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Abstract. Extending qualitative CSPs with the ability of restrict-
ing selected variables to finite sets of possible values has been pro-
posed as an important research direction with important applications.
Complexity results for this kind of formalisms have appeared in the
literature but they focus on concrete examples and not on general
principles. We propose three general methods. The first two methods
are based on analysing the given CSP from a model-theoretical per-
spective, while the third method is based on directly analysing the
growth of the representation of solutions. We exemplify our methods
on temporal and spatial formalisms including Allen’s algebra and
RCC5.

1 INTRODUCTION

Qualitative reasoning has a long history in artificial intelligence and
the combination of qualitative reasoning and constraint reasoning has
been a very productive field. A large number of constraint-based
formalisms for qualitative reasoning have been invented, most no-
tably within temporal and spatial reasoning, and they have been in-
vestigated from many different angles. Recently, there has been a
strong interest in combining different qualitative CSPs. Wolter and
Zakharyaschev [45] refer to temporal and spatial reasoning when
they write the following motivation.

The next apparent and natural step would be to combine these
two kinds of reasoning.
The importance of such a step for both theory and applications

is beyond any doubt.

It has also been noted that another (but related) line of research is
highly relevant. Cohn and Renz [17] write the following.

One problem with this [constraint-based] approach is that spa-
tial entities are treated as variables which have to be instantiated
using values of an infinite domain. How to integrate this with
settings where some spatial entities are known or can only be
from a small domain is still unknown and is one of the main
future challenges of constraint-based spatial reasoning.

That is, they regard the question of how to extend constraint for-
malisms (in particular, spatial formalisms) with constants and other
unary relations2 as being very important; the same observation has
been made in a wider context by Kreutzmann and Wolter [32]. Un-
fortunately, this question has not received the same amount of atten-
tion as the question of how to handle combined formalisms. Let us

1 Department of Computer and Information Science, Linköping University,
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consider finite-domain CSPs for a moment so let D denote a finite
domain of values and let Df = {U | U ⊆ D}, i.e. the finite set of
unary relations over D. For every finite constraint language Γ over
D, the computational complexity of CSP(Γ ∪ Df ) is known due to
results by Bulatov [10]. This is an important complexity results in
finite-domain constraint satisfaction and it it has been reproven sev-
eral times using different methods [1, 11]. The situation is radically
different when considering infinite-domain CSPs where similar pow-
erful results are not known. This can, at least partly, be attributed to
the fact that infinite-domain CSPs constitute a much richer class of
problems than finite-domain CSPs: for every computational problem
X , there is an infinite-domain constraint language ΓX such that X
and CSP(ΓX) are polynomial-time Turing equivalent [3]. For finite
domain CSPs, we know that the problem is in NP and that the major-
ity of computational problems cannot be captured by finite-domain
CSPs.

Nevertheless, there are concrete examples where interesting qual-
itative and/or infinite-domain CSPs have been extended with finite
unary relations. A very early example is the article by Jonsson &
Bäckström [28] where several temporal formalisms (including the
point algebra and Allen’s interval algebra) are extended by unary
relations (and also other relations). A more recent example is the
article by Li et al. [35] where the point algebra and Allen’s al-
gebra are once again considered, together with the cardinal rela-
tion algebra, and RCC-5 and RCC-8 with two-dimensional polyg-
onal regions, The results for the temporal formalisms by Jonsson
& Bäckström are not completely comparable with the results by
Li et al.: Jonsson & Bäckström’s approach is based on linear pro-
gramming while Li et al. use methods based on enforcing consis-
tency. Consistency-enforcing methods have certain advantages such
as lower time complexity and easier integration with existing con-
straint solving methods. At the same time, the linear programming
method allows for more expressive extensions with retained tractabil-
ity. Both consistency-based and LP-based methods have attracted at-
tention lately, cf. Giannakopoulou et al. [22] and Kreutzmann and
Wolter [32], respectively, and generalisations of the basic concepts
have been proposed and analysed by de Leng and Heintz [18].

Our approach is different: instead of studying concrete examples,
we study basic principles and aim at providing methods that are ap-
plicable to various constraint formalisms. We present three different
methods. The first two methods are based on analysing the given
CSP from a model-theoretical perspective, i.e. we investigate proper-
ties such as model-completeness and homogeneity. The third method
is more of a toolbox for proving that the size of solutions grows in a
controlled way, and that problems consequently are in NP. We illus-
trate the methods on both temporal and spatial formalisms (including
Allen’s algebra and RCC-5). The reader may find it strange that we
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mostly consider extensions with constant relations. The explanation
is the close connection between problems extended with constants
and with finite unary relations: if one of them is in NP, then both
are in NP (see Lemma 3). Most problems under consideration be-
come NP-hard when adding unary relations containing at least three
elements: for example, if the constraint language contains the dise-
quality relation �=, then NP-hardness follows from a straightforward
reduction from 3-COLOURABILITY. However, this is not always true
if we only add constants to the language. Thus, we can extract more
information by considering constants instead of finite unary relations.
The same viewpoint is taken by, for instance, Li et al. [35].

The paper has the following structure. We introduce the basic con-
cepts from CSPs and logic together with some information about
homomorphisms in Section 2. The three different methods are pre-
sented in Sections 3, 4, and 5, respectively. We conclude the paper
with a brief discussion in Section 6.

2 PRELIMINARIES

This section is divided into three parts where we consider constraint
satisfaction, logic, and automorphisms of relational structures, re-
spectively.

2.1 Constraint satisfaction problems

We begin by presenting CSPs in terms of homomorphisms. This view
is the most common in the literature on finite-domain CSP and it
will provide us with certain advantages: some of the properties that
we consider later on are inherently based on homomorphisms. One
should note, however, that there is no fundamental difference with
the more common AI viewpoint that constraint satisfaction is about
assigning values to variables in a way that satisfy certain constraints.
In fact, we will use both viewpoints in the sequel.

A relational signature τ is a set of relation symbols Ri with an
associated arities ki ∈ N. A (relational) structure Γ over relational
signature τ (also called τ -structure) is a set DΓ (the domain) to-
gether with a relation RΓ

i ⊆ Dki
Γ for each relation symbol Ri of

arity ki. If the reference to the structure Γ is clear, we may omit the
superscript in RΓ

i . We sometimes use the shortened notation x for a
vector (x1, . . . , xn) of any length.

Let Γ and Δ be τ -structures. A homomorphism from Γ to Δ is a
function f from DΓ to DΔ such that for each n-ary relation sym-
bol R in τ and each n-tuple a = (a1, . . . , an), if a ∈ RΓ, then
(f(a1), . . . , f(an)) ∈ RΔ.

Let Γ be a (possibly infinite) structure with a (possibly infinite) re-
lational signature τ . Then the constraint satisfaction problem (CSP)
for Γ is the following computational problem.

CSP(Γ)
INSTANCE: A τ -structure Δ.
QUESTION: Is there a homomorphism from Δ to Γ?

In the homomorphism perspective on CSPs, the structure Γ is
typically called the template of the constraint satisfaction problem
CSP(Γ). The reader should be aware that several different names
are used in the literature; constraint language is probably the most
common within AI.

A homomorphism from a given τ -structure Δ to Γ is called a so-
lution of Δ for CSP(Γ). It is in general not clear how to represent
solutions for CSP(Γ) on a computer; however, for the definition of
the problem CSP(Γ) we do not need to represent solutions since we

only have to decide the existence of solutions. To represent an in-
put structure Δ of CSP(Γ), we need to fix a suitable representation
of the relation symbols in the signature τ . We will see in the forth-
coming sections that the choice of representation is very important.
Given a particular representation of relation symbols, we let ||Δ||
denote the size of an input structure Δ.

Example 1 (k-COLOURABILITY). For k ≥ 1, the k-
COLOURABILITY problem is the computational problem of
deciding for a given finite graph G whether the vertices can be
coloured by k colours or not such that adjacent vertices get different
colours. It is well-known that the k-colouring problem is NP-hard
for k ≥ 3 and tractable when k ≤ 2. For k ≥ 1, let Kk denote the
complete loop-free graph on k vertices. We view undirected graphs
as τ -structures where τ contains a single binary relation symbol
E which denotes a symmetric and anti-reflexive relation. Then the
k-COLOURABILITY problem can be viewed as CSP({Kk}).
Example 2 (Digraph acyclicity). Consider the problem CSP({<})
where < is the binary order relation of the set Q of rational numbers.
Let G = (V,A) be a directed graph. It is easy to see that there is
a homomorphism from G to (Q;<) if and only if G contains no
directed cycle. Thus, CSP({<}) is solvable in polynomial time since
cycle detection in directed graphs can be carried out in polynomial
(in fact, linear) time.

Clearly, we can equivalently define the instances of the CSP(Γ)
problem as a tuple (V,C) where V is a set of variables and C is a
set of constraints of the form R(xi1 , . . . , xik ) where R ∈ Γ, k is the
arity of R, and xi1 , . . . , xik ⊆ V . In this case, a solution is a function
from V to the domain of Γ satisfying (f(xi1 , . . . , f(xik )) ∈ R for
every R(xi1 , . . . , xik ) ∈ C.

Let D be a value domain with a particular representations and
let ||d|| denote the size of the representation of d ∈ D. We let
Dc = {{d} | d ∈ D} and Df = {D′ ⊆ D | D′ is finite}. Given a
representation of the elements in D, we always represent the mem-
bers of Df as sets of elements in D and we may assume that the
size of Df is linear in the sizes of its elements. Other ways of repre-
senting Df are possible but they are outside the scope of this paper.
If Γ is a constraint language with domain D, then CSP(Γ ∪ Dc} is
the problem CSP(Γ) extended with constants and CSP(Γ ∪ Df} is
the problem CSP(Γ) extended with finite unary relations. The next
lemma is basically Proposition 1(iii) in Li et al. [35] extended to ar-
bitrary constraint languages.

Lemma 3 CSP(Γ ∪ Dc) is in NP if and only if CSP(Γ ∪ Df ) is in
NP.

Proof. There is a trivial polynomial-time reduction from CSP(Γ ∪
Dc) to CSP(Γ ∪ Df ) so we consider the other direction. Let I =
(V,C) be an arbitrary instance of CSP(Γ ∪ Df ). Assume I has a
solution s : V → D. Each constraint U(x) ∈ C with U ∈ Df

can be replaced by the constraint {s(v)}(v). The resulting instance
I ′ is an instance of CSP(Γ ∪Dc), it is satisfiable, and ||I ′|| ≤ ||I||.
The problem CSP(Γ ∪ Dc) is in NP so the satisfiability of I ′ can
be polynomial-time verified by a certificate X . A polynomial-time
verifiable certificate for I is thus the tuple (I ′, X).

Lemma 3 allows us to, for example, concentrate on CSP(Γ ∪Dc)
instead of CSP(Γ ∪Df ) when proving membership in NP.

2.2 Logic

First-order formulas ϕ over the signature τ (or, in short, τ -formulas)
are as usual inductively defined using the logical symbols of univer-

P. Jonsson / Finite Unary Relations and Qualitative Constraint Satisfaction38



sal and existential quantification, disjunction, conjunction, negation,
equality, bracketing, variable symbols and the symbols from τ . The
semantics of a first-order formula over some τ -structure is defined
in the ordinary Tarskian style. A τ -formula without free variables is
called a τ -sentence. We write Γ |= ϕ if and only if the τ -structure
Γ is a model for the τ -sentence ϕ, that is, satisfies ϕ; this notation is
lifted to sets of sentences in the usual way.

One can use first-order formulas over the signature τ to define rela-
tions over a given τ -structure Γ: for a formula ϕ(x1, . . . , xk) where
x1, . . . , xk are the free variables of ϕ the corresponding relation R
is the set of all k-tuples (t1, . . . , tk) ∈ Dk

Γ such that ϕ(t1, . . . , tk)
is true in Γ. In this case we say that R is first-order definable over Γ.
Note that our definitions are always parameter-free, i.e. we do not al-
low the use of domain elements in them. We say that the τ -structure
Γ admits quantifier elimination if every relation with a first-order
definition in Γ has a quantifier-free definition in Γ. We also say that
a set of formulas T admit quantifier elimination if each F ∈ T has a
logically equivalent quantifier-free formula.

A first-order τ -formula φ(x1, . . . , xn) is called existential if it is
of the form

∃xn+1, . . . , xm.ψ

where ψ is a quantifier-free first-order formula. A subset of existen-
tial formulas is of particular interest to us: a first-order τ -formula
φ(x1, . . . , xn) is called primitive positive if it is of the form

∃xn+1, . . . , xm.ψ1 ∧ · · · ∧ ψl

where ψ1, . . . , ψl are atomic τ -formulas, i.e., formulas of the form

1. R(y1, . . . , yk) with R ∈ τ and yi ∈ {x1, . . . , xm} or
2. y = y′ for y, y′ ∈ {x1, . . . , xm}.

If the relation R has a primitive positive definition in Γ, then
we say that R is pp-definable in Γ, and we define 〈Γ〉 to be the
set of relations that are pp-definable in Γ. It is well-known [27]
(and not hard to prove) that if Γ is a structure and a relation R is
pp-definable in Γ, then there is a polynomial-time reduction from
CSP(Γ ∪ {R}) to CSP(Γ). This explains why pp-definitions are im-
portant when studying the complexity of CSP problems. To exem-
plify, consider the constraint language Γ = {{1, 2, 3, 4}, �=} with
the natural numbers as its domain. We see that the binary relation
K4 = {(x, y) ∈ {1, 2, 3, 4}2 | x �= y} (from Example 1) is pp-
definable in Γ since

K4(x, y) ⇔ {1, 2, 3, 4}(x) ∧ {1, 2, 3, 4}(y) ∧ x �= y.

and it follows that CSP(Γ) is NP-hard.
It is worth mentioning that many of the operations in relational

algebra can be viewed as pp-definitions. Let R and S denote binary
relations. Then, the converse R� has the pp-definition R�(x, y) ⇔
R(y, x), the intersection R∩S has the pp-definition (R∩S)(x, y) ⇔
R(x, y) ∧ S(x, y), and the composition R ◦ S has the pp-definition
(R ◦ S)(x, y) ⇔ ∃z.R(x, z) ∧ S(z, y).

2.3 Automorphisms

Keeping the homomorphism definition of CSPs in mind may be help-
ful in the rest of this section. Let Γ and Δ denote two relational
τ -structures. An injective homomorphism that additionally preserve
the complement of each relation is called an embedding. Homomor-
phisms from Γ to Γ are called endomorphisms of Γ. An automor-
phism of Γ is a bijective endomorphism whose inverse is also an

endomorphism; that is, they are bijective embeddings of Γ into Γ.
The set containing all endomorphisms of Γ is denoted End(Γ) while
the set of all automorphisms is denoted Aut(Γ).

Example 4 Let R+ = {(x, y, z) ∈ Z3 | x + y = z}. For arbitrary
a ∈ Z, let ea : Z → Z be defined as ea(n) = a · n. Let e : Z → Z

be an arbitrary endomorphism of (Z;R+); e is a homomorphism so
(e(x), e(y), e(z)) ∈ R+ whenever (x, y, z) ∈ R+ and, more gener-
ally, e(

∑k
i=1 xi) =

∑k
i=1 e(xi) when x1, . . . , xk ∈ Z. Arbitrarily

choose n ∈ Z and note that

e(n) = e(1 + · · ·+ 1︸ ︷︷ ︸
n times

) = n · e(1).

It follows that End((Z;R+)) = {ea | a ∈ Z}. Note that ea has
an inverse if and only if a ∈ {−1, 1}. Thus, Aut((Z;R+)) =
{ea | a ∈ {−1, 1}}.

A useful observation is that if (V,C) is an instance of CSP(Γ)
with a solution s : V → D, then s′ : V → D defined by s′(x) =
α(s(x)) is a solution to (V,C) for every α in Aut(Γ) or End(Γ).
If a function s : V → D is not a solution to (V,C), then s′(x) =
α(s(x)) is not a solution for any α ∈ Aut(Γ) while s′ may or may
not be a solution if α ∈ End(Γ) \Aut(Γ).

In the following, let G be a set of permutations of a set X . We say
that G is a permutation group if the identity permutation is in G and
for arbitrary g, f ∈ G, the functions x �→ g(f(x)) and x �→ g−1(x)
are also in G. In other words, G is closed under function composition
and inversion. If Γ is a τ -structure, then Aut(Γ) is a permutation
group on the set DΓ. For n ≥ 1, the orbit of (t1, . . . , tn) ∈ Xn

under G is the set {(α(t1), . . . , α(tn)) | α ∈ G}. Clearly, the orbits
of n-tuples under G partition the set Xn, that is, every (t1, . . . , tn) ∈
Xn lies in precisely one orbit under G.

Example 5 Consider once again the structure (Z, R+) from Exam-
ple 4. It is obvious that {e1, e−1} forms a (trivial) group under func-
tion composition. If a ∈ Z, then the orbit of (a) equals {a,−a} so
(Z;R+) admits an infinite number of different orbits under its auto-
morphism group.

A (first-order) theory is a set of first-order sentences. When the
first-order sentences are over the signature τ , we say that T is a τ -
theory. The (full) theory of a τ -structure Δ (denoted Th(Δ)) is the
set of τ -sentences φ such that Δ |= φ. A model of a τ -theory T
in a τ -structure Δ such that Δ satisfies all sentences in T . Theories
that have a model are called satisfiable. We now define a central con-
cept: a satisfiable first-order theory T is ω-categorical if all count-
able models of T are isomorphic, and a structure is ω-categorical
if its first-order theory is ω-categorical. All ω-categorical structures
that appear in this article will be countably infinite, we make the
convention that ω-categorical structures are countably infinite. Note
that the first-order theory of a finite structure does not have infinite
models so finite structures are ω-categorical. One of the first infinite
structures that were found to be ω-categorical (by Cantor [15]) is the
linear order of the rational numbers (Q;<). There are many charac-
terisations of ω-categoricity and the most important one is in terms
of the automorphism group.

Definition 6 A permutation group G over a countably infinite set
X is oligomorphic if G has only finitely many orbits of n-tuples for
each n ≥ 1.

An accessible proof of the following theorem can be found in
Hodges’ book [25].
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Theorem 1 (Engeler, Ryll-Nardzewski, Svenonius) Let Γ be a
countably infinite structure Γ with countable signature. The follow-
ing are equivalent.

1. Γ is ω-categorical,
2. Aut(Γ) is oligomorphic, and
3. a relation is first-order definable in Γ if and only if it is preserved

by the automorphisms of Γ.

Example 5 immediately implies that (Z;R+) is not an ω-
categorical structure. Consider the structure (Z;<). One can verify
that Aut((Z;<)) = {x �→ x + a | a ∈ Z}. Hence, (Z;<) is not
ω-categorical (despite the fact that (Q;<) is indeed ω-categorical):
the orbits of (0, 0), (0, 1), (0, 2), . . . are distinct.

We conclude this section by presenting a result that connects first-
order definability with ω-categoricity.

Theorem 2 (Thm. 7.3.8 in Hodges [25]) If Γ is an ω-categorical
structure andΔ is first-order definable in Γ, thenΔ is ω-categorical,
too.

3 METHOD I: MODEL-COMPLETE CORES

Our first method is based on analysing a given constraint language Γ
with respect to its endo- and automorphisms. We first need to intro-
duce the concept of homomorphically equivalent CSPs. Let Γ and Δ
denote two relational τ -structures. A bijective homomorphism from
Γ toΔ is called an isomorphism. If Γ andΔ are isomorphic, then it is
clear that CSP(Γ) and CSP(Δ) are the same computational problem.
However, Γ and Δ may be non-isomorphic and still have the same
CSP. This is, for instance, the case when there simultaneously exists
a homomorphism from Γ toΔ and a homomorphism fromΔ to Γ. In
this case, we say that Γ and Δ are homomorphically equivalent and
this defines an equivalence relation on structures. We note that there
are structures that have the same CSP even when they are not homo-
morphically equivalent. Consider for example the structures (Z;<)
and (Q;<). They have the same CSP and there is a homomorphism
from (Z;<) to (Q;<) but there is no homomorphism from (Q;<)
to (Z;<).

For ω-categorical structures Γ, the equivalence classes have inter-
esting properties: the homomorphic equivalence class of Γ contains a
distinguished member Δ which is up to isomorphism uniquely given
by two properties: Δ is a core and Δ is model-complete. A relational
structure Γ is a core if all endomorphisms (i.e. homomorphisms from
Γ to Γ) are embeddings. Cores are important when studying the com-
plexity of finite-domain CSPs: we refer to the textbook by Hell and
Nešetřil [23] that extensively covers cores in the context of graph
homomorphisms and to Bulatov et al. [13] that covers cores in gen-
eral finite-domain CSPs. Model completeness is a central concept in
model theory: a structure Γ is model-complete if every formula in
Th(Γ) is equivalent to an existential formula modulo T . This may
be viewed as a limited notion of quantifier elimination.

Consider the relation < over the rationals Q. The structure (Q;<)
admits quantifier elimination [33] so every formula in Th({<}) is
equivalent to a quantifier-free formula (and, naturally, an existential
formula). It follows that (Q;<) is model-complete, and that every
Γ that is first-order definable in (Q;<) is model-complete, too. The
structure (Q;<) is also a core. Let e : Q → Q be an endomorphism
of (Q;<), i.e. if a < b, then e(a) < e(b). Clearly, e is injective and
it preserves the relation ≥ (that is, the negation of <) since if a > b,
then e(a) > e(b) and if a = b, then e(a) = e(b). However, there are
relations R that are first-order definable in (Q;<) and (Q;R) is not

a core. One trivial example is the equality relation =. The function
x �→ 1 is obviously an endomorphism of = but it is not injective and
thus not an embedding. We have the following important result.

Theorem 3 (Bodirsky [5]) Every ω-categorical structure Δ is ho-
momorphically equivalent to a model-complete core structure Γ
which is unique up to isomorphism. Moreover, Γ is ω-categorical
and the orbits of n-tuples are pp-definable in Γ for all n ≥ 1.

Since homomorphically equivalent structures have the same CSP,
one can focus on ω-categorical structures that have these properties.
The fact that we can pp-define the orbits of n-tuples will now become
highly important.

Theorem 4 Let Γ be a constraint language over the domain D. As-
sume the following:

1. Γ is a model-complete ω-categorical core and
2. the domain elements are represented in a way such that given a

vector d̄ = (d1, . . . , dn) ∈ Dn, a pp-definition in Γ of the or-
bit of d̄ can be generated in polynomial time (in the size of the
representation of d1, . . . , dn).

Then, CSP(Γ) and CSP(Γ ∪Dc) are polynomial-time equivalent.

Proof. Let Γ′ = Γ ∪ Dc. The reduction from CSP(Γ) to CSP(Γ′)
is trivial so we concentrate on the other direction. Let I ′ = (V ′, C′)
be an instance of CSP(Γ′). Assume without loss of generality that
if {di}(x) is in C′, then there is no variable y �= x such that
{di}(y) ∈ C′; if so, the constraint {di}(y) can be removed and
the variable y be replaced by x. Normalising an instance in this way
can easily be done in polynomial-time. We assume (without loss of
generality) that the only constraints in C′ with relations from Dc are
{d1}(x1), . . . , {dm}(xm). This can be achieved in polynomial time
by renaming of variables.

Compute (in polynomial time) the formula F (x1, . . . , xm) for the
orbit of (d1, . . . , dm). Define I = (V,C) such that C equals C′

extended with F (x1, . . . , xm) and the constant relations removed.
Let V denote V ′ expanded with the existentially quantified variables
in F (x1, . . . , xm). Note that I can be constructed in polynomial time
and it is an instance of CSP(Γ).

If the instance I has no solution, then it follows immediately that
I ′ does not have a solution—one can view I as being a relaxation of
I ′ since the formula F (x1, . . . , xm) is, in particular, satisfiable when
x1 = d1,. . . ,xm = dm. If the instance I has a solution s : V → D,
then we claim that there is a solution s′ : V ′ → D to I ′, too. Since
F describes the orbit of (d1, . . . , dm), there is an automorphism α
of Γ such that α(s′(xi)) = di, 1 ≤ i ≤ m. This implies that that
α(s′(x)) restricted to the set V is a solution to I .

By Theorem 3, we know that orbit-defining formulas always can
be pp-defined in Γ under the given assumptions. Whether these can
be generated or not in polynomial time is a completely different
question, though. We give an example based on constraint languages
that are first-order definable in (Q;<). Such constraint languages
are sometimes called temporal constraint languages. They are well-
studied in the literature and, in fact, the computational complexity
of CSP(Γ) is known for every finite Γ [4]. A concrete example of
a temporal constraint language is the point algebra PA: we see that
x ≤ y ⇔ (x < y)∨ (x = y) and x �= y ⇔ ¬(x = y). Furthermore,
temporal constraint languages are ω-categorical due to Theorem 2
and it is known (by Junker and Ziegler [31], also see Cameron [14])
that there are five possible choices of Aut(Γ). We concentrate on
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the (for our purposes) most interesting case when < ∈ 〈Γ〉 and
Aut(Γ) = Aut(Q;<). Arbitrarily choose such a language Γ and
assume (without loss of generality) that < ∈ Γ. We know that Γ is
model-complete so we assume that Γ is a core (for instance, Γ may
be the point algebra PA). We represent all members of Q in the natu-
ral way, i.e. as (a/b) where a, b �= 0 are integers written in binary.

The automorphisms of (Q;<) are the bijective functions f :
Q → Q that are monotonously increasing. The orbit of 1-tuples
equals Q while the orbit of a 2-tuple (a, b) with a < b equals
{(x, y) ∈ Q2 | x < y}. More generally, the orbit of a k-tuple
(a1, . . . , ak) with a1 < a2 < · · · < ak equals

{(x1, . . . , xk) ∈ Q
k | x1 < x2 < · · · < xk}

so the orbit-defining formulas can be generated in polynomial time.
Theorem 4 is thus applicable and CSP(Γ ∪ Qc) is polynomial-time
equivalent to CSP(Γ). In particular, CSP(Γ ∪ Qc) is in P if CSP(Γ)
is in P, and CSP(Γ ∪Qc) is in NP if CSP(Γ) is in NP.

This example shows that ω-categoricity is indispensable. Theo-
rem 4 combined with the tractability of CSP((Q;<, �=)) implies
that CSP(ΓQ) is in P when ΓQ denotes (Q;<, �=) extended with
the unary relations in Qc. Recall that (Z;<) and (Z;<, �=) are
not ω-categorical and define ΓZ by expanding (Z;<, �=) with Zc.
The problem CSP(ΓZ) is NP-hard since the relation {0, 1, 2} can
be pp-defined via x ∈ {0, 1, 2} ⇔ −1 < x ∧ x < 3, and the
problem CSP((Z; {0, 1, 2}, �=)) is NP-hard since there is an obvious
polynomial-time reduction from 3-COLOURABILITY.

4 METHOD II: HOMOGENEITY

Homogeneous structures have been intensively studied in mathemat-
ics and logics (for instance, in connection with combinatorics, model
theory, and group theory) and they are becoming more and more
relevant in the study of CSPs. Homogeneous structures have useful
properties such as admitting quantifier elimination and they are ω-
categorical whenever the structure contains a finite number of rela-
tions and the domain is countably infinite. Examples include (Q;<),
the random (or Rado) graph, and certain structures with connections
to phylogenetic reconstruction problems. There are also many struc-
tures that are well-studied in AI that can be represented by homo-
geneous structures: examples include Allen’s algebra [24] and RCC-
8 [9]. We need some machinery before providing the formal defini-
tion. Let D be the domain of a relational τ -structure Γ and arbitrar-
ily choose S ⊆ D. Then the substructure induced by S in Γ is the
τ -structure Δ with domain S such that RΔ = RΓ ∩ Sn for each
n-ary R ∈ τ ; we also write Γ[S] for Δ. The structure Γ is called
homogeneous if every isomorphism f : D1 → D2 between finite
induced substructures of Γ can be extended to an automorphism of
Γ, i.e. there exists an automorphism α such that f(x) = α(x) when
x ∈ D1. One should note that homogeneity is a more “fragile” con-
cept than ω-categoricity. For instance, Γ being homogeneous and Δ
being first-order definable in Γ does not necessarily imply that Δ is
homogeneous.

To simplify the presentation, we will turn our attention to binary
constraints and partition schemes; this concept was introduced by
Ligozat & Renz [37] and it has been highly influential in CSP re-
search. Let D be a non-empty domain. Given a finite family B =
{R1, . . . , Rk} of binary relations over D, we say that B is jointly
exhaustive (JE) if

⋃B = D2 and that B is pairwise disjoint (PD) if
Ri ∩ Rj = ∅ whenever 1 ≤ i �= j ≤ k. If B is simultaneously JE
and PD, then B forms a partition of the set D2.

Definition 7 Let D be a non-empty domain and let B =
{R1, . . . , Rk} be a set of binary relations over D. We say that B
is a partition scheme if the following holds:

1. B is JEPD,
2. the equality relation EQD = {(x, x) ∈ D2} is in B, and
3. for every Ri ∈ B, the converse relation R�

i is in B.

It is important to note that if B is a partition scheme over a domain
D, then for arbitrary d, d′ ∈ D there exists exactly one B ∈ B
such that (d, d′) ∈ B. Given a finite set of binary relations B =
{R1, . . . , Rk}, we follow notational conventions from [16, 30] and
define B∨= as the set of all unions of relations from B. The set B∨=

and the problem CSP(Γ) where Γ ⊆ B∨= are the natural objects that
are studied in connection with partition schemes.

Theorem 5 Let B = {B1, . . . , Bk} be a partition scheme over the
domain D. Assume the following:

1. B∨= is homogeneous, and
2. the domain elements are represented in a way such that given two

elements a, b ∈ D, it is possible to find (by using an algorithm A)
the unique Bi, 1 ≤ i ≤ m, such that (a, b) ∈ Bi in polynomial
time (measured in the size of the representations of a and b).

If B ⊆ Γ ⊆ B∨=, then CSP(Γ) and CSP(Γ∪Dc) are polynomial-
time equivalent.

Proof. Let Γ′ = Γ∪Dc. The reduction from CSP(Γ) to CSP(Γ′) is
trivial so we concentrate on the other direction. Let I ′ = (V ′, C′) be
an instance of CSP(Γ′). We assume without loss of generality (just
as in the proof of Theorem 4) that the only constraints in C′ with
relations from Dc are {d1}(x1), . . . , {dm}(xm).

Construct an instance I = (V,C) of CSP(B∨=) as follows: let

• V = V ′,
• Ĉ = {A(di, dj)(xi, xj) | 1 ≤ i �= j ≤ m}, and
• C = (C ′ ∪ Ĉ) \ {{d1}(x1), . . . , {dm}(xm)}.

The instance I = (V,C) can obviously be generated in polyno-
mial time.

If the instance I ′ has a solution, then it follows immediately that I
has a solution—the constraints in Ĉ are satisfiable by the assignment
x1 = d1,. . . ,xm = dm.

If the instance I has a solution s : V → D, then we claim
that there is a solution s′ : V → D to I ′, too. Let S =
{s(x1), . . . , s(xm)} and T = {d1, . . . , dm}. The set T contains
m elements by our initial assumptions and the set S contains m el-
ements due to the constraints in Ĉ; all variables in {x1, . . . , xm}
are assigned distinct values since none of the constraints in Ĉ allows
equality (due to the fact that B is a partition scheme and d1, . . . , dm
are distinct values). Thus, f : S → T is a well-defined bijective
function if we let f(s(xi)) = di, 1 ≤ i ≤ m. We continue by
proving the following claim.

Claim: f is an homomorphism from B[S] to B[T ] when B ∈ B.
Arbitrarily choose a tuple (a, b) ∈ B[S]. By the choice of S, we
know that a = s(xi) and b = s(xj) for some distinct 1 ≤ i, j ≤ m.
We see that

(f(a), f(b)) = (f(s(xi)), f(s(xj))) = (di, dj).

We know that di, dj ∈ T so it remains to show that (di, dj) ∈ B.
If A(di, dj) = B, then we are done. If A(di, dj) = B′ �= B, then
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B′(xi, xj) ∈ Ĉ ⊆ C so (s(xi), s(xj)) ∈ B′. This contradicts that
a = s(xi), b = s(xj), and (a, b) ∈ B since B ∩B′ = ∅.

We show that f is a homomorphism from B∨=[S] to B∨=[T ].
Since f is bijective, it follows that f is an isomorphism between
B∨=[S] and B∨=[T ], too. Arbitrarily choose a relation R ∈ B∨=

where R = B1 ∪ · · · ∪ Bp and Bi ∈ B, 1 ≤ i ≤ p. Arbitrarily
choose (a, b) ∈ R[S]. The tuple (a, b) is a member of some rela-
tion Bi in {B1, . . . , Bp}. By the Claim, (f(a), f(b)) ∈ Bi[T ] so
(f(a), f(b)) ∈ R[T ] since Bi ⊆ R. It follows that f is a homomor-
phism from R[S] to R[T ] since (a, b)was arbitrarily chosen in R[S].
This, in turn, implies that f is a homomorphism B∨=[S] to B∨=[T ]
since R was arbitrarily chosen in B∨=.

Since B∨= is a homogeneous structure, the function f can be ex-
tended to an automorphism α of B∨=. It follows that the function
s′ : V → D defined such that s′(x) = α(s(x)) is a solution to I ′;
merely note that s′(xi) = di, 1 ≤ i ≤ m.

Consider Allen’s algebra A with domain I where intervals are rep-
resented as (I−, I+) where I− < I+, I−, I+ ∈ Q, and the mem-
bers of Q are represented as in Section 3. Hirsch [24] has shown that
A is a homogeneous structure and the second precondition of Theo-
rem 5 is clearly satisfied with the given representation. We conclude
that CSP(A∪ Ic) and CSP(A∪ If ) are NP-complete problems since
CSP(A) is NP-complete. We can also conclude that CSP(H ∪ Ic)
is in P when H is the ORD-Horn subclass [40] since H contains
all 13 basic relations. More examples of homogeneous structures
that are relevant for computer science are described in, for example,
Bodirsky [5], Bodirsky and Chen [6], and Bodirsky and Wölfl [9].

5 METHOD III: SMALL SOLUTIONS

The methods in Section 3 and 4 provide polynomial-time equiva-
lences between CSP(Γ) and CSP(Γ ∪Dc) under certain conditions.
In this section, we will instead analyse the constraint language Γ∪Dc

directly. The main result will be weaker than in the previous two sec-
tions since we will only be able to prove membership in NP. On the
other hand, the approach is applicable also without ω-categoricity.

Let Γ be an arbitrary constraint language with domain D, and as-
sume that the relations in Γ and the elements in D are represented
is some fixed way. We say that Γ has the small solution property if
there exists a polynomial p (that only depends on the choice of Γ)
such that for every satisfiable instance I = (V,C) of CSP(Γ), there
exists a solution s : V → D such that ||s(v)|| ≤ p(||I||) for every
v ∈ V .

Lemma 8 Let Γ denote a constraint language over the domain D.
Assume that

1. Γ has the small solution property and
2. there exists an algorithm A and a polynomial q such that for ar-

bitrary k-ary R ∈ Γ and d1, . . . , dk ∈ D, algorithm A can
verify whether (d1, . . . , dk) ∈ R or not in time O(q(||R|| +∑k

i=1 ||di||)).
Then CSP(Γ) is in NP.

Proof. Let (V,C) denote an arbitrary instance of CSP(Γ). To show
that I = (V,C) is satisfiable, non-determinstically guess a solu-
tion s : V → D such that ||s(v)|| ≤ p(||I||) for every v ∈ V
(where p denotes a fixed polynomial). Such a solution exists since
Γ has the small solution property, and the size of s is consequently
polynomially bounded in ||I||. The solution s can thus be verified in
polynomial time with the aid of algorithm A.

The small solution property is particularly useful in connection
with partition schemes.

Lemma 9 Let B be a partition scheme with domain D such that
precondition (2) of Lemma 8 is satisfied. If B ∪ Dc has the small
solution property, then B∨= ∪ Dc has the small solution property
and both CSP(B∨= ∪Dc) and CSP(B∨= ∪Df ) are in NP.

Proof. Let I = (V,C) denote an instance of CSP(B∨= ∪Dc) with
solution s : V → D. Replace each binary constraint x(b1 ∪ · · · ∪
bm}y ∈ C (where {b1, . . . , bm} ⊆ B) with the constraint x{bi}y,
1 ≤ i ≤ m, and (s(x), s(y)) ∈ bi. The resulting instance I ′ =
(V,C′) is solvable, ||I ′|| ≤ ||I||, and it is an instance of CSP(B ∪
Dc). We know that B ∪Dc has the small solution property so there
is a solution s′ : V → D such that ||s′(v)|| ≤ p(||I ′||) for every
v ∈ V and some polynomial p that only depends on B. Since s′ is
a solution to I , too, it follows that ||s′(v)|| ≤ p(||I ′||) ≤ p(||I||).
Thus, B∨= ∪ Dc has the small solution property. Lemma 8 implies
that CSP(B∨= ∪ Dc) is in NP and consequently Lemma 3 implies
that CSP(B∨= ∪Df ) is in NP.

Many well-known structures possess the small solution property.
A prime example is relations R defined by linear expressions, that is,
R is defined by

(x1, . . . , xk) ∈ R ⇔
k∑

i=1

ci · xi ≤ c0

or

(x1, . . . , xk) ∈ R ⇔
k∑

i=1

ci · xi = c0

where the coeffecients are in Z and the variables ranges over, for in-
stance, Q or Z. Given a constraint language Γ containing such rela-
tions, the small solution property for Q follows from the fact that
linear programming can be solved (and a concrete solution writ-
ten down) in polynomial time while the property for Z has been
proven by Papadimitriou [41]. This example is interesting in sev-
eral respects. First of all, the constants in Qc are, of course, linear.
Furthermore, we know (from Example 4) that not even the language
Γ = {{(x, y, z) ∈ Z3 | x + y = z} is ω-categorical; the same can
be proved for the domain Q. Thus, the methods in Section 3 and 4
are not applicable in this case.

We illustrate the small solution property with a different example:
the RCC-5 formalism. The RCC formalisms [42] are designed for
reasoning about spatial regions and they are the basis for a large part
of the work in qualitative spatial reasoning (QSR). There are several
variants such as RCC-23, RCC-8, and RCC-5. We concentrate on the
simplest formalism RCC-5. The interpretation of the five basic rela-
tions in RCC-5 is given in Figure 1 and it is easy to see that they
constitute a partition scheme. The choice of objects is important in
RCC-5 and different choices may give rise to different computational
problems. A (slightly degenerated) example is if the set of regions
only contains one member. In this case, all basic relations except EQ
are empty and this makes the CSP problem for the power set of the
partition scheme tractable. If we instead assume that the regions are
non-empty regular subsets of an infinite topological space, then the
very same problem is NP-hard [43]. In the sequel, we consider the
variant of RCC-5 where the objects are non-empty subsets of an infi-
nite set, e.g., of N. We denote this variant by RCC-5Set and we let R
be the corresponding set of basic relations. This particular interpreta-
tion is interesting since it can be viewed as the least restricted variant
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of RCC-5: if there is a solution to an RCC-5 instance when the re-
gions are taken from some set X that does not contain the empty set,
then there is a solution where the regions are taken from 2N \∅. This
is well-known and it can quite easily be proved by methods similar
to those used in Drakengren and Jonsson [20] (which, incidentally,
also have inspired the proof of Proposition 10 below). Further discus-
sions concerning different interpretations of RCC-5 and other spatial
formalisms can be found in [6, 21, 36].

We first establish that the methods in Sections 3 and 4 are not ap-
plicable. One could do this by analysing the automorphism group
and conclude that RCC-5Set is not ω-categorical. A simpler way is
the following (but it is tacitly based on the assumption P �= NP).
Let Γ = R ∪ {�=} where �= equals

⋃R \ {EQ}. It is known that
CSP(Γ) is in P [29, 43]. We extend Γ with one constant: Γ′ =
Γ ∪ {{0, 1, 2}}. Consider the constraints {y{PP}z, {0, 1, 2}(z)}. It
is clear that if s is a solution, then s(y) ∈ 2{0,1,2} \ {∅, {0, 1, 2}},
i.e. there are 6 distinct possible choices for the variable y. This im-
plies that there is a straightforward polynomial-time reduction from
6-COLOURABILITY to CSP(Γ′) (since the relation �= is in Γ′) and,
consequently, that CSP(Γ′) is NP-complete. If Theorem 4 or The-
orem 5 were applicable, then CSP(Γ′) would be polynomial-time
solvable.

Proposition 10 Let D = 2N\∅. The constraint language R∨=∪Dc

has the small solution property and CSP(R∨= ∪Dc) is in NP.

Proof. By Lemma 9, it is sufficent to show that R ∪ Dc has the
small solution property. Let I = (V,C) be a satisfiable instance of
CSP(R ∪ Dc) with solution s : V → 2N \ {∅}. Construct a new
instance I ′ = (V ′, C′) as follows.

Step 1. Remove every x{EQ}y constraint: this can be done by col-
lapsing the variables x and y (we leave the obvious details of this
step to the reader).

Step 2. Replace every x{PP�}y constraint with y{PP}x.

Step 3. Remove every x{PO}y constraint by replacing it with

z1{DR}z2 z2{DR}z3 z3{DR}z1
z1{PP}x z1{DR}y
z2{PP}x z2{PP}y
z3{PP}y z3{DR}x

where z1, z2, z3 are fresh variables.

Note that I ′ is still a satisfiable instance of CSP(R ∪ Dc) and
that the only non-unary relations that appear in I are DR and PP.
Additionally note that if there is a solution to I with codomain S,
then there is a solution to I ′ with codomain S.

We say that two variables u, v in I ′ are PP-connected if there exists
a sequence of variables w1, . . . , wp such that

1. w1 = u,
2. wp = v, and
3. wi{PP}wi+1 ∈ C′ for all 1 ≤ i < p.

Note that if u and v are PP-connected, then in any solution s′ of I ′

we have that (s′(u), s′(v)) ∈ PP.
Let T denote the number of elements in the largest unary rela-

tion appearing in I . If u is PP-connected with some variable v and
U(v) ∈ C, then we know that |s′(u)| < T for any solution s′

to I ′. We prove that at most |V | · T different elements are needed
for representing a solution by induction over the number of vari-
ables in V ′. This implies the result by reasoning as follows: we can
without loss of generality assume that the set of possible values is

2{1,...,|V |·T}\{∅}. To represent such a value, we need at most |V |·T
bits if we view each value as a 0/1-vector where the i:th component
equals 1 if and only i is a member of the value. Hence, CSP(R∪Dc)
has the small solution property since |V | ≤ ||I ′|| ≤ ||I|| and
T ≤ ||I ′|| ≤ ||I||.
Basis step. If |V ′| = 1 and V = {v}, then either one value is suf-
ficient (if v is not constrained by a unary relation) or T values are
sufficient (otherwise).

Induction hypothesis. Assume the claim holds when |V ′| = p.

Induction step. We show the claim when |V ′| = p+1. Choose a vari-
able v ∈ V such that v is maximal with respect to PP-connectedness,
i.e. v is not PP-connected to any other variable. By the induction hy-
pothesis, we need at most pT values for the instance I ′ \{v}. If there
exists U(v) ∈ C, then we need at most T values for v which gives us
at most pT +T = (p+1)T values in total. If there is no U(v) ∈ C,
then we need at most one additional value for v so we need at most
pT + 1 ≤ (p+ 1)T values in total. To see this, v may (in the worst
case) be PP-connected to every other variable and v must (by the in-
duction hypothesis) contain at least pT different values. However, it
must also be a strict superset of the other variables and this is accom-
plished by adding one fresh element.

The basic proof idea of Proposition 10 is to analyse the growth of
the variables that are not constrained by any unary relation. Clearly,
if a variable v is constrained by a constant relation {c}, then any
solution must satisfy s(v) = c and ||c|| ≤ ||I||. Otherwise, PP-
connectedness gives a way of estimating the size of the contents of
the other variables. This idea can readily be extended to other classes
of relations that are related to RCC-5 such as (certain variants of) set
relations (cf. Bodirsky and Hils [7] and the references in their pa-
per), and it can also be generalised in other directions. An interesting
observation is that the NP membership results for RCC5 and RCC8
with polygonal regions in the plane by Li et al. [35] is implicitly
based on the small solution property. Here, the representational size
of the regions are analysed and bounded by exploiting a particular
parameter that is related to embeddings of planar graphs in the plane.
Another interesting observation is that Li [34] uses concepts that are
similar to PP-connectedness when constructing different realisations
of the RCC8 formalism. This may indicate that the approach taken
in the proof of Proposition 10 may quite easily be adapted to other
spatial formalisms.

We conclude this section by a few observations concerning the
small solution property. First of all, it is important to realise that the
converse of Lemma 8 does not necessarily hold. To see this, define
the rapidly increasing function

Tower(n) = 22
..
2

︸︷︷︸
n times

.

Clearly, log(Tower(n)) grows faster than any polynomial in n.
Now consider the constraint language Γ = {U1, U2, . . . } where
Ui = {x ∈ N | x = Tower(i)}. Checking if there an instance of
CSP(Γ) is satisfiable or not can trivially be solved in polynomial time
if U1, U2, . . . are represented in a reasonable way—for instance, if
Ui is represented by the number i written in binary. Thus, CSP(Γ)
is in NP, too. It is obvious, though, that Γ does not have the small
solution property if we represent the natural numbers in binary.

Another important observation is that it is not sufficient to verify
that Γ itself has the small solution property—one need to verify that
Γ ∪ Dc has the small solution property. We exemplify by using the
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X{PP}Y ⇔ X ⊂ Y

X{PP�}Y ⇔ X ⊃ Y
X{DR}Y ⇔ X ∩ Y = ∅

X{PO}Y ⇔ ∃a, b, c : a ∈ X, a �∈ Y, b ∈ X, b ∈ Y, c �∈ X, c ∈ Y
X{EQ}Y ⇔ X = Y

Figure 1. The five basic relations of RCC-5.

relation R = {(x, y) ∈ N2 | x = 2y−1}. The constraint language
{R} has the small solution property since every instance has the
solution that assigns 1 to every variable. However, CSP({R, {2}})
does not have small solutions. Consider the instance (V,C) where
V = {x0, . . . , xn} and

C = {{2}(x0), R(x1, x0), R(x2, x1), . . . , R(xn, xn−1)}.

It is easy to verify that (V,C) is solvable and every solution s :
V → N must satisfy s(xn) = Tower(n).

Finally, we want to emphasise once again that the choice of exact
interpretation and representation of relations and domain elements is
extremely important. Bodirsky and Chen [6] have presented an inter-
pretation of RCC-5 that is homogeneous. In this case, adding con-
stants preserves computational complexity (up to polynomial-time
reductions) by Theorem 5 (given that relations and domain elements
are represented in a suitable way). We know from earlier examples
that this does not hold for RCC-5Set.

6 DISCUSSION

We have presented three different methods for analysing the com-
plexity of qualitative CSPs extended with finite unary relations, and
identifying additional general methods for studying the complexity
of such CSPs is an obvious research direction. One should observe
that restricting oneself to finite unary relations may be reasonable
in certain cases but not in others. For instance, a substantial part of
the literature on temporal reasoning is concerned with TCSPs and
the simple temporal problem (STP) [19]: the basic binary relations
here are expressions a ≤ x − y ≤ b (where a, b ∈ Q and x, y are
variables) and unary relations a ≤ x ≤ b (which are either con-
stants or infinite unary relations depending on the choice of a and
b). It is easy to see that extending a formalism with (non-trivial) infi-
nite unary relations may yield an easier computational problem than
adding finite unary relations. For instance, PA extended with the fi-
nite unary relation {0, 1, 2} is NP-hard since the disequality rela-
tion �= is in PA, while PA extended with the infinite unary relation
{x ∈ Q | 0 ≤ x ≤ 2} is tractable [28]. Thus, it would be inter-
esting to study the computational complexity of CSPs extended with
non-finite unary relations.

Our methods I and II are based on certain model-theoretical prop-
erties of the underlying constraint languages. While methods based
on model theory and universal algebra have been very common
when studying CSPs from the viewpoint of theoretical computer
science [2, 4, 12], such methods have been less popular within the
AI community (with some notable exceptions such as Huang [26]).
Thus, we take the opportunity to discuss these methods in slightly
more detail.

Method I. (model-complete cores) The main obstacle for apply-
ing method I is the need for computing orbit-defining formulas ef-
ficiently. In fact, it is not even known if this problem is decidable

or not in the general case. Studying this problem is a very impor-
tant future research direction. In cases where we do not know how to
effeciently generate orbit-defining formulas, there are (at least) two
possible workarounds. The first one is proposed by Bodirsky [5, Sec.
7]: if the set of possible constants is finite, then an orbit-defining
formula for these constants can be computed off-line and subse-
quently be used without additional cost. Another workaround is to
sacrifice polynomial-time equivalence and allow more time for com-
puting the orbit-defining formula. If the problem at hand is NP-hard,
then a (preferably mildly) exponential algorithm can be acceptable.
In both cases, algorithmic methods for generating orbit-defining for-
mulas would be helpful. We note, on the positive side, that related
definability problems have recently been successfully addressed, cf.
Bodirsky et al. [8]. Their methods are interesting since they combine
methods taken from universal algebra, Ramsey theory, and topologi-
cal dynamics.

Method II. (homogeneity) We have chosen to present the re-
sults when the constraint language is restricted to partition schemes.
This is convenient but not inherently necessary—generalisations to
(for instance) higher-arity relations are possible. One should con-
sequently not view our results as the only possible way of exploit-
ing homogeneity: how to exploit homogeneity must be decided on a
case-by-case basis.

Given a structure Γ, it may be difficult to verify that it is indeed
homogeneous. Here, one should note that if Γ contains a finite num-
ber of relations, the domain of Γ is countably infinite, and Γ is ho-
mogeneous, then Γ is ω-categorical. This is a consequence of The-
orem 1 and the details are to be found in Macpherson [39]. A first
step is thus to verify the ω-categoricity of Γ, and this can quite often
be accomplished by using Theorem 1. If Γ is ω-categorical, then Γ
is homogeneous if and only if every formula in Th(Γ) is equiva-
lent to a quantifier-free formula (see, for instance, Macpherson [39]).
This gives an alternative way of proving homogeneity than using the
automorphism-based definition directly. This also clarifies the con-
nections between method I and method II: recall that Γ is model-
complete if and only if every formula in Th(Γ) is equivalent to an
existential formula.

Another approach for using homogeneity is to construct suitable
homogeneous structures “from scratch”. The main tool for this is
Fraı̈ssé amalgamation. The details are outside the scope of this ar-
ticle: Macpherson [39] outlines the approach and concrete construc-
tions for RCC5 and RCC8 can be found in Bodirsky and Chen [6]
and Bodirsky and Wölfl [9], respectively. One should note that amal-
gamation is quite common in the literature on CSPs and related
problems; however, it is often referred to as the patchwork prop-
erty [26, 38, 44]
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