible to take into
account owl:sameAs statements for query answering and retain the
FOL-rewritability. But on grounds of simplicity of our experimental
evaluation we embark on the strategy of resolving linked individu-
als by modifying the datasets. In addition to that, to gain a higher
overlapping of the data sources we detected duplicates, especially
by the unique attributes denoting the ISBN or the ISSN of a publi-
cation. The collection of the central TBox as well as the referenced
TBoxes is available online7. For legal reasons we are currently not
able to publish the final dataset of each integrated data source. Please
contact us if you are interested in these datasets.

Based on the federated TBox our algorithm generates 422 clash
queries, where 8 of which result from functionality assertions and
414 result from negative inclusions. Since some of those clash
queries, i.e., the queries resulting from negative inclusions, can be
implicitly derived by another clash query, the number of those clash
queries is reduced to 281. The expansion of the remaining 289 clash
queries results in 44,072 queries that have to be evaluated within
the generation of explanations. Note that we do not consider clash
queries of type (iii) in our evaluation, since they will produce only
singleton MISAs (resulting from clash type (c): incorrect datatypes)
whose resolution is trivial and not crucial in federated settings.

We have run our implementation of detecting and repairing incon-
sistency, called ClashSniffer, on a CentOS 6.7 virtual machine con-
sisting of 4x Intel Xeon CPUs (à 4 cores @ 2.50 GHz) and 128 GB
of RAM. The Virtuoso instances are hosted in an Ubuntu 14.04 LTS
virtual machine with 6x Intel Xeon CPUs (à 4 cores @ 2.60 GHz)
and 96 GB of RAM (16 GB of RAM are assigned to each Virtuoso
instance). The runtime for inconsistency detection and the generation
for appropriate explanations over all four data sources takes 80.1 min
(minutes), where 56.5 min are required for evaluating the query parts.
This runtime depends on the performance of the machines that host
the data sources. The runtime for repair generation takes 6 min for
the first phase and 12.2 min for the second phase.

Table 1 summarizes the characteristics of each data source and
depicts the results of our experimental evaluation. Beside showing
statistics for each data source on its own, the table shows two fed-

3 http://dblp.l3s.de
4 http://www.bibsonomy.org
5 http://foreign.rkbexplorer.com
6 http://dblp.rkbexplorer.com
7 http://www.researchgate.net/publication/299852903

Table 1. Results of MISAs and Repairs

�triples �C
-MISAs-

|R|
-resolvable

repair-

|R′|
-learned
repair-

rem.
MISA
rate

A1 72,372,256 3,266,765 46,128
(291,025)

1,187,461
(1,188,115)

54.72%

A2 17,765,873 1,096,337 4,654
(15,525)

246,289
(247,180)

76.0%

A3 166,320,474 12,016,391 1,024,414
(2,057,807)

420,081
(433,827)

79.26%

A4 27,897,291 26,504 521
(23,419)

4
(4)

11.62%

Σ 284,355,894 16,405,997 1,075,717
(2,387,776)

1,853,835
(1,869,126)

74.05%

F 256,458,603 16,605,398 1,109,524
(4,770,557)

3,971,584
(10,368,294)

8.83%

F ′ 284,355,894 18,146,950 1,993,136
(7,166,005)

3,267,659
(9,574,136)

7.75%

erated settings on which we have run our implementation of detect-
ing and repairing inconsistency. We have defined the first federated
setting F that comprises data source A1, A2 and A3, whereas the
second one, referred to as F ′, comprises all four data sources. The
runtimes presented in the previous paragraph refer to the F ′ setting,
which comprises more than 284 million triples. We analyze these
two settings in order to understand the impact of adding an additional
data source, since we expect that the availability of an additional data
source comprising complementary and potentially redundant infor-
mation should have a positive impact not only on the quality of the
repair but also on the quantity of MISAs solved by the repair. Note
that we compare the two federated settings also against the local set-
tings, where we apply the approach to each data source on its own.
For that reason we have also added a row to the table headed with the
Σ symbol, where we sum up the numbers for all single data sources.

The first data column of Table 1 illustrates the size of each data
source and each federated KB, respectively. The second column
depicts the number of detected clashes. The largest data source is
ePrints Open Archives (A3) with more than 160 million triples and is
also the data source with the highest number of local clashes. While
local clashes are dominant in the dataset, we can also see that more
conflicts can be detected by analyzing the data sources in a federated
setting. The numbers increase from ≈16.4 (Σ) to ≈16.6 (F) and
to ≈18.1 million clashes (F ′). The clashes detected in F ′ comprise
12,209,235 clashes (67.3%) that result from functionality assertions
where 0.5% of these are federated and 5,937,715 clashes (32.7%)
caused by negative inclusions with a rate of 28.3% federated clashes.

Figure 1 shows the number of all federated clashes (MISAs) and
how they are distributed on the pairs of data sources in setting F ′.
Note that each possible combination of data sources results in more
than 40,000 clashes. Despite the fact that both data source A1 and
A4 are based upon DBLP, it is interesting to see that these two data
sources produce 77% of all federated clashes. A reason for this could
be that the underlying DBLP dataset is parsed, converted, and inter-
preted differently and is mapped to distinct TBoxes.

The numbers in column three and four of Table 1 show the number
of resolvable and learned repairs that are generated by our algorithm.
The values in parenthesis represent the numbers of MISAs that are
resolved by the generated repair. Note that this number is often sig-
nificantly higher than the size of the repair, which indicates a high
overlap of the MISAs. The last column comprises the rate of remain-
ing clashes after our algorithm was applied. It is interesting to see
that the rate of remaining MISAs in the federated settings F and F ′

A. Nolle et al. / Schema-Based Debugging of Federated Data Sources386

A1 vs. A2 [55,377]
A1 vs. A3 [112,636]
A1 vs. A4 [1,341,479]
A2 vs. A3 [57,892]
A2 vs. A4 [58,489]
A3 vs. A4 [115,080]

Figure 1. Distribution of Federated MISAs

is significantly lower than applying our algorithm in a local setting
of each single data source. Adding the additional data source A4 (F
vs. F ′) results in a larger size of the resolvable repair but in a lower
size of the learned repair. Moreover, this results in a higher number
of new conflicts, but decreases also the relative number of remaining
MISAs. Another positive effect is, that MISAs that are not resolvable
in the first phase of F are now solved in the first phase of F ′, why
the number of the learned repair is decreased in F ′.

Table 2 highlights the data source specific impact of our approach.
We compare the size of the local repair for each Ai, taking only in-
consistencies caused by assertions from Ai into account, against the
size of the subset of the federated repair restricted to assertions from
Ai. We conducted the comparison for both resolvable and learned
repair of each federated setting F and F ′. We can see, for exam-
ple, that in the federated setting F the size of the resolvable repair
for A1 was increased by 13.59% and that the learned repair for A1

was increased by 66.95%. For this data source the effect of the addi-
tional data source in F ′ is evidenced, since the size of the resolvable
repair for A1 was increased by 1, 896.71% compared to the local
application of our approach at this data source. The reason for this
significant increase is not only the fact that more MISAs of data
source A1 can be solved (represented by the decreased rate of re-
maining MISAs), but also due to the decrease of the learned repair
by −70.61%. Hence, more MISAs of this data source become re-
solvable, while in the federated setting F these MISAs can be re-
solve only by the learned repair. This positive impact on the quality
of the repair and also on the quantity of MISAs solved by the repair
by an additional data source, comprising complementary and poten-
tially redundant information, is also reflected by data source A2. The
last row shows the values based on summing up the results for all
data sources. In average +84.04% are gained for the resolvable re-
pair and this has again an impact measured in terms of +68.55%
for the learned repair in F ′. Note that the federated setting has also
an impact on reducing the number of local MISAs due to the fact
that assertions from other data sources interfere with the assertions
from local MISAs. Overall, the rate of remaining MISAs can be sig-
nificantly reduced from originally 74.05% in local application (see
Table 1) to 8.57% in federated setting F ′. These numbers illustrate
the positive impact of the federated setting which allows to achieve a
significantly higher recall rate for detecting problematic assertions.

Table 2. Impact of Federated Debugging

F F ′

ΔR
resolvable

repair

ΔR′
learned
repair

rem.
MISA
rate

ΔR
resolvable

repair

ΔR′
learned
repair

rem.
MISA
rate

A1 +13.59% +66.95% 24.37% +1,896.71% -70.61% 22.81%

A2 +236.53% +3.1% 59.49% +287.22% +2.18% 59.49%

A3 +1.51% +498.46% 0.15% +1.52% +500.83% 0.05%

A4 – – – +37.24% -100.0% 11.62%

Σ +3.04% +156.25% 8.95% +84.04% +68.55% 8.57%

(funct title) [10,398,370]
ScientificEssay � ¬Book [5,196,519]
(funct numPages) [1,809,853]
ScientificEssay � ¬Thesis [374,005]
Book � ¬∃partOf [197,344]
misc. [170,859]

Figure 2. Axioms Causing Inconsistency

To give an insight into the generated MISAs as well as the resolv-
able and learned repair for federated setting F ′ we have done some
further analysis. Starting with the generated MISAs, the axioms caus-
ing inconsistency are depicted in Figure 2. As already mentioned,
most of the clashes result from functionality assertions, especially
for the attribute title . Most of the clashes that are caused by a nega-
tive inclusion result from the axiom ScientificEssay � ¬Book .

The computation of resolvable repair in the federated setting F ′
comprised 413 iterations of the while loop in Algorithm 1. The high-
est cardinality found was 18,189. The reason for this high cardinality
is that “Bioinformatics”8, which is a journal series comprising lots of
articles assigned in data source A1 and A4, is wrongly defined as an
article in data source A3.

After generating the resolvable repair the trust values for all con-
cepts, roles and attributes occurring in unresolved MISAs are calcu-
lated with respect to each data source. The top 5 of lowest trust values
derived are depicted in Table 3. Especially the two lowest trust val-
ues lead to the conclusion that assertions on volume attributes are
probably misused in A1 and A3. Having a more detailed look into
the datasets of those sources confirms this conclusion, since volume
attributes are in both data sources not used at the level of collec-
tions like proceedings, journals or books, but on the level of articles
published in a collection. The low trust values for volume attributes
reflect also the fact that the negative inclusion ScientificEssay �
¬Book is part of the top 5 axioms causing inconsistency (see Fig-
ure 2), since the expansion of Book comprise ∃volume .

Table 3. Top 5 of Lowest Trust Values

trust value data source σ ∈ Σ

0.1045 A3 http://purl.org/ontology/bibo/volume

0.2741 A1 http://swrc.ontoware.org/ontology�volume

0.8889 A1 http://swrc.ontoware.org/ontology�MasterThesis

0.9476 A2 http://swrc.ontoware.org/ontology�Booklet

0.9587 A2 http://swrc.ontoware.org/ontology�Unpublished

Finally, we have analyzed the remaining MISAs that are not solved
by our approach. All of them are not federated and are exclusively
caused by functionality assertions. Approximately, 53% of the re-
maining MISAs comprise the axiom (funct numPages) and 47%
the axiom (funct title).

To evaluate the quality of the generated repairs 100 randomly se-
lected MISAs of each phase in each federated setting are manually
evaluated by three persons. Table 4 presents the precision of our de-
bugging approach based on the sample we analyzed. If an URI is not
accessible or at least two persons did not come to the same decision,
the decision specific case is annotated as uncertain.

The evaluation results indicate a high precision of our approach
and substantiate that the removal decisions are based on a reason-

8 http://bioinformatics.oxfordjournals.org/

A. Nolle et al. / Schema-Based Debugging of Federated Data Sources 387

Table 4. Quality of Repairs

correct incorrect uncertain

resolvable repair
RF 94% 0% 6%

RF′ 97% 0% 3%

learned repair
R′F 96% 0% 4%

R′
F′ 84% 2% 14%

able heuristics. The measured precision scores also confirm that the
majority voting scheme underlying our approach is a valid premise
which ensures also a high precision of the second phase, where we
use the statistical evidence of the first phase to apply the notion of
trust to the remaining MISAs. This is also suggested by the fact that
the precision scores for resolvable and learned repairs are roughly in
the same range. However, the subsets we analyzed are not compre-
hensive enough to enable a conclusion about the impact of adding
an additional data source. The precision of the resolvable repair is
slightly increased, at the same time we observe a marginal drop for
the learned repair. While we cannot prove a positive impact on pre-
cision, the previously presented results in terms of detected MISAs
and repair sizes have clearly shown the positive impact on recall.

6 Related Work

State-of-the-art DL reasoners that are used for inconsistency detec-
tion and its explanations basically process local KBs and are there-
fore inappropriate for distributed environments. Moreover, regardless
of the supported language expressiveness or the underlying reasoning
method (such as widely used tableau algorithms as in FaCT++ [23] or
Pellet [22]; the hypertableau technique of HermiT [9]; consequence-
driven approaches like the ones described by Kazakov [13]; and res-
olution based methods described by Motik & Sattler [16]), they do
not deal with inconsistency detection in a federated setting.

To the best of our knowledge there is currently no ready to use
approach that addresses inconsistency detection and generation of
repairs in the context of federated KBs. However, there are some
works in a similar direction.

Bonatti et al. [3] proposed an approach that can be applied to a
scenario similar to the one we analyzed in our experiments. Their ap-
proach is based on annotated logic programs for tracking indicators
of provenance and trust during the reasoning process. However, the
reasoning itself is not conducted in a given federated setting, while
our approach works directly on top of existing SPARQL interfaces.
This shall not be confused with the fact that Bonatti et al. described a
distributed implementation of the algorithm. Another important dif-
ference is the origin of the trust values. While we derive the trust
values required for the second phase from explicit and implicit con-
flicts in the data sources using reasoning in the first phase, Bonatti
et al. apply a well-known page rank algorithm that does not at all
consider logical dependencies.

Calvanese et al. [4] present apart from the initial definition of the
DL-Lite family among others a definition of a translation function δ
that transforms negative inclusions and functionality assertions into
queries (FOL formulas). This translation function is applied in the
algorithm Consistent to each negative inclusion and functionality
assertion that can be logically implied from the given TBox. After-
wards, a Boolean query comprising the union of all queries generated
by δ is evaluated over the given ABox. In contrast to our approach the
work of Calvanese et al. do not support DL-LiteA KBs. Besides this,

Calvanese et al. [5] expand their approach to DLR-LiteA,�, a new
member of the DL-Lite family that permits among others the use of
n-ary relations and conjunctions on the left-hand side of inclusion
assertions. Despite the fact that the algorithms Consistent proposed
in these works are similar to our approach, both only identify if there
is an inconsistency but do not specify these inconsistencies in greater
detail or give some explanations to them. Furthermore, our approach
additionally comprises the federation of distributed DL-Lite KBs.

The approach proposed by Lembo et al. [14, 15] facilitate mean-
ingful query results over inconsistent DL-Lite KBs under different
inconsistency-tolerant semantics. Therefore, an additional rewriting
under the defined semantics is applied to the rewritings produced
by PerfectRef in order to implement inconsistency tolerance on
query answering. Roughly speaking, queries generated by applying
backward-chaining are extended such that triples producing inconsis-
tency will not be considered on query answering. For this purpose,
similar to our approach ontology axioms that can be contradicted by
ABox assertions are used for query generation, i.e., its expansion,
but with the difference that their aim is to exclude all assertions that
cause inconsistency from query evaluation whereas our claim is to
select these assertions, which is exactly the opposite. Although the
method of Lembo et al. is suitable for accessing distributed data, it is
not designed for inconsistency detection and explanation.

Several approaches have already been proposed to solve the prob-
lem of repair plan generation [8]. Depending on the specifics of the
setting one might, e.g., be interested to remove a minimum number
of assertions causing inconsistency by computing a smallest min-
imal hitting set over all explanations. However, to the best of our
knowledge, none of these approaches consider federated settings and
make precise distinctions between assertions occurring in different
data sources.

7 Conclusions

In this paper we have described an approach for detecting and resolv-
ing inconsistency in federated large scale KBs. The approach is based
on the generation of clash queries which are known to be complete
for inconsistency detection in DL-LiteA KBs. Once all logical con-
flicts have been collected, a majority voting scheme is applied in the
first phase to determine a partial repair. This approach does not aim
at generating a global optimal repair, but applies an efficient heuristic
where each step in the algorithm corresponds to a reasonable deci-
sion. Based on determining the degree of trust for each assertion type
with respect to each data source by analyzing the partial repair, we
are able to extend the repair in the second phase.

We applied the approach in a federated setting using four LOD
data sources from the domain of library science. Overall, the feder-
ated KB consists of more than 284 million triples and we are able
to detect 18.1 million conflicts. The results of our experiments show
that we are able to solve 92.25% of those conflicts by the proposed
approach. Furthermore, according to our evaluation, we can conclude
that the rate of remaining MISAs can be reduced by taking the feder-
ated setting into account. By manually annotating samples from the
generated repairs, we measured a precision between 84% and 97%,
which is a surprisingly good result for a fully automated approach.

So far we have focused on ABox assertions of a federated KB.
In our future work, we will address a combined approach in which
we try to strike a balance between repairing a potentially erroneous
TBox and clashing ABox assertions. Furthermore, the assessment of
trustworthiness in owl:sameAs statements is an open issue that will
also be addressed in our future work.

A. Nolle et al. / Schema-Based Debugging of Federated Data Sources388

REFERENCES

[1] Alessandro Artale, Diego Calvanese, Roman Kontchakov, and Michael
Zakharyaschev, ‘The dl-lite family and relations’, Journal of artificial
intelligence research, 36(1), 1–69, (2009).

[2] Franz Baader, The description logic handbook: theory, implementation,
and applications, Cambridge: Cambridge University Press, 2003.

[3] Piero A Bonatti, Aidan Hogan, Axel Polleres, and Luigi Sauro, ‘Ro-
bust and scalable linked data reasoning incorporating provenance and
trust annotations’, Web Semantics: Science, Services and Agents on the
World Wide Web, 9(2), 165–201, (2011).

[4] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maur-
izio Lenzerini, and Riccardo Rosati, ‘Tractable reasoning and efficient
query answering in description logics: The DL-Lite family’, Journal of
Automated Reasoning, 39(3), 385–429, (2007).

[5] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio
Lenzerini, and Riccardo Rosati, ‘Data complexity of query answering
in description logics’, Artificial Intelligence, 195, 335–360, (2013).

[6] Diego Calvanese, Martin Giese, Dag Hovland, and Martin Rezk,
‘Ontology-based integration of cross-linked datasets’, in The Semantic
Web - ISWC 2015, 199–216, Springer, (2015).

[7] Giorgos Flouris, Zhisheng Huang, Jeff Z Pan, Dimitris Plexousakis,
and Holger Wache, ‘Inconsistencies, negations and changes in ontolo-
gies’, Proceedings of the National Conference on Artificial Intelligence,
21(2), 1295, (2006).

[8] Peter Haase and Guilin Qi, ‘An analysis of approaches to resolving
inconsistencies in DL-based ontologies’, in Proceedings of the Inter-
national Workshop on Ontology Dynamics (IWOD-07), pp. 97–109,
(2007).

[9] Ian Horrocks, Boris Motik, and Zhe Wang, ‘The HermiT OWL Rea-
soner’, in Proceedings of the 1st International Workshop on OWL Rea-
soner Evaluation (ORE-2012), Manchester, UK, (2012).

[10] Qiu Ji, Peter Haase, Guilin Qi, Pascal Hitzler, and Steffen Stadtmüller,
‘Radonrepair and diagnosis in ontology networks’, in The semantic
web: research and applications, 863–867, Springer, (2009).

[11] Aditya Kalyanpur, Bijan Parsia, Matthew Horridge, and Evren Sirin,
‘Finding all justifications of OWL DL entailments’, in The Semantic
Web, pp. 267–280. Springer, (2007).

[12] Richard M. Karp, ‘Reducibility among combinatorial problems’, in
Proceedings of a symposium on the Complexity of Computer Computa-
tions, pp. 85–103, (1972).

[13] Yevgeny Kazakov, ‘Consequence-driven reasoning for Horn SHIQ
ontologies.’, in IJCAI, volume 9, pp. 2040–2045, (2009).

[14] Domenico Lembo, Maurizio Lenzerini, Riccardo Rosati, Marco Ruzzi,
and Domenico Fabio Savo, ‘Query rewriting for inconsistent DL-Lite
ontologies’, in Web Reasoning and Rule Systems, 155–169, Springer,
(2011).

[15] Domenico Lembo, Maurizio Lenzerini, Riccardo Rosati, Marco
Ruzzi, and Domenico Fabio Savo, ‘Inconsistency-Tolerant First-Order
Rewritability of DL-Lite with Identification and Denial Assertions’, in
Proceedings of the 25th International Workshop on Description Logics,
(2012).

[16] Boris Motik and Ulrike Sattler, ‘A comparison of reasoning techniques
for querying large description logic aboxes’, in Logic for programming,
artificial intelligence, and reasoning, pp. 227–241. Springer, (2006).

[17] Andreas Nolle, Christian Meilicke, Heiner Stuckenschmidt, and Ger-
man Nemirovski, ‘Efficient federated debugging of lightweight ontolo-
gies’, in Web Reasoning and Rule Systems, 206–215, Springer, (2014).

[18] Antonella Poggi, Domenico Lembo, Diego Calvanese, Giuseppe
De Giacomo, Maurizio Lenzerini, and Riccardo Rosati, ‘Linking data
to ontologies’, in Journal on data semantics X, 133–173, Springer,
(2008).

[19] Guilin Qi, Qiu Ji, and Peter Haase, ‘A conflict-based operator for map-
ping revision’, in The Semantic Web-ISWC 2009, 521–536, Springer,
(2009).

[20] Raymond Reiter, ‘A theory of diagnosis from first principles’, Artificial
Intelligence, 32, 57–95, (1987).

[21] Sebastian Rudolph, ‘Foundations of description logics’, in Reasoning
Web. Semantic Technologies for the Web of Data, 76–136, Springer,
(2011).

[22] Evren Sirin, Bijan Parsia, Bernardo Cuenca Grau, Aditya Kalyanpur,
and Yarden Katz, ‘Pellet: A practical owl-dl reasoner’, Web Seman-
tics: science, services and agents on the World Wide Web, 5(2), 51–53,
(2007).

[23] Dmitry Tsarkov and Ian Horrocks, ‘FaCT++ description logic reasoner:
System description’, in Automated reasoning, 292–297, Springer,
(2006).

[24] Holger Wache, Thomas Voegele, Ubbo Visser, Heiner Stuckenschmidt,
Gerhard Schuster, Holger Neumann, and Sebastian Hübner, ‘Ontology-
based integration of information - a survey of existing approaches’, in
IJCAI-01 workshop: ontologies and information sharing, volume 2001,
pp. 108–117. Citeseer, (2001).

A. Nolle et al. / Schema-Based Debugging of Federated Data Sources 389

