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Abstract. Merging is one of the central operations in the field of
belief change, which is concerned with aggregating the opinions
of individuals. Representation theorems provide a family of merg-
ing operators satisfying some natural desiderata for merging beliefs.
However, little is known about how these operators can be further
distinguished. In the field of social choice, on the other hand, numer-
ous properties have been proposed in order to classify voting rules.
In this work, we adapt these properties to the context of merging and
investigate how they relate to the standard postulates. Our results thus
lead to a more fine-grained classification of merging operators and
shed light on the question of which particular merging operator is best
suited in a concrete application domain.

1 Introduction

Belief merging studies methods for aggregating the opinions of in-
dividuals into a theory which captures the consensus of the agents
involved. The standard approach in the literature focuses on the design
of merging operators satisfying a set of normative properties. Consen-
sus is then obtained as the theory which comes as close as possible
to the agents’ expressed beliefs, subject to the limitations expressed
by the normative properties [13, 14]. In the field of belief merging
the variety of measures of closeness used gives rise via representation
theorems to a variety of merging operators with desirable properties.
Belief merging differs from voting, as analyzed in (computational)
social choice theory (for an overview see, e.g., [1, 16]), in that it does
not require the agents to provide full rankings of the alternatives, but
only to encode their first choices as logical theories. However, belief
merging and voting still share a common goal and methodology, and
it is natural to conclude that the two fields can be usefully brought to
bear on each other.

One direction of research views voting as a merging task [5, 10],
an approach which fits into the larger program of finding suitable
logics in which to represent preferences and embed aggregation prob-
lems stemming from (computational) social choice [2, 6]. A different
approach, which we follow here, looks at merging from a voting per-
spective and uses the rich set of criteria developed to analyze voting
rules in order to classify existing merging operators. Surprisingly, this
line of research has received little attention so far. Apart from some
interest in strategy-proofness and connections with Arrow’s theorem
[3, 7, 12, 15], the only other social choice properties that have made
their way in the literature on merging are the egalitarian properties dis-
cussed in [8]. Notwithstanding, the social choice literature on voting
features many other properties whose ideas are relevant in the context
of merging, but which have hitherto been left un-addressed. We aim
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to fill this gap and investigate ways of looking at merging operators
that improve upon the fundamental classification into majority and
arbitration operators.

Our contribution lies, first of all, in proposing fourteen new proper-
ties for merging operators, obtained, mostly, by translating existing
properties from the voting literature. In doing so, we contribute to a
deeper understanding of merging as a social process, by exploiting
a natural analogy between voting and belief merging. Thus, theories
to be merged are voters, the merging operator is the voting rule, and
interpretations of the propositional variables are the candidates;3 we
also allow for the possibility of a constraint, which limits the range
of possible results. In keeping with the merging literature, we take
merging operators to be characterized by a core set of properties,
known as the IC postulates [13, 14]. Our new properties are meant to
extend this characterization by offering more fine-grained criteria for
evaluating merging operators. We group the properties according to
their character, and offer discussions on the behavior they are intended
to model. Second, in the case of each new property, we study its re-
lationship with the core set of IC postulates. When a property is not
guaranteed by the IC postulates, we investigate which of the standard
operators satisfy the property, give relevant counter-examples, and
provide model-based representation results for the most prominent of
these properties.

The motivation for proposing new properties is the same as the
motivation behind the original IC postulates: we are interested in
merging operators that are syntax independent, fair and that respond in
expected ways to changes in the input, and we want general principles
that capture these properties. Our claim, backed up by the voting
literature, is that there are many ways of making these intuitions
precise, some of which go beyond the core set of IC postulates.

2 Background

Propositional logic. We work with the language L of propositional
logic over a fixed alphabet P = {p1, . . . , pn} of propositional atoms.
An interpretation is a set w ⊆ P of atoms, with the intended meaning
that atom p is contained in w if the truth value of p is set to true. The set
of all interpretations over P is denoted by W . We will often represent
an interpretation by its corresponding bit-vector of length |P| (e.g.,
101 is the interpretation {p1, p3}). If interpretation w satisfies formula
ϕ, we call w a model of ϕ. We denote the set of models of ϕ by [ϕ].
A pre-order ≤ on W is a binary relation on W which is reflexive and
transitive. We denote by w1 < w2 the strict part of ≤, i.e., w1 ≤ w2

3 We make an exception to this and treat propositional atoms as candidates
when interpretations cannot be reliably seen to fulfil this role. Though this
introduces an ambiguity in our notion of “candidate”, we view it as a useful
step to take in order to capture more voting properties than would otherwise
be possible.
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but w2 � w1. We write w1 ≈ w2 to abbreviate w1 ≤ w2 and
w2 ≤ w1. If M is a set of interpretations, then the set of minimal
elements of M with respect to ≤ is defined as min≤ M = {w1 ∈
M | �w2 ∈ M s.t. w2 ≤ w1, w1 �≤ w2}. By a renaming ρ of the
variables we understand a permutation of their names. A renaming
ρ applied to any formula, knowledge base or profile changes the
propositional variables in it according to ρ. For instance, if ρ swaps
only variables p1 and p2 among them and ϕ = p1 ∧ ¬p2 ∧ p3, then
ρ(ϕ) = p2∧¬p1∧p3. We also extend here the notion of renaming to
apply to interpretations. Thus, if ρ swaps p1 and p2 between them in a
formula, then ρ applied to an interpretation swaps the first and second
bits in the bit-vector representation. For instance, ρ(101) = 011. A
transposition τ is a renaming that swaps exactly two elements among
each other.

Belief Merging. A knowledge base is a finite set of proposi-
tional formulas over L. A profile is a non-empty finite tuple E =
〈K1, . . . ,Kn〉 of consistent, but not necessarily mutually consistent
knowledge bases. We denote by E (resp. K) the set of all profiles (resp.
knowledge bases) over L. If E1 and E2 are profiles, then E1 
 E2

is the concatenation of E1 and E2. Interpretation w is a model of
K ∈ K (resp. E ∈ E) if it is a model of every element in K (resp.
E). We denote by [K] and [E] the set of models of K and E, re-
spectively. We write

∧
E for

∧
K∈E

∧
ϕ∈K ϕ, ¬K for ¬∧

K, and
¬E for 〈¬K1, . . . ,¬Kn〉. Profiles E1 and E2 are equivalent, written
E1 ≡ E2, if there exists a bijection f : E1 → E2 such that for any
K ∈ E1 we have [K] = [f(K)].

A merging operator is a function Δ: E × L → K, and we write
Δμ(E) instead of Δ(E, μ). The formula μ is called the constraint and
it encodes an external condition which needs to hold in the final result
regardless of the input knowledge bases. It can be thought of as a set
of legal requirements or limits of feasibility restricting the outcomes
of the merging process. Next, logical postulates set out properties
which any merging operator Δ should satisfy. An operator satisfying
the following postulates is called an IC merging operator [13, 14]:

(IC0) Δμ(E) |= μ
(IC1) If μ is consistent, then Δμ(E) is consistent
(IC2) If

∧
E is consistent with μ, then Δμ(E) ≡ ∧

E ∧ μ
(IC3) If E1 ≡ E2 and μ1 ≡ μ2, then Δμ1(E1) ≡ Δμ2(E2)
(IC4) If K1 |= μ and K2 |= μ, then Δμ(〈K1,K2〉) ∧K1 is consis-

tent iff Δμ(〈K1,K2〉) ∧K2 is consistent
(IC5) Δμ(E1) ∧Δμ(E2) |= Δμ(E1 
 E2)
(IC6) If Δμ(E1) ∧ Δμ(E2) is consistent, then Δμ(E1 
 E2) |=

Δμ(E1) ∧Δμ(E2)
(IC7) Δμ1(E) ∧ μ2 |= Δμ1∧μ2(E)
(IC8) If Δμ1(E)∧μ2 is consistent, thenΔμ1∧μ2(E) |=Δμ1(E)∧μ2

Though these postulates lay out what properties Δμ(E) should have,
they do not spell out how to actually construct Δμ(E), given E and
μ. To this end it is useful to focus on so-called assignments that map
any E ∈ E to a pre-order ≤E on W . We say that such an assignment
represents a merging operator Δ if [Δμ(E)] = min≤E [μ], for any
E ∈ E and μ ∈ L. Konieczny and Pino Pérez [13] have defined the
central notion of syncretic assignments.

Definition 1. A syncretic assignment is a function mapping every
E ∈ E to a total pre-order ≤E on W such that, for any E,E1, E2 ∈
E , K1,K2 ∈ K and w1, w2 ∈ W the following conditions hold:

(s1) If w1 ∈ [E] and w2 ∈ [E], then w1 ≈E w2.
(s2) If w1 ∈ [E] and w2 /∈ [E], then w1 <E w2.

(s3) If E1 ≡ E2, then ≤E1=≤E2 .
(s4) If w1 ∈ [K1], then there is w2 ∈ [K2] s.t. w2 ≤{K1,K2} w1.
(s5) If w1 ≤E1 w2 and w1 ≤E2 w2, then w1 ≤E1�E2 w2.
(s6) If w1 ≤E1 w2 and w1 <E2 w2, then w1 <E1�E2 w2.

The classical result below characterizes all IC merging operators in
terms of syncretic assignments.

Theorem 1. A merging operator Δ is an IC merging operator iff
there is a syncretic assignment which represents it.

Specifying concrete merging operators is usually done via a notion
of distance (that induces pre-orders ≤Ki ) and an aggregation function
(which combines the individual rankings ≤Ki into a final pre-order
≤E). More precisely: a pseudo-distance is a function d : W ×W →
R+ such that, for any w1, w2 ∈ W , (i) d(w1, w2) = d(w2, w1)
and (ii) d(w1, w2) = 0 if and only if w1 = w2. An aggregation
function is a function f such that, for any x1, . . . , xn, x, y ∈ R+

and any permutation π, (i) if x ≤ y, then f(x1, . . . , x, . . . , xn) ≤
f(x1, . . . , y, . . . , xn), (ii) f(x1, . . . , xn) = 0 if and only if x1 =
· · · = xn = 0, (iii) f(x) = x, and (iv) f(x1, . . . , xn) =
f(π(x1), . . . , π(xn)).

The Hamming distance between interpretations w and w′ is de-
fined as dH(w,w′) = |(w \ w′) ∪ (w′ \ w)|; the drastic distance
between w and w′ is given as dD(w,w′) = 0 if w = w′ and 1
otherwise. The minimal distance between interpretations and mod-
els of Ki yields ≤Ki . The distance d(w,Ki) between w and Ki

is computed by taking the minimal distance between w and all
w′ ∈ [Ki]. Now, the pre-order ≤Ki is defined by saying that
w ≤Ki w′ if d(w,Ki) ≤ d(w′,Ki). For aggregating the rankings,
common functions are summation (Σ), GMAX and GMIN . For
dH this gives us the operators ΔdH ,Σ, ΔdH ,GMAX and ΔdH ,GMIN .
These operators are all distinct, in the sense that they may give dif-
ferent results on the same input. On the other hand, operators de-
fined using the drastic distance are all equivalent, in the sense that
ΔdD,Σ

μ (E) ≡ ΔdD,GMAX
μ (E) ≡ ΔdD,GMIN

μ (E), for any E ∈ E
and μ ∈ L. We thus denote these operators by ΔdD . In general, we
will write ΔdH and ΔdD when our results hold with all of the three
aggregation functions presented. For details, see [13, 14].

Example 1. Consider three reviewers who are part of a conference
committee. They have to arrive at a decision concerning three papers
they have been assigned, in a process that requires combining their
individual (perhaps mutually inconsistent) beliefs about which of
the papers should be accepted or rejected. The acceptance of each
paper is represented by a propositional atom: pi means that paper i
is accepted, for i ∈ {1, 2, 3}. The opinions of the three reviewers are
encoded by three knowledge bases, as follows: K1 = {p1∧p2∧¬p3},
K2 = {¬p1 ∧ ¬p2}, K3 = {p1 ∧ p3}. In other words, Reviewer 1
thinks only Papers 1 and 2 should be accepted, Reviewer 2 thinks
Papers 1 and 2 should be rejected but has no stated opinion on Paper 3,
and Reviewer 3 thinks Papers 1 and 3 should be accepted. Additionally,
the rule for their committee is that not all papers can be accepted. This
rule can be encoded by the constraint μ = ¬(p1 ∧ p2 ∧ p3).

Thus, if E = 〈K1,K2,K3〉 is the profile, the task is to compute
Δμ(E). We illustrate the operators ΔdH ,Σ, ΔdH ,GMAX , ΔdH ,GMIN

discussed above. First we compute a pre-order ≤Ki on W for each
Ki based on the distance d(w,Ki). In our example (using Hamming
distance dH ), we obtain d(010,K3) = min{dH(010, w′) | w′ ∈
[K3]} = min{dH(010,101), dH(010,111)} = min{3, 2} = 2.
The complete set of distances is featured in Table 1. The next step
is to combine the pre-orders ≤Ki into a new pre-order, reflecting
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w K1 K2 K3 Σ GMAX GMIN
000 2 0 2 4 (2,2,0) (0,2,2)
001 3 0 1 4 (3,1,0) (0,1,3)
010 1 1 2 4 (2,1,1) (1,1,2)
011 2 1 1 4 (2,1,1) (1,1,2)
100 1 1 1 3 (1,1,1) (1,1,1)
101 2 1 0 3 (2,1,0) (0,1,2)
110 0 2 1 3 (2,1,0) (0,1,2)
111 1 2 0 3 (2,1,0) (0,1,2)

Table 1: Distances and aggregated values for Example 1

the consensus opinion. We use an aggregation function (in this case
Σ, GMAX and GMIN ) to obtain the final ranking ≤E . The ag-
gregation function Σ adds the numbers interpretation-wise, and the
final ranking ≤Σ

E is determined by the order of the final levels for
each interpretation. The aggregation functions GMAX and GMIN
order the vector of levels for each interpretation in descending and as-
cending order, respectively. Then we determine ≤GMAX

E and ≤GMIN
E

by ordering the vectors lexicographically. Finally, we pick from the
models of μ (highlighted in grey in Table 1) the ones with min-
imal levels in the final ranking: [ΔdH ,Σ

μ (E)] = {100, 101, 110},
[ΔdH ,GMAX

μ (E)] = {100}, [ΔdH ,GMIN
μ (E)] = {101, 110}.

We can now interpret this result back in propositional logic. For
instance, ΔdH ,Σ

μ (E) ≡ {p1 ∧ ¬(p2 ∧ p3)}, thus saying that Pa-
per 1 should be accepted, but Papers 2 and 3 cannot be accepted
together. Notice that this result is not resolute, as it does not tell
which of Papers 2 or 3 should be accepted, if any. On the other hand,
ΔdH ,GMAX

μ (E) ≡ {p1 ∧ ¬p2 ∧ ¬p3}, thus saying that only Paper 1
should be accepted.

In the next section we will revisit this example several times to
illustrate and clarify the definitions of the properties.

Voting Theory. Let C be a finite set of candidates with |C| = m
and V = {1, 2, . . . , n} be a finite set of voters. The preference of a
voter is modelled as a total order over C, the vote �. The top-ranked
candidate of � is at position 1, the successor at position 2, . . ., and
the last-ranked candidate is at position m. A collection of preference
relations P = 〈�1, . . . ,�n〉 is called a preference profile. A voter i
prefers candidate c over candidate c′ if c �i c

′. An election is given
by E = (C, V,P). A voting correspondence F is a mapping from an
election E to a non-empty subset of the candidates W ⊆ C, i.e., the
winners of the election. We denote a preference profile comprising
pre-orders instead of total orders by 〈≤1, . . . ,≤n〉. For more details,
see [1] and [16, in particular Chapter 4].

3 Properties for Belief Merging

In this section we present a number of natural properties for belief
merging, several of which stem from the (computational) social choice
literature, where they are typically applied to voting procedures. We
group these properties according to common themes of interest in the
Knowledge Representation literature.

Syntax Independence

These properties require that the outcome does not depend on how
knowledge is encoded. In other words, the concrete syntactic formula-
tion of the profile should not affect the result of the merging process.
Note that IC3 already ensures syntax independence to some degree.
However, not all properties defined here are implied by IC3 and hence
are more restrictive.

Anonymity. A voting system satisfies anonymity if the winner cannot
be changed by permuting the votes in the profile. In a merging sce-
nario, we denote by π(E) = 〈Kπ(1), . . . ,Kπ(n)〉 the profile obtained
by changing the order of the knowledge bases in E in accordance
with a permutation π : {1, . . . , n} → {1, . . . , n}. Anonymity is then
defined as follows:4

(Anonymity) Δμ(E) ≡ Δμ(π(E)).

In Example 1, Anonymity requires that ΔdH ,Σ, ΔdH ,GMAX and
ΔdH ,GMIN produce the same result, respectively, when the profile
is 〈K1,K2,K3〉, or 〈K2,K1,K3〉, or is any other permutation of
the knowledge bases. One can see that Anonymity is satisfied by the
operators mentioned, as the final result does not depend on the order
in which the pre-orders are aggregated.

Neutrality. In a voting scenario, neutrality requires that if two can-
didates are swapped in all votes, then they are also swapped in the
result. The purpose is to ensure that all candidates are treated equally
in the determination of the winners, i.e., their name does not matter.
In a merging scenario, we have to enforce that renaming variables
does not affect the merging outcome. We define neutrality as follows:

(Neutrality) ρ(Δμ(E)) ≡ Δρ(μ)(ρ(E)).

Under the renaming ρ that swaps p1 and p2 among them, the knowl-
edge bases and constraint from Example 1 become: ρ(K1) =
{p2 ∧ p1 ∧ ¬p3}, ρ(K2) = {¬p2 ∧ ¬p1}, ρ(K3) = {p2 ∧ p3}
and ρ(μ) = ¬(p2 ∧ p1 ∧ p3). Computing ΔdH ,Σ

ρ(μ) (ρ(E)) we get that

ΔdH ,Σ
ρ(μ) (ρ(E)) ≡ {p2 ∧ ¬(p1 ∧ p3)} ≡ ρ(ΔdH ,Σ

μ (E)).

Entity resolution. Suppose that, at some point in the knowledge mod-
elling process, different variables, e.g., p and q, are discovered to
encode the same concept. The knowledge engineer would want to in-
corporate this equivalence in the merging outcome. One way to do this
is going through the knowledge bases and the constraint and renaming
p to q. This is a laborious and invasive operation, which might be
infeasible if access to the knowledge bases is limited or if the knowl-
edge bases are provided by the agents just in time before the merging
process. Another way is to add the equivalence p ↔ q directly to
μ. The property we propose explores the relationship between these
two operations and requires that all solutions of the latter operation
are also solutions of the former. We denote by μp/q and Kp/q the
formula and knowledge base obtained from μ and K, respectively,
by replacing every occurrence of p with q. We denote by Ep/q the
profile obtained from E by replacing every knowledge base K in E
by Kp/q , if Kp/q is consistent; if Kp/q is inconsistent, we remove it.

(Entity resolution) Δμ∧(p↔q)(E) |= Δ
μp/q (E

p/q).

Entity resolution has no direct equivalent in the voting scenario.
Nonetheless, we believe it is worth investigating, as it bears some
resemblance to Independence of clones (see below) and is moti-
vated by a similar intuition: alternatives that are in some sense re-
dundant should not skew the vote in their favour. In Example 1,
we obtain that ΔdH

μ∧(p1↔p2)
(E) ≡ {p1 ∧ p2 ∧ ¬p3} (regardless

of the aggregation function used). Replacing every occurrence of
p1 with p2 in μ and E leaves us with K

p1/p2
1 = {p2 ∧ ¬p3},

K
p1/p2
2 = {¬p2}, Kp1/p2

3 = {p2 ∧ p3} and μp1/p2 = ¬(p2 ∧ p3),
and ΔdH

μp1/p2
(Ep1/p2) ≡ {p2 ∧ ¬p3}. Clearly, in this case we have

that ΔdH
μ∧(p1↔p2)

(E) |= ΔdH
μp1/p2

(Ep1/p2). However, we show in
Section 4 that this does not hold in general.
4 Here and in the following, variables such as E, K and μ are understood to

be universally quantified, unless explicitly mentioned otherwise.
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Fairness

The second group proposes a set of fairness properties, stemming
from the intuition that all knowledge bases and all variables should
be treated “equally” in the merging process. Fairness is featured in
the IC postulates (through IC4), but our proposals show that there is a
wider range of constraints to consider.

Non-dictatorship. In a voting scenario, this property is satisfied if
there is no single voter that alone determines the outcome of the elec-
tion, and is usually featured as a key requirement that any reasonable
voting method should satisfy. Here we distinguish between two no-
tions: Non-Dictatorship1 is in the spirit of the property usually found
for voting, while Non-Dictatorship2 has a more semantic flavour.

(Non-Dictatorship1) There is no integer i such that for any E ∈ E
and μ ∈ L, it holds that Δμ(E) ≡ Δμ(〈Ki〉).

(Non-Dictatorship2) There is no K ∈ K such that for any E ∈ E
and μ ∈ L, it holds that if a K′ ∈ K occurs in E with K′ ≡ K,
then Δμ(E) ≡ Δμ(〈K′〉), for any μ ∈ L.

Property Non-Dictatorship2 specifies that there is no knowledge base
in the semantic sense (i.e., a specific set of beliefs modulo logical
equivalence) which, if present in a profile, unilaterally determines
the merging outcome. In a voting setting, this is equivalent to saying
there is no ranking of alternatives (think of it as a magic key) which,
if submitted by some voter, decides the winners. Non-dictatorship has
been mentioned before in relation to Arrow’s theorem [12], though it
has not been formalized explicitly.

Pareto consistency. A voting system is Pareto-consistent if whenever
all voters prefer a candidate ci over some candidate cj , then ci is
preferred over cj in the result. A stronger version stipulates that no
candidates other than those preferred by all voters should appear in the
result. In a merging scenario, we correspondingly distinguish between
a weak and a strong version of Pareto consistency.

(Weak Pareto) Δμ(〈K1〉) ∧ · · · ∧ Δμ(〈Kn〉) |=
Δμ(〈K1, . . . ,Kn〉).

(Strong Pareto) If Δμ(〈K1〉)∧ · · · ∧Δμ(〈Kn〉) is consistent, then
Δμ(〈K1, . . . ,Kn〉) |= Δμ(〈K1〉) ∧ · · · ∧Δμ(〈Kn〉).

Replacing IC5 and IC6 in the IC postulates with Weak Pareto and
Strong Pareto yields what is called a pre-IC merging operator. In [8]
it has already been noted that any IC merging operator is also a pre-IC
merging operator. Pareto conditions also occur in [4] in connection to
a related set of operators called fusion operators.

Citizen’s sovereignty. In a voting scenario, citizen’s sovereignty re-
quires that for any candidate c there is at least one election such that
c is the winner. In other words, no candidate is disadvantaged by
the voting system per se. In a merging scenario, we require that no
formula is disadvantaged by the operator per se.

(Citizen′s sovereignty) For any formula ϕ there exist E ∈ E and
μ ∈ L such that Δμ(E) ≡ ϕ.

SC-Majority. This property requires that a candidate c is a winner
whenever more than half of the voters have c as their most preferred
candidate. Considering a formula ϕ as a set of candidates (i.e., ϕ’s
models) and the knowledge bases Ki as the voters, we have:

(SC-Majority) If ϕ ∈ L is consistent and ϕ |= Δμ(〈Ki〉) for a
majority of i ∈ {1, . . . , n}, then ϕ |= Δμ(E).

In Example 1 there is no consistent formula ϕ such that ϕ |=
Δμ(〈Ki〉) for a majority of i ∈ {1, . . . , n}. Hence, when we view
ΔdH

μ (E) as an election over the models of μ, there is no major-
ity winner. However, merging the same profile under the constraint
μ′ = (p1 ⊕ p2) ∧ ¬p3, we observe that μ′ is a majority winner but
ΔdH

μ′ (E) ≡ {p1 ∧ ¬p2 ∧ ¬p3}. Clearly, though, μ′ � ΔdH
μ′ (E).

Condorcet criterion. In a voting scenario the Condorcet criterion is
satisfied if the voting system selects the Condorcet winner, if it exists.
The Condorcet winner is a candidate that beats every other candidate
in pairwise majority comparisons. In a merging scenario, our proposal
is to define majority comparisons in terms of complete formulas.5 We
opted to present this version here as it directly captures the intuition
of the Condorcet winner from the voting scenario. In a more extensive
treatment of the topic we would present it alongside an equivalent
simpler version.

Definition 2. Given a merging operator Δ, E ∈ E , μ ∈ L and two
complete formulas ϕ1, ϕ2 ∈ L such that ϕ1 |= μ and ϕ2 |= μ,
a head-to-head election between ϕ1 and ϕ2 occurs as follows: for
every Ki in E, we say that ϕ1 wins over ϕ2 with respect to Ki

if Δϕ1∨ϕ2
(〈Ki〉) ∧ ϕ1 is consistent and Δϕ1∨ϕ2

(〈Ki〉) ∧ ϕ2 is
inconsistent. If both Δϕ1∨ϕ2

(〈Ki〉) ∧ ϕ1 and Δϕ1∨ϕ2
(〈Ki〉) ∧ ϕ2

are consistent, we say that ϕ1 and ϕ2 are tied with respect to Ki.
We denote by WE(ϕ1, ϕ2) the number of wins of ϕ1 over ϕ2 in E.
Finally, we say that ϕ1 wins over ϕ2 in a head-to-head election over
E if WE(ϕ1, ϕ2) ≥ WE(ϕ2, ϕ1).6 A complete formula ϕ such that
ϕ |= μ is a weak Condorcet winner with respect to E and μ if for any
complete formula ϕ′ |= μ such that ϕ �≡ ϕ′, it holds that ϕ wins over
ϕ′ in a head-to-head election over E.

(Condorcet′s criterion) If ϕ is a weak Condorcet winner with re-
spect to E and μ, then ϕ |= Δμ(E).

According to our definition, a weak Condorcet winner on formu-
las can be shown to coincide with the more familiar notion of a
weak Condorcet winner from voting theory, by viewing the set of
pre-orders 〈≤〈K1〉, . . . ,≤〈Kn〉〉 in a syncretic assignment as a vot-
ing profile where [μ] is the set of candidates (see Theorem 3 and
the sCon property). Applying this result here, we consider merg-
ing the profile E from Example 1 under a constraint μ′ such that
[μ′] = {000, 001, 010, 100} and using Hamming distance and Σ as
aggregation function. We obtain the same table of distances from
Example 1, except that we restrict our attention to the models of
μ′. Table 2 records the number of wins of each interpretation in [μ′]
over the other in the resulting voting profile: an entry of k in row
i and column j means that interpretation wi has k wins over inter-
pretation wj . For instance, 000 has only one win over 001 (namely,
000 <K1 001). Likewise, 001 has only one win over 000 (namely,
001 <K3 000).7 Obviously, from a voting perspective it does not
make sense to compare an interpretation to itself, thus the entries on
the diagonal are marked with “-”. Inspection of Table 2 then shows
that 001 and 100 are the only models that do not lose to any other
interpretation, which means that they are the weak Condorcet win-
ners in this profile. Hence the formulas ϕ1 = ¬p1 ∧ ¬p2 ∧ p3 and
ϕ2 = p1∧¬p2∧¬p3 are the corresponding weak Condorcet winners.

5 Complete formulas have exactly one model.
6 We opted to go with the weak form of Condorcet winner because we did not

wish to restrict the set of winners to have exactly one model. However, we
could define a strong notion of Condorcet winner by requiring the inequality
between WE(ϕ1, ϕ2) and WE(ϕ2, ϕ1) to be strict and our analysis would
still go through. For reasons of space we omit this here.

7 We do not count the tie 000 ≈K2 001.
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000 001 010 100
000 - 1 1 1
001 1 - 2 1
010 1 1 - 0
100 2 1 1 -

Table 2: Computing the Condorcet winners

On the other hand, ΔdH ,Σ
μ′ (E) ≡ {p1 ∧ ¬p2 ∧ ¬p3} and it is clear

that ϕ1 � ΔdH ,Σ
μ′ (E) and thus ΔdH ,Σ

μ′ (E) does not select (all) the
weak Condorcet winners of this profile. In Section 4 we will show
that this observation generalizes to the other merging operators.

Intuitive Response to Profile Change

This group of properties ensures that changes in the knowledge base
produce an intuitive change of the outcome. Having an intuitive re-
sponse of the formalism is particularly important for knowledge en-
gineers as it reduces unnatural behavior and makes the effects of
changes in the knowledge bases easier to grasp.

Monotonicity. A voting system is monotone if the winner of an
election cannot be turned into a non-winner by improving its rank in
some of the votes. In the context of merging, we propose:

(Monotonicity) Δμ(E1 
 E2) ∧Δμ(E3) |= Δμ(E1 
 E3).

The intuition behind this formalization stems from seeing the models
of Δμ(E) as the winners in the election where the models of μ are
candidates and the knowledge bases in E are the voters. Thus, if
any candidates elected by the profile E1 
 E2 are also elected by
the profile E3 alone, then monotonicity would require that the same
candidates should also be elected when we replace E2 with E3 in
E1 
E2. The idea, to put it succinctly, is that a winner stays a winner,
if its position is only increased in the votes.

To illustrate the property, consider the knowledge bases in Ex-
ample 1 and a constraint μ′ such that [μ′] = {011, 100}. Then
100 ∈ [ΔdH

μ′ (〈K1,K2〉)]. In other words, the interpretation 100 is a
winner in an election where K1 and K2 are the voters and the inter-
pretations 011 and 100 (as models of μ′) are the sole candidates. We
also see, by consulting Table 1, that 100 ∈ [ΔdH

μ′ (〈K3〉)], i.e., the
voter K3 counts 100 among its most preferred states. Monotonicity
would then require that replacing K2 with K3 in the profile 〈K1,K2〉
would not harm the position of 100 in the result. And indeed, we
have that 100 ∈ [ΔdH

μ′ (〈K1,K3〉)], showing that Monotonicity is
satisfied in this particular instance. However, in Section 4 we show
that Monotonicity is not satisfied in general by ΔdH and ΔdD .

Participation. A voting system satisfies participation (also known as
the no-show paradox) if it is not possible to change the winner from
candidate ci to candidate cj by adding a vote in which candidate ci is
strictly preferred to candidate cj . In a merging scenario, we consider
adding a knowledge base K to a given profile E and require that
Δμ(E 
 〈K〉) should not be ‘worse’ than Δμ(E) with respect to K.

(Participation) If Δμ(E) ∧ K is consistent, then Δμ(E) ∧ K |=
Δμ(E 
 〈K〉).

In Example 1, take μ′ = ¬p2 ∧ p3, with [μ′] = {001, 101}. We
have that [ΔdH ,Σ

μ′ (〈K1,K2〉)] = {101}. In other words, if Review-
ers 1 and 2 decided alone, then 101 would be their most preferred
state, as chosen by ΔdH ,Σ. Notice that 101 is also a model of K3,
i.e., Reviewer 3 also has 101 among its most preferred states. We

can imagine Reviewer 3 has a choice: she can either express her
opinions, or stand by as a passive observer. Now, if there was a pos-
sibility that weighing in with her true opinions would decrease the
chance that 101 appears in the result, then Reviewer 3 would have
an incentive to keep her opinion to herself. This does not happen, as
101 ∈ [ΔdH ,Σ

μ′ (〈K1,K2,K3〉)]. Hence it is safe for Reviewer 3 to
weigh in on the reviewing process with her true opinions. We would
want all merging operators to emulate this property, as it incentivizes
agents to participate with their honest opinions.

Reversal symmetry. This property holds in a voting system if the
unique winner of an election can be turned into a non-winner by
reversing all votes. In a merging scenario, we interpret the condition
of having a unique winner as the outcome of merging being a complete
formula, and we take reversing the vote to mean that every knowledge
base is replaced with its negation, as defined in Section 2. Notice
that we require the outcome to be a complete formula to reflect the
requirement of a unique winner in the voting setting.

(Reversal symmetry) If Δμ(E) is a complete formula and μ has
more than one model, then Δμ(E) � Δμ(¬E).

In Example 1, replacing every knowledge base with its negation
gives ¬K1 = {¬(p1 ∧ p2 ∧ ¬p3)}, ¬K2 = {¬(¬p1 ∧ ¬p2)}
and ¬K3 = {¬(p1 ∧ p3)}. Merging these knowledge bases
with ΔdH ,GMAX under the constraint μ (from the example) pro-
duces the result ΔdH ,GMAX

μ (¬E) = {010, 011, 100, 101}. Thus,
ΔdH ,GMAX

μ (E) |= ΔdH ,GMAX
μ (¬E), and hence ΔdH ,GMAX does

not satisfy Reversal symmetry. In Section 4 it is shown that this result
extends to other merging operators as well.

Resolvability. In a voting scenario, resolvability (see, e.g., [17]) re-
quires that any winner can be made the unique winner by adding a
single vote. In a merging scenario, we require that we can refine the
output of merging as much as we desire by adding just one knowledge
base to E.

(Resolvability) For any ϕ ∈ L such that ϕ |= Δμ(E), there is a
K ∈ K such that Δμ(E 
 〈K〉) ≡ ϕ.

It has been pointed out in Section 2 that the output of a merging
operator is not always resolute, in the sense of selecting a completely
specified state of affairs. In Example 1 we got that ΔdH ,Σ

μ (E) ≡
{p1 ∧ ¬(p2 ∧ p3)}, thus saying that Paper 1 should be accepted
while Papers 2 and 3 cannot be accepted together, but not giving any
additional information on which (if any) of Papers 2 and 3 should
be accepted. This is because merging operators are designed to offer
a solution based on the available information, and that might be
insufficient to decide between a set of alternatives. However, in certain
circumstances, such as the one offered in Example 1, we might want
an answer that settles the question definitively. In such a case, it is
reasonable to do so by eliciting more information from the agents
involved. The Resolvability property analyzes the possibility that the
result can be refined enough by adding a single vote, so as to settle on
a decision regarding every option. In Example 1 we can settle on the
decision where, for instance, only Paper 1 is accepted by adding the
knowledge base K4 = {p1∧¬p2∧¬p3} to the profile. Notice that our
definition of resolvability does not require the operator to be resolute.

Independence of clones. In a voting scenario, we say that two candi-
dates are clones if they are ranked next to each other in any vote of the
election. A voting system is independent of clones if a non-winning
candidate cannot be made a winner by adding clones to the election.
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In a merging scenario, as it does not make too much sense to think of
introducing new interpretations, we think of clones as new variables
that are equivalent to existing ones. Thus, given a merging profile
E = 〈K1, . . . ,Kn〉, a propositional variable p and a set of “new”
propositional variables Q ⊂ P not appearing in K1, . . . ,Kn (clones
of p), we denote by Ep,Q the profile obtained by adding the formula∧

q∈Q(p ↔ q) to every knowledge base Ki contained in E. Indepen-
dence of clones for merging operators is formulated as follows:

(Independence of clones) If every K ∈ Ep,Q is consistent, then
Δμ(E) ≡ Δμ(E

p,Q).

Consider merging the knowledge bases {p} and {¬p} with the op-
erator ΔdH ,Σ: we get that ΔdH ,Σ

� (〈{p}, {¬p}〉) ≡ �. Adding a
clone q of p gives us that ΔdH ,Σ

� (〈{p, p ↔ q}, {¬p, p ↔ q}〉) ≡ �.
Adding a clone to the profile does not change the final result and this
seems fitting, as introducing the new information regarding q does not
change the agents’ beliefs regarding the “main” issue, represented by
p. Hence, one would like to see this behaviour reproduced more gen-
erally. However, Independence of clones as we have formulated it is
a very strong property. Thus, adding a clone p4 for p1 in Example 1
produces the result that ΔdH ,Σ

μ (E) ≡ {p1 ∧ ¬(p2 ∧ p3) ∧ p4},
ΔdH ,GMAX

μ (E) ≡ {p1 ∧ ¬p2 ∧ ¬p3 ∧ p4}, ΔdH ,GMIN
μ (E) ≡

{p1 ∧ p2 ∧ ¬p3 ∧ p4}. Obviously Independence of clones is not
satisfied here, and Section 4 shows that this result generalizes.

Modularity

Modularity properties capture circumstances where a profile can be
decomposed into sub-profiles while preserving the merging result.

Consistency. In a voting scenario, consistency requires that if an
election E is arbitrarily divided into sub-elections E1, . . . , En and if
candidate c is a winner in all of the sub-elections E1, . . . , En, then c is
also a winner of E. For merging we formulate consistency as follows:

(Consistency) For any partition E1, . . . , En of E it holds that
Δμ(E1) ∧ · · · ∧Δμ(En) |= Δμ(E).

Observe that Consistency and Weak Pareto do not coincide, as
Consistency is stronger than Weak Pareto.

Stability

These properties are subtly different to those describing intuitive
response to profile change: they model modifications of the knowledge
bases which should not affect the result of the merging process.

Homogeneity. A voting procedure satisfies homogeneity if for any
k ≥ 1 and any election, the result cannot be changed by “repeating”
each vote k times. In a merging scenario we require that the outcome
of merging does not change if we expand the profile by adding multi-
ple copies of itself. That is, the absolute “weights” of the knowledge
bases are not relevant—rather it is the relative weights that matter.

(Homogeneity) Δμ(E) ≡ Δμ(E 
 · · · 
 E).

Self-agreement. We require that the merging outcome is not disrupted
if we add it back to E and merge the new profile.

(Self-agreement) Δμ(E 
 〈Δμ(E)〉) ≡ Δμ(E).

4 Relationship with IC postulates

In this section we analyze the properties introduced in Section 3. The
results are summarized in Table 3. A significant number of the proper-
ties we introduced turn out to follow directly from the IC postulates,
whereas there are some that hold for certain operators only.

Property IC ΔdH ΔdD

Anonymity � � �
Neutrality � �
Entity resolution × �
Non-Dictatorship1, Non-Dictatorship2 � � �
Weak Pareto∗ � � �
Strong Pareto∗ � � �
Citizen′s sovereignty � � �
SC-Majority � × ×
Condorcet′s criterion × �
Monotonicity × ×
Participation � � �
Reversal symmetry × �
Resolvability � � �
Independence of clones × ×
Consistency � � �
Homogeneity � � �
Self-agreement � � �

Table 3: Summary of results. In the IC column, �indicates that the
property is implied by the IC postulates, and � indicates that the
property is inconsistent with the IC postulates. The last two columns
indicate whether the property holds for operators based on Hamming
distance (ΔdH ) and drastic distance (ΔdD ). Results for properties
marked by ∗ have already been studied [8].

Theorem 2. Anonymity, Non-Dictatorship1, Non-Dictatorship2,
Weak Pareto, Strong Pareto, Citizen′s sovereignty, Participation,
Resolvability, Consistency, Homogeneity and Self-agreement fol-
low from the IC postulates.

Proof. For Anonymity take the bijection f(Ki) = Kπ(i) be-
tween E and π(E) and apply IC3. Non-Dictatorship1 follows
from Anonymity, as in the classical voting scenario. For Non-
Dictatorship2, suppose K1 is a dictator for Δ. Choose a (consistent)
K2 such that

∧
K1 ∧∧

K2 is inconsistent, and μ =
∧

K1 ∨∧
K2.

Clearly, Δμ(〈K1,K2〉) ∧ ∧
K1 is consistent, and thus (by IC4) it

holds that Δμ(〈K1,K2〉) ∧ ∧
K2 is consistent as well. But, since

K1 is a dictator, we have that Δμ(〈K1,K2〉) ≡ Δμ(〈K1〉). This
leads to a contradiction. Weak Pareto and Strong Pareto are dis-
cussed in [8]. For Citizen′s sovereignty take E = 〈{ϕ}〉, μ = ϕ
and apply IC2. For Participation take w ∈ [Δμ(E) ∧ K]. By IC1,
this implies that w ∈ [μ]. We also have that w ∈ [K], and from
IC2 it follows that Δμ(〈K〉) ≡ ∧〈K〉 ∧ μ, hence w ∈ [Δμ(〈K〉)].
This implies that w ∈ [Δμ(E) ∧Δμ(〈K〉)], and by IC5 we get that
w ∈ [Δμ(E 
 〈K〉)]. For Resolvability, take K = {ϕ}. By IC0 it
follows that ϕ |= μ. Hence, K ∧μ is consistent, and by IC2 it follows
that Δμ(〈K〉) ≡ ∧〈K〉 ∧μ ≡ ϕ. It follows that Δμ(E)∧Δμ(〈K〉)
is consistent. The conclusion follows by using IC5–IC6. Consistency
follows from repeated application of IC5, and Homogeneity from
repeated application of IC5–IC6. For Self-agreement first show, us-
ing IC0, IC1 and IC2, that Δμ(〈Δμ(E)〉) ≡ Δμ(E). From this, to-
gether with the fact that Δμ(E) ∧Δμ(〈Δμ(E)〉) is consistent, plus
IC5–IC6, we get Δμ(E 
 〈Δμ(E)〉) ≡ Δμ(E) ∧Δμ(〈Δμ(E)〉) ≡
Δμ(E).

The remaining properties require a different kind of analysis. Below
we present a series of conditions on assignments which turn out to
characterize several important remaining properties.
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Definition 3. For an assignment on profiles, we define the fol-
lowing properties, for any w,w1, w2 ∈ W , K1, . . . ,Kn ∈ K,
E,E1, E2, E3 ∈ E , M ⊆ W and transposition τ :8

(sNeut) If w1 ≤E w2, then τ(w1) ≤τ(E) τ(w2).
(sMaj) If w1 ≤〈Ki〉 w2 for a majority of i ∈ {1, . . . , n}, then

w1 ≤〈K1,...,Kn〉 w2.
(sCon) If w ∈ M is a weak Condorcet winner with respect to the pref-

erence profile 〈≤〈K1〉, . . . ,≤〈Kn〉〉 and M is the set of candidates,
then w ∈ min≤〈K1,...,Kn〉 M.

(sMon) If w1 ≤E1�E2 w2 and w1 ≤E3 w2, then w1 ≤E1�E3 w2.
(sRev) If w1 <E w2, then w2 <¬E w1.

We say that property s of assignments characterizes property P of
merging operators if it holds that a merging operator satisfies P iff it
is represented by an assignment satisfying s.

Theorem 3. Properties sNeut, sMaj, sCon, sMon and sRev characterize
Neutrality, SC-Majority, Condorcet′s criterion, Monotonicity and
Reversal symmetry, respectively.

Proof. For sMaj, sCon, sMon and sRev it is straightforward to check
that they characterize their respective properties for operators. For
sNeut, suppose first that we have a neutral assignment and a merg-
ing operator Δ represented by it. We know that any renaming ρ is
the product of n transpositions. We show that Δ satisfies Neutrality
by induction on n. In the base case of n = 0, ρ is the identity
renaming and the claim holds trivially. For the inductive step, we
assume the claim holds for permutations of length n, and show
that it holds for permutations of length n + 1. Take, then, a renam-
ing ρ = τ1 · · · τnτn+1. By the inductive hypothesis, we know that
τ1 · · · τn(Δμ(E)) ≡ Δτ1···τn(μ)(τ1 · · · τn(E)). We apply τn+1 to
both sides. Using the results that for any ϕ ∈ L and transposition
τ it holds that [τ(ϕ)] = τ([ϕ]) and τ(τ(w)) = w, and that for any
E ∈ E , μ ∈ L, it holds that τ(Δμ(E)) ≡ Δτ(μ)(τ(E)), we derive
the conclusion. Conversely, assume Δ is a merging operator that satis-
fies Neutrality but is represented by an assignment that does not sat-
isfy sNeut. Then there exists E ∈ E , a transposition τ and w1, w2 ∈ W
such that w1 ≤E w2 and τ(w2) <τ(E) τ(w1). Take μ ∈ L such
that [μ] = {w1, w2}. We have that w1 ∈ [Δμ(E)] and hence
τ(w1) ∈ [τ(Δμ(E))]. On the other hand, [Δτ(μ)(τ(E))] = {w2}.
This shows that Δ is not neutral, which is a contradiction.

Theorem 4. None of the operators ΔdH and ΔdD satis-
fies Monotonicity or Independence of clones. The operators
ΔdH do not satisfy Entity resolution, Condorcet′s criterion and
Reversal symmetry, but ΔdD does. Furthermore, there is no IC merg-
ing operator that satisfies SC-Majority.

Proof. We provide here the relevant counter-examples. For
Monotonicity take K1 = {p ∧ q}, K2 = {¬q}, K3 = {p},
μ = p and E1 = 〈K1〉, E2 = 〈K2〉, E3 = 〈K3〉. We get
that ΔdH

μ (E1 
 E2) ≡ ΔdD
μ (E1 
 E2) ≡ {p}, ΔdH

μ (E3) ≡
ΔdD

μ (E3) ≡ {p} and ΔdH
μ (E1 
E3) ≡ ΔdD

μ (E1 
E3) ≡ {p∧ q}.
For Independence of clones take E = 〈K1,K2〉, K1 = {p} and
K2 = {q}, μ = p ∨ q and add a clone r of p. Then ΔdH

μ (E) ≡
{p ∧ q}. In the new setup, we get that ΔdH

μ (Ep,Q) ≡ {p ∧ q ∧ r}.
For Entity resolution and ΔdH , take E = 〈K1,K2,K3〉 with
K1 = {p ∧ ¬q ∧ r}, K2 = {p ∧ ¬r}, K3 = {¬p ∧ ¬q} and
μ = �. We get ΔdH

μ∧(p↔q)(〈K1,K2〉) ≡ {¬p ∧ ¬q}, while Ep/q =

8 We remind the reader that transpositions applied to formulas swap exactly
two atoms among each other and applied to interpretations they swap the
corresponding bits in the bit-vector representation.

〈{q ∧¬r}, {¬q}〉 and ΔdH
μp/q (E

p/q) ≡ {¬r}. For Entity resolution

and ΔdD , take w ∈ [ΔdD
μ∧(p↔q)(E)]. We have that if w ∈ [Ki] and

K
p/q
i is consistent, then w ∈ [K

p/q
i ]. This implies that the number

of 0’s in w’s vector of scores in ≤Ep/q is equal to the number of
0’s in w’s vector of scores in ≤Ep/q . If Kp/q

i is inconsistent, this
is because Ki implies either p ∧ ¬q or ¬p ∧ q, and thus w cannot
be a model of Ki; hence removing Ki can only decrease w’s final
score. For Condorcet′s criterion and ΔdH ,Σ or ΔdH ,GMAX , take
E = 〈K1,K2,K3〉, K1 = {p ∧ q ∧ r}, K2 = K3 = {¬p},
μ = (¬p ∧ ¬q ∧ ¬r) ∨ (p ∧ q ∧ r). Then [K1] = {111},
[K2] = [K3] = {000, 001, 010, 011} and [μ] = {000, 111}. We
have that ϕ = ¬p∧¬q ∧¬r is the only weak Condorcet winner with
respect to E and μ, but ΔdH ,Σ

μ (E) ≡ ΔdH ,GMAX
μ (E) ≡ {p∧q∧r}.

For ΔdH ,GMIN , take E = 〈K1,K2,K3〉, K1 = {¬p ∧ ¬q ∧ r},
K2 = {¬p ∧ q ∧ ¬r},K3 = {p ∧ q ∧ r} and μ from before. Then
the weak Condorcet winner with respect to E and μ is ¬p∧¬q ∧¬r,
but ΔdH ,GMIN

μ (E) ≡ {p ∧ q ∧ r}. It is straightforward to check
that dD together with any aggregation function generates an assign-
ment that satisfies sCon. Together with Theorem 3 and our obser-
vation that a weak Condorcet winner ϕ with respect to E and μ
corresponds to [ϕ] being a weak Condorcet winner in the voting
profile 〈≤〈K1〉 . . . ,≤〈Kn〉〉 restricted to [μ], we get that ΔdD sat-
isfies Condorcet′s criterion. For Reversal symmetry and dH , take
K1 = {p → q}, K2 = {p ∧ ¬q}, μ = ¬p and E = 〈K1,K2〉. We
get that ΔdH

μ (E) ≡ ΔdH
μ (¬E) ≡ {¬p∧¬q}. It is straightforward to

check that dD with any aggregation function generates an assignment
that satisfies sRev, thus ΔdD satisfies Reversal symmetry. To see why
the IC postulates and SC-Majority are incompatible, suppose there
is an IC merging operator which satisfies SC-Majority. Take [μ] =
{w1, w2} and [K1] = {w1, w2}, [K2] = {w1, w2}, [K3] = {w1}.
By SC-Majority we get that {w1, w2} ⊆ [Δμ(〈K1,K2,K3〉)]. How-
ever, by IC2 we get that [Δμ(〈K1,K2,K3〉)] = {w1}.

Finally, we show that Neutrality is not implied by the IC postu-
lates, even though ΔdH and ΔdD satisfy it. To do so, we first pro-
vide a characterization of Neutrality in terms of a corresponding
property for distance based operators. We call a pseudo-distance d
neutral if for any transposition τ and w1, w2 ∈ W , it holds that
d(w1, w2) = d(τ(w1), τ(w2)). The characterization is then captured
by the following result.

Theorem 5. For any pseudo-distance d and aggregation function
f , a merging operator Δd,f satisfies Neutrality if and only if d is
neutral.

Proof. For one direction of the proof, take an assignment generated
using a neutral distance d and an aggregation function f . First we
show that for any w ∈ W , K ∈ K and transposition τ , it holds that
d(w,K) = d(τ(w), τ(K)). Take w′ ∈ [K] such that d(w,K) =
d(w,w′). Since τ is neutral, we get that d(w,w′) = d(τ(w), τ(w′)).
We have that [τ(K)] = τ([K]), and thus τ(w′) ∈ [τ(K)]. We show
now that τ(w′) is at a minimal distance from τ(w) among the mod-
els of τ(K). Take, then, τ(w′′) ∈ [τ(K)], with w′′ ∈ [K]. We
have that d(w,w′) ≤ d(w,w′′), and since d is neutral it follows
that d(τ(w), τ(w′)) ≤ d(τ(w), τ(w′′)). Hence d(τ(w), τ(K)) =
d(τ(w), τ(w′)) = d(w,w′). From this we immediately derive that
for any E ∈ E , w ∈ W and neutral transposition τ , it holds that
d(w,E) = d(τ(w), τ(E)). Thus, if d(w1, E) ≤ d(w2, E), then
d(τ(w1), τ(E)) ≤ d(τ(w2, τ(E))), for any w1, w2 ∈ W . It fol-
lows that if w1 ≤E w2 then τ(w1) ≤τ(E) τ(w2), and therefore the
assignment satisfies sNeut. By Theorem 3 this implies Δd,f is neutral.
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Figure 1: Distances between w1, w2, τ(w1) and τ(w2)

Conversely, assume Δd,f satisfies Neutrality, but d is not neu-
tral. Then there must be w1, w2 ∈ W and a transposition τ such
that d(w1, w2) �= d(τ(w1), τ(w2)). We show now that, by tak-
ing ρ = τ , we can always find some profile E and constraint
μ such that Δd,f does not satisfy Neutrality. Notice first that it
is not possible to have τ(w1) = w1 and τ(w2) = w2, as this
contradicts our assumption that d(w1, w2) �= d(τ(w1), τ(w2)). In
the following we analyze the remaining cases, keeping in mind
that τ(τ(w)) = w and that [τ(K)] = τ([K]). Let us denote
d(w1, w2) = a, d(τ(w1), τ(w2)) = b, d(w1, τ(w2)) = c and
d(τ(w1), w2) = d (see Figure 1). Without loss of generality, we
assume that a < b. Case 1. τ(w1) = w1, τ(w2) �= w2. Take K
and μ such that [K] = {w1} and [μ] = {w2, τ(w2)}. We have
that [τ(K)] = τ([K]) = {τ(w1)} = {w1}, and [τ(μ)] = [μ].
Then by b = c we obtain [Δd,f

μ (〈K〉)] = [Δd,f
τ(μ)(τ(〈K〉))] =

{w2}. This shows that Δd,f is not neutral, since [τ(Δd,f
μ (〈K〉))] =

τ([Δd,f
μ (〈K〉)]) = {τ(w2)}. Case 2. τ(w1) �= w1, τ(w2) = w2.

Analogous to Case 1. Case 3. τ(w1) �= w1, τ(w2) �= w2. For
this case we have to analyze the relationship between a, b, c and d.
Case 3.1. min{a, c} < min{b, d} or min{b, d} < min{a, c}. Take
[K] = {w2, τ(w2)} and [μ] = {w1, τ(w1)}. Clearly, [τ(K)] = [K]
and [τ(μ)] = [μ]. In this case we have that d(w1,K) = min{a, c}
and d(τ(w1),K) = min{b, d}. Then [Δd,f

μ (〈K〉)] will consist of
exactly one interpretation out of {w1, τ(w1)}, call it w (see Table 4).
But this shows that Δd,f cannot be neutral, because we will get the

w {w2, τ(w2)}
w1 min{a, c}

τ(w1) min{b, d}
Table 4: min{a, c} �= min{b, d}

same result of {w} for [Δd,f
τ(μ)(τ(〈K〉))], while [τ(Δd,f

μ (〈K〉))] =
{τ(w)}. Case 3.2. min{a, c} = min{b, d}. Here we analyze two
sub-cases, but the reasoning follows the same lines as in the previous
cases. Case 3.2.1. a ≤ c, d ≤ b, a = d. Take K and μ such that
[K] = {w1} and [μ] = {w2, τ(w2)}. Then [τ(K)] = {τ(w1)} and
[τ(μ)] = [μ] and we get that [Δd,f

μ (〈K〉)] = [Δd,f
τ(μ)(τ(〈K〉))] =

{w2}, whereas [τ(Δd,f
μ (〈K〉))] = {τ(w2)}. Case 3.2.2. c ≤ a,

d ≤ b, c = d. Take K1, K2 and μ such that [K1] = {w2},
[K2] = {τ(w2)}, [μ] = {w1, τ(w1)}. Then [τ(K1)] = {τ(w2)},
[τ(K2)] = {w2} and [τ(μ)] = [μ]. Notice, now, that from c = d,
a < b and properties (i) and (iv) of f as an aggregation function
(see Section 2), it follows that f(a, c) < f(d, b). Consequently,
[Δd,f

μ (〈K1,K2〉)] = [Δd,f
τ(μ)(τ(〈K1,K2〉))] = {w1}. However,

[τ(Δd,f
μ (〈K1,K2〉))] = {τ(w1)}. Thus, Δd,f is not neutral.

Using Theorem 5, we can now state our last result.

Theorem 6. Neutrality does not follow from the IC postulates, but
ΔdH and ΔdD satisfy it.

Proof. It is straightforward to check that dH and dD are neutral,
hence by Theorem 5 it follows that ΔdH and ΔdD satisfy Neutrality.
However Neutrality is not guaranteed by the IC postulates: there exist

distance-based operators satisfying the IC postulates where the dis-
tance d is nonetheless not neutral. One such example is a merging op-
erator for the Horn fragment of propositional logic based on a custom-
defined distance dS [11]. In a three letter alphabet the definition of
dS specifies that dS(000, 001) = 1 and dS(000, 010) = 2. Thus,
dS is not neutral, which can be seen by considering the transposition
that swaps the second and third bits among themselves. Nonetheless,
ΔdS ,Σ satisfies the IC postulates [11].

We conclude by a few comments on our results. First, notice that
Neutrality for distance-based operators depends only on the distance
used and not on the aggregation function. Concerning the connection
between our results and social choice, at first glance it might look
disappointing that there is no IC operator satisfying SC-Majority, but
it should be kept in mind that there are also important voting rules
(e.g., Borda) which do not satisfy this property. Furthermore, it is a
positive result that Participation holds for all IC operators, as this
is not the case for important voting rules (e.g., Copeland, Dodgson
and Young). Having Participation removes an agent’s incentive for
strategizing about whether to cast a vote. Also, it is not overly surpris-
ing that Independence of clones does not hold for all IC operators as
it does not hold for many voting rules either (e.g., Plurality, Borda,
Copeland and Dodgson). Finally, the result on Consistency is notable
as this property does not hold for several important voting rules (e.g.,
Copeland, Dodgson and Young).

Note that we consider the strongest setting, where the constraint μ is
unrestricted and properties have to hold for any μ and any profile. The
cases when either domain restrictions are imposed on μ, or μ ≡ �,
remain to be explored. Some of the proofs will carry over, whereas
several results will have to be revisited.

5 Conclusion

In this work we have investigated eighteen desirable properties for
belief merging operators, fourteen of which are newly formulated
using insights from voting theory. We show that some follow from the
IC postulates, some can never be satisfied by an IC operator, whereas
others are only satisfied by certain IC operators. For properties of the
last case, we additionally verified which of the standard operators
satisfy them. If a property already follows from the postulates this is
good news; if it does not, this shows that special care is needed when
designing tailor-made operators. The properties proposed in this work
are, however, to be seen as a first step on a long path and can certainly
be refined and extended.

Likewise, there are quite a number of possible directions for future
work. A natural step is to perform an extensive classification which
is not limited to standard operators. One could also have a closer
look at operators for fragments such as Horn, whenever a property is
not satisfied in the general setting. Furthermore, for each considered
property it is enticing to come up with a representation theorem for the
setting where the IC postulates are extended by this property. Certainly
also the relations between the properties studied in this work deserve
a closer investigation. In particular, it would be interesting to come up
with (IC) merging operators satisfying a maximal number of properties
and to complement these results with impossibility theorems for the
remaining cases. Also, as discussed above, the role of the constraint
formula μ deserves a closer investigation, in which domain restrictions
of μ are considered. Last but not least, we plan to explore the relation
between judgment aggregation and belief merging—for the general
case this relation was recently studied by Everaere, Konieczny, and
Marquis [9]—with a special focus on devising new suitable properties.
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