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Abstract. We study the complexity of the bribery problem with
distance restrictions. In particular, in the bribery problem, we are
given an election and a distinguished candidate p, and are asked
whether we can make p win/not win the election by bribing at most
k voters to recast their votes. In the bribery problem with distance
restrictions, we require that the votes recast by the bribed voters are
close to their original votes. To measure the closeness between two
votes, we adopt the prevalent Kendall-Tau distance and the Hamming
distance. We achieve a wide range of complexity results for this
problem under a variety of voting correspondences, including the
Borda, Condorcet, Copelandα for every 0 ≤ α ≤ 1 and Maximin.

1 Introduction

Voting is a common method for preference aggregation and
collective decision-making, and has applications in many areas such
as political elections, multi-agent systems, web spam reduction and
pattern recognition [14, 15, 32, 37]. In real-world applications, there
exist many potential factors that may affect the result of voting.
For instance, a strategic individual may alter some of the already
submitted votes, or the votes that the voters intend to submit. An
example of scenario is when a candidate attempts to change the
preferences of voters by running a campaign, or in more extreme
cases where this strategy involves paying voters to change their
votes, or bribing election officials to get access to already submitted
votes in order to modify them. A prominent method to address
such issues concerning strategic behavior is to use complexity as a
barrier [23, 31, 39]. The key point is that if it is computationally
difficult for the strategic individual to figure out how to successfully
change the result, he may refrain from attacking the voting.

In this paper, we study a voting model in which an external agent
attempts in switching the voters’ preferences in order to make a
distinguished candidate win the election (constructive), or lose the
election (destructive). The external agent’s capacity is bounded by a
budget constraint. We observe that, while the voter is willing to recast
a new vote persuaded by an external agent, he may nevertheless
prefer to submit a preference that deviates as little as possible from
his true preference. Indeed, if voting is public, he may be worried
that switching his preference completely may harm his reputation,
yet he will not be caught out if his final preference is sufficiently
similar to his true preference. We call this model distance restricted
bribery. To quantify the amount of deviation of the new recast
vote and the original vote of a bribed voter, we use two distance
measures. Particularly, we consider what are arguably the most
prominent distances on votes, namely, the Hamming distance (see,
e.g., [8, 16, 34, 35, 40] for discussions of Hamming distance in
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the context of voting) and Kendall-Tau distance (KT-distance for
short. See [2, 5, 6, 9] for further discussions). The definitions of
these two distances are in Section 2. We study the complexity of
the voting model for various voting systems, including the Borda,
Condorcet, Maximin and Copelandα. We obtain a broad range of
results showing that the complexity of bribery depends closely on the
settings. A primary conclusion from our results is that the distance
restricted bribery problem remains NP-hard for some voting systems
even when the distance is bounded by a very small constant. On
the other hand, there exist voting systems for which the distance
restricted bribery problem is polynomial-time solvable, when the
distance is bounded by 1 or 2, and voting systems for which
the distance restricted bribery problem is polynomial-time solvable
regardless of the values of the distance bound. In particular, we
achieve several dichotomy results with respect to the values of
the distance bound. For instance, for Condorcet, the constructive
restricted bribery problem with KT-distance restriction is polynomial
time solvable if the distance is bounded by at most 2; and NP-hard
otherwise. See Table 1 for further details on our results. Due to space
limitation, several proofs are deferred to a full version of the paper.

Our model is closely related to the bribery problem which has
been widely studied in computational social choice. Faliszewski,
Hemaspaandra and Hemaspaandra [22] introduced the bribery
problem, where one is to decide whether a distinguished candidate
can become a winner (constructive) or be prevented from being
a winner (destructive) by recasting at most R (a given integer)
votes. Clearly, the bribery problem studied in [22] can be considered
as a distance restricted bribery problem with the distance bound
being considerably large (depends on which distance concept we
adopt). The complexity of the bribery problem proposed in [22]
has been extensively studied in the literature for various voting
systems. In particular, it is known that, for Borda and Condorcet,
the constructive bribery problem is NP-hard, while the destructive
counterpart turned out to be polynomial-time solvable [11, 24].
For Maximin and Copelandα, both the constructive and the
destructive bribery problems are NP-hard [24, 26]. Our study
clearly complements these complexity results. Of particular interest
is that our study shed significant light on the complexity border
between polynomial-time solvability and NP-hardness of the bribery
problem, with respect to the distance bound. Recently, exploring the
complexity border for various strategic voting problems, with respect
to diverse structural parameters, has received a considerable amount
of attention of researchers from both theoretical computer science
and computational social choice communities [10, 18, 25, 43, 44, 45,
46]. The reason is that in many real-world applications, the votes of
the voters are subject to some natural combinatorial restrictions.

Our model is also related to some other variants of the
bribery problem. In [22], the authors also considered the $bribery
version where each voter has a price to change his vote. Later,
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General Kendall-Tau distance Hamming distance
Const Dest Const (�) Dest (�) Const (�) Dest (�)

1 2 3 ≥ 4 1 ≥ 2 3 ≥ 4 2 2 ≥ 3

Borda NP-h♦ P P NP-h (Thm. 2) P P P P P P
Condorcet NP-h♣ P♣ P P NP-h (Thm. 4) P P P P NP-h (Thm. 10) P P
Copelandα

NP-h♥ NP-h♥ NP-h (Thm. 5)
NP-h (Thm. 5)

NP-h (Thm. 9)
0 ≤ α ≤ 1 UNI: � ≥ 5

Maximin NP-h♣ NP-h♣ NP-h (Thm. 7) P NP-h NP-h (Thm. 11)

Table 1. A summary of the complexity of the bribery problems. Here, the general case refers to the bribery problem studied in [22]. In the table, “Const”
stands for “Constructive” and “Dest” stands for “Destructive”. Moreover, “�” is the distance upper bound. Furthermore, “P” stands for “polynomial-time

solvable” and “NP-h” stands for “NP-hard”. Unless stated otherwise, all results shown in this table apply to both the unique-winner model and the
nonunique-winner model. The complexity of the problems whose distance bound � is not shown in the table remains open. The polynomial-time solvability

results for the Kendall-Tau distance restriction are from Theorem 1, and the polynomial-time solvability results for the Hamming distance restriction are from
Theorem 8. The result marked by ♦ is from [11], by ♣ from [24], and by ♥ from [26].

Faliszewski [21] proposed a new notion of bribery, called nonuniform
bribery, where a voter’s price may depend on the nature of changes
he is asked to implement. A similar notion called microbribery was
considered in [26]. Elkind, Faliszewski and Slinko [17] introduced
the framework of swap bribery where the briber can ask a voter
to perform a sequence of swaps; each swap changes the relative
order of two candidates that are currently adjacent in this voter’s
preference list. Moreover, each swap may have a different price;
and the price of a bribery is the sum of the prices of all swaps
that it involves. In the same paper [17], the authors also studied the
shift bribery problem, which is a restricted variant of swap bribery.
In particular, in the shift bribery problem, only swaps involving
the distinguished candidate are allowed. Recently, Pini, Rossi and
Venable [42] investigated the complexity of bribery in voting with
soft constraints, where each candidate is an element of the Cartesian
product of the domains of some variables, and voters express their
preferences over the candidates via soft constraints. Mattei et al. [38]
studied the complexity of bribery in CP-nets.

In addition, our study is related to Obraztsova and Elkind’s
work [41] where a manipulator aims to make a distinguished
candidate win or lose the election by casting an untruthful vote. Here,
the untruthful vote should be as close as possible to the truthful vote
of the manipulator. They examined this problem for several voting
systems with the adoption of three prominent distances, namely, the
KT-distance, the footrule distance, and the maximum displacement
distance. Our model differs from theirs in the following aspects.
First, in our settings, at most R voters might be bribed, however,
they considered only one such voter. Second, their problems ask the
manipulator to cast an untruthful vote which is as close as possible
to the truthful vote. We mainly focus on the settings where the bribed
voters must cast their votes which have a small constant discrepancy
from their original votes.

2 Preliminaries

Voting system. A voting system can be specified by a set C of
candidates, a multiset ΠV = {πv1 , πv2 , ..., πvn} of votes cast by
a corresponding set V = {v1, v2, . . . , vn} of voters (πvi is cast
by vi), and a voting correspondence τ which maps the election
E = (C,ΠV ,V) to a subset of candidates τ(E), the winners. We
often discard V from the above notation for election E since ΠV
is sufficient to determine the winners. If there is only one winner,
we call it a unique winner; otherwise we call them co-winners.
Moreover, each vote πv ∈ ΠV is defined as a linear order over

the candidates. Throughout this paper, we interchangeably use the
terms “vote” and “voter”. The linear order of a vote is also called the
preference of the vote over the candidates. For convenience, we use
�v to denote the preference of the vote cast by the voter v. Therefore,
for a voter v who prefers the candidate a to b to c, the vote will be
written as πv : a �v b �v c. In context where �v is clearly known
to be whose preference, we drop v from �v . We say a is ranked
above b in a vote πv if a �v b. The position of a candidate a ∈ C
in a vote πv , denoted as pos�v (a) (or simply posv(a)), is defined as
|{b ∈ C | b �v a}|+ 1, i.e., the number of candidates ranked above
a in the vote plus 1.

For two candidates c and c′ in an election E = (C,ΠV), let
NE(c, c

′) denote the number of votes which prefer c to c′. We drop
the index E when it is clear from context. If NE(c, c

′) > NE(c
′, c),

we say c beats c′ by NE(c, c
′) in E ; otherwise if NE(c, c

′) =
NE(c

′, c) we say c ties c′ in E .

Voting Correspondences. We mainly study the following voting
correspondences.

Borda: Every voter gives 0 points to his last-ranked candidate, 1
point to his second-last ranked candidate and so on. A candidate
with the highest score is a winner.

Copelandα (0 ≤ α ≤ 1): For a candidate c, let B(c) be the set of
candidates who are beaten by c, and T (c) the set of candidates
who tie with c. The Copelandα score of c is then defined as
|B(c)| + α · |T (c)|. A Copelandα winner is a candidate with the
highest score.

Maximin: For a candidate c, the Maximin score of c is defined as
minc′∈C\{c} N(c, c′). A Maximin winner is a candidate with the
highest Maximin score.

Condorcet: A Condorcet winner is a candidate with Copeland0

score m − 1, and a weak Condorcet winner is a candidate
with Copeland1 score m − 1, where m denotes the number of
candidates. It is known that Condorcet winner (weak Condorcet
winner) may not exist in an election. However, if there is a
Condorcet winner in an election, it must be unique. Given an
election, the voting correspondence returns all weak Condorcet
winners if there is a weak Condorcet winner; otherwise, it returns
the empty set.

Distance. We mainly consider the Hamming distance and the
KT-distance in this paper. The Hamming distance, named after
Richard Hamming, was initially defined on strings [28]. In particular,
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the Hamming distance between two strings of equal length is
the number of positions at which the corresponding symbols are
different. For example, the Hamming distance between the string
“a 1 b b” and the string “a b 1 b” is two since there are two positions
(the second and the third positions) where the symbols are different.
In the context of Hamming distance in this paper, we regard each
vote as a string with each element being (the name of) a candidate.
For example, the vote defined as a � b � c � d will be considered
as the string “a b c d”. Hence, the Hamming distance between every
two votes with preferences �1,�2, denoted as DHAM (�1,�2), is
the Hamming distance between the two strings corresponding to the
two votes.

The KT-distance was coined by Maurice Kendall [33]. In a formal
way, the KT-distance between two votes with preferences �1 and �2,
respectively, denoted as DKT (�1,�2), is equal to |{(a, b)|a, b ∈
C, a �1 b and b �2 a}|. Equivalently, the KT-distance between
two votes can be defined as the minimum number of swaps of
adjacent candidates needed to transform one into the other [4]. In
addition, the KT-distance also turns out to be equal to the number
of exchanges needed in a bubble sort (see [1] for an introduction to
bubble sort) to convert one full ranking to the other [19]. Due to this
fact, the KT-distance is also referred to as bubble-sort distance in the
literature [7, 12, 19, 20].

Problem Definitions. We mainly study the following problems
for different voting correspondences. In what follows, let τ be
a voting correspondence and “DIST” a distance function. In this
paper, “DIST” can be “KT” for the KT-distance or “HAM” for the
Hamming distance. Moreover, � is a positive integer. For two votes
with preferences �1,�2 and a distance “DIST”, we say these two
votes are DIST(�)-close if DDIST (�1,�2) ≤ �. For each problem,
we study both the unique-winner model and the nonunique-winner
model. In the unique-winner model (resp. nonunique-winner model)
for τ not being Condorcet, a candidate c ∈ C wins an election
E = (C,ΠV) if and only if τ(E) = {c} (resp. c ∈ τ(E)), i.e.,
c is the unique winner (resp. c is either the unique winner or a
co-winner). For Condorcet, a candidate c wins an election (C,ΠV) in
the unique-winner model (resp. nonunique-winner model) if and only
if c is the Condorcet winner (resp. a weak Condorcet winner). In the
following, let “MOD” be either “UNI” standing for “unique-winner
model”, or “NON” standing for “nonunique-winner model”.

Constructive Distance Restricted Bribery under τ
(C-DIST(�)-τ -MOD)

Input: An election (C,ΠV), a distinguished candidate p ∈ C,
and a positive integer R ≤ |ΠV |. Here, p does not win the
election (C,ΠV) under τ .

Question: Is it possible to make p win the election by replacing
(recasting) at most R votes, under τ? Here, a vote can only be
replaced with a DIST(�)-close vote.

Destructive Distance Restricted Bribery under τ
(D-DIST(�)-τ -MOD)

Input: An election (C,ΠV), a distinguished candidate p ∈ C,
and a positive integer R ≤ |ΠV |. Here, p wins (C,ΠV) under τ .

Question: Is it possible to prevent p from winning the election
by replacing (recasting) at most R votes, under τ? Here, a vote
can only be replaced with a DIST(�)-close vote.

We give either polynomial-time algorithms or NP-hardness
reductions for the above problems. Our hardness proofs are based
on reductions from the X3C problem and the X4C problem defined
as follows. Let � be 3 or 4.

Exact �-Set Cover (X�C)
Input: A universal set U = {c1, c2, ..., c�·κ} and a collection
S = {s1, s2, ..., sn} of �-subsets of U .
Question: Is there an S′ ⊆ S such that |S′| = κ and each
ci ∈ U appears in exactly one set of S′?

It is known that both the X3C and the X4C problems are
NP-hard [3, 27]. In particular, the NP-hardness of both problems
holds even when each element ci ∈ U occurs in exactly 3 subsets
of S [3, 27]. Notice that under this assumption, n = 3κ in X3C.

The words “promote” and “degrade” are often used in
NP-hardness reductions and description of polynomial-time
algorithms with specific meanings in this paper. In particular, for a
vote π and a candidate c, promoting the candidate c by � positions
for some � < posπ(c) means recasting the vote π as follows: (1)
rank c in the (posπ(c) − �)-th position; (2) rank every candidate c′

with posπ(c) > posπ(c
′) ≥ posπ(c) − � in the (posπ(c

′) + 1)-th
position; and (3) rank all the remaining candidates in their original
positions. Degrading the candidate c by � positions means recasting
the vote π as follows: (1) rank c in the (posπ(c)+�)-th position of π;
(2) rank every candidate c′ with posπ(c) < posπ(c

′) ≤ posπ(c)+ �
in the (posπ(c

′) − 1)-th position; and (3) rank all the remaining
candidates in their original positions. See Figure 1 for an illustration.

a b c d e f� � � � � a c d b e f� � � � �
Degrading b by two positions.

a b c d e f� � � � � a e b c d f� � � � �
Promoting e by three positions.

Figure 1. Illustrations of promoting and degrading candidates.

3 Kendall-Tau Distance Restricted Bribery

In this section, we investigate the bribery problem with KT-distance
restrictions. In the following, we summarize our results in several
theorems. We begin with some polynomial-time solvability results.

Theorem 1 The following problems are polynomial-time
solvable: C-KT(1)-Borda-UNI/NON, C-KT(�)-Condorcet-UNI/NON
for � = 1, 2, D-KT(�)-Borda-UNI/NON for every possible
�, D-KT(�)-Condorcet-UNI/NON for every possible �,
D-KT(1)-Maximin-UNI/NON.

PROOF. Due to space limitation, we give only the polynomial-time
algorithms for the C-KT(2)-Condorcet-UNI problem and the
D-KT(1)-Maximin-UNI problem. Let ((C,ΠV), p ∈ C,R ) be a
given instance. Let m be the number of candidates and n the number
of votes, i.e., m = |C| and n = |ΠV |.

C-KT(2)-Condorcet-UNI. We reduce the problem to the
SIMPLE B-EDGE COVER OF MULTIGRAPHS problem which is
polynomial-time solvable [36].
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SIMPLE B-EDGE COVER OF MULTIGRAPHS (B-ECM)
Input: An undirected multigraph G = (U,E) where U is the
set of vertices and E is the set of edges, a function f : U → Z

+

and a positive integer κ.
Question: Does there exist an E′ ⊆ E such that |E′| ≤ κ and
every vertex u ∈ U is incident to at least f(u) edges in E′?

Now we show how to reduce the C-KT(2)-Condorcet-UNI
problem to the B-ECM problem. For each candidate c ∈ C \ {p}
which is not beaten by p, we create a vertex. For simplicity, we still
use c to denote the corresponding vertex. We define ←−p v for a vote
πv where p is not ranked in the top as follows: if p is not ranked in
the second highest position in πv , then ←−p v is the set consisting of
the two candidates immediately ranked above p in πv; if p is ranked
in the second-highest position in πv , then ←−p v is the set consisting of
the candidate ranked in the highest position in πv . For example, for
a vote πv with preference a � b � c � p � d, ←−p v = {b, c}, while
for a vote πu with preference a � p � c � b � d, ←−p u = {a}.
The edges are created according to the votes. Precisely, for each
vote πv with |←−p v| = 2, if both candidates of ←−p v = {c, c′} are
not beaten by p, we create an edge between c and c′. On the other
hand, if only one of ←−p v is not beaten by p, we introduce a new
degree-1 vertex adjacent to the vertex in ←−p v that is not beaten by
p. For each vote πv with |←−p v| = 1, if the candidate in ←−p v is not
beaten by p, we introduce a new degree-1 vertex adjacent to the
candidate in ←−p v . Now we come to the capacities of the vertices.
Each vertex corresponding to a candidate c has a capacity f(c) =
(N(c, p)−N(p, c))/2+1 whenever N(c, p)−N(p, c) ≡ 0 mod 2,
and has a capacity f(c) = (N(c, p) + 1 − N(p, c))/2 otherwise.
Moreover, each newly introduced degree-1 vertex has capacity 0. The
value of the capacity f(c) indicates the minimum number of votes
which rank c above p, that are needed to be replaced with votes which
rank p above c in order to make p beat c. Finally, we set κ = R .

Now we get an instance of the B-ECM problem. Moreover,
given a solution E′ of the instance of the B-ECM problem, we
can get a solution for C-KT(2)-Condorcet-UNI in polynomial time.
In particular, for each edge (c, c′) ∈ E′, if none of {c, c′} is
a newly introduced degree-1 vertex, we recast the corresponding
vote by promoting p by two positions; otherwise, we recast the
corresponding vote by promoting p by one position.

D-KT(1)-Maximin-UNI: The algorithm first carries out a
polynomial number of guesses. In particular, the algorithm guesses
a candidate p′ which prevents p from being the unique winner, an
integer s which plays the role as an upper bound of the Maximin
score of p in the final election and a lower bound of the Maximin
score of p′ in the final election, and a candidate q with N(p, q) ≤ s
in the final election. These lead to at most (m−1)2×n subinstances
where m is the number of candidates and n the number of votes. To
make it clear, we give the formal definition of the subproblem.

Sub-D-KT(1)-Maximin-UNI
Input: An election E = (C,ΠV), a distinguished candidate p ∈
C, two further candidates p′, q ∈ C\{p} (it may be that p′ = q),
and two integers 0 ≤ s,R ≤ |ΠV |.
Question: Is there a submultiset ΠT ⊆ ΠV of votes such that
(1) ΠT contains at most R votes; and
(2) we can replace every vote πv ∈ ΠT with a new vote
obtained from πv by swapping two consecutively ranked
candidates so that N(p, q) ≤ s in the final election, and the
Maximin score of p′ is at least s in the final election?

Now we focus on solving the subproblem. Let Πp be the multiset
of votes which rank p immediately above q. Let A = {c ∈ C \{p′} |
NE(p

′, c) < s}. For each c ∈ A, let Πc ⊆ ΠV \Πp be the multiset of
votes that rank c immediately above p′. Clearly, for every distinct two
candidates c, c′ ∈ A, Πc ∩ Πc′ = ∅. Moreover, for every c ∈ A, let
f(c) = s−NE(p

′, c). The algorithm works as follows. For each c ∈
A, arbitrarily choose min{f(c), |Πc|} votes in Πc, and replace each
of them with a new vote obtained from the original vote by swapping
c and p′; then, set f(c) := f(c) −min{f(c), |Πc|} and R := R −
min{f(c), |Πc|}. If R < 0 after doing so, we cannot make p′ have a
Maximin score at least s by replaying at most R votes; and thus, the
algorithm returns “No”. Otherwise, let B = {c ∈ A | f(c) > 0}.
Then, for each c ∈ B, let Π̄c be the multiset of votes in Πp that
rank c immediately above p′. If |Π̄c| < f(c), the given instance is
a No-instance (since we cannot make p′ have a Maximin score at
least s in the final election); and thus, we return “No”. Otherwise, we
arbitrarily choose min{f(c), |Π̄c|} votes in Π̄c, and (1) replace each
of them with a new vote obtained from the original vote by swapping
c and p′; (2) remove them from the multiset Πp; and (3) set R :=
R − min{f(c), |Π̄c|}. If R < 0 or min{|Πp|,R } < NE(p, q) − s
after doing so, we return “No”. Otherwise, we return “Yes” since we
can get a solution by replacing arbitrary NE(p, q)− s votes in Πp by
new votes obtained from the original votes by swapping p and q.

Now we discuss the NP-hardness results. We begin with
constructive distance restricted bribery for Borda. We have seen
from Theorem 1 that the destructive counterpart turned out to
be polynomial-time solvable for every possible value of �. The
following theorem shows, however, that constructive distance
restricted bribery for Borda is NP-hard, even when the distance is
bounded by a small constant. We first define some useful notations.

For an order X = (x1, x2, ..., xi) over a set {x1, x2, ..., xi}, we
denote by

←−
X the reverse order of X , i.e.,

←−
X = (xi, ..., x2, x1). For a

subset Y ⊆ {x1, x2, ..., xi}, X \ Y is the order obtained from X by
deleting all the elements in Y . For example, for X = (1, 4, 3, 8, 5)
and Y = {4, 8}, X \ Y = (1, 3, 5). For two subsets X and Y of
candidates such that X ∩ Y = ∅, and a vote with preference �,
X � Y means that every candidate in X is ranked above every
candidate in Y in the vote.

Theorem 2 C-KT (�)-Borda-UNI/NON are NP-hard for all � ≥ 3.

PROOF. We give only proofs for the case � = 3 here. We first
consider C-KT(3)-Borda-NON. The reduction is from X3C. Given
an instance F = (U = {c1, c2, ..., c3κ}, S = {s1, s2, ..., sm}) of
X3C, we create an instance E for C-KT(3)-Borda-NON as follows.

Candidates: For each c ∈ U , we create a corresponding
candidate. For convenience, we still use c to denote the
corresponding candidate. In addition, we create a set Y =
{y1, y2, ..., y6m−6} of 6m−6 dummy candidates, each of which has
a considerably less Borda score than that of any other candidate not
in Y . For ease of exposition, we partition the dummy candidates into
subsets Z1, Z2, ..., Zm. To be precise, for each i = 1, 2, ...,m − 2,
Zi = {y6i−5, y6i−4, y6i−3, y6i−2, y6i−1, y6i}. Moreover, Zm−1 =
{y6m−11, y6m−10, y6m−9} and Zm = {y6m−8, y6m−7, y6m−6}.
Finally, we create a distinguished candidate p.

Votes: We create 2m+2 votes in total. In the following, we do not
distinguish between the terms “set” and “order”. In particular, U is
considered as an order (c1, c2, ..., c3κ), and every s = {cx, cy, cz} ∈
S is considered as an order (cx, cy, cz) with x < y < z. Moreover,
each Zi where i ∈ {1, ...,m} is considered as an arbitrary but fixed
order of its elements.
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For each sj ∈ S with j = 1, 2, ...,m− 2, we create two votes as
follows.

πsj : sj � p � Zj � U \ sj � Y \ Zj

π′
sj :

←−−−
U \ sj � Zj � p � ←−sj � Y \ Zj

Note that with the above 2(m − 2) votes, all candidates in U ∪
{p} have the same Borda score. The following four votes are created
according to the last two 3-subsets sm−1, sm ∈ S.
πsm−1 : sm−1 � p � Zm∪Zm−1 � U\sm−1 � Y \(Zm∪Zm−1)

π′
sm−1

:
←−−−−−−
U \ sm−1 � Zm−1 � p � Zm � ←−−−sm−1 � Y \ (Zm ∪

Zm−1)
πsm : sm � p � Zm ∪ Zm−1 � U \ sm � Y \ (Zm ∪ Zm−1)

π′
sm :

←−−−−
U \ sm � Zm−1 � p � Zm � ←−sm � Y \ (Zm ∪ Zm−1)

With the above four votes and the previously created 2(m − 2)
votes, p has exactly 6 more points than every candidate c ∈ U .

Finally, we have two votes with preferences U � Zm � p �
Y \ Zm; and

←−
U � Zm � p � Y \ Zm, respectively.

With all the 2m+ 2 votes created as above, p has exactly 3κ+ 1
less points than every candidate c ∈ U , and all candidates in U have
the same Borda score.

Number of Replaced Votes: R = κ.
In the following, let A = {π′

sj | sj ∈ S} and B the set of the last
two created votes. Now we discuss the correctness of the reduction.

(⇒:) Suppose that F is a Yes-instance and S′ is an exact 3-set
cover. Let ΠS′ = {πsj | sj ∈ S′} be the multiset of the votes of the
first type corresponding to S′. Every vote πsj in ΠS′ ranks the three
candidates in sj above p. Consider the election E ′ obtained from the
original election E by replacing each πsj ∈ ΠS′ with a vote obtained
from πsj by promoting p to the highest position. Precisely, for each
πsj ∈ ΠS′ defined as sj � p � Zj � U \sj � Y \Zj , we replace it
with a vote defined as p � sj � Zj � U \sj � Y \Zj . Clearly, each
replacement increases the score of p by 3, and decreases the score of
every candidate in sj by 1. Since there are exactly κ votes in ΠS′ , the
score of p is finally increased by 3κ. Since S′ is an exact 3-set cover,
for every c ∈ U , there is only one vote in ΠS′ which ranks c above p.
Therefore, all replacements decrease the score of each candidate in
U by 1. Since p has exactly 3κ + 1 less points than every candidate
c ∈ U in the original election E , p has exactly the same score as
every candidate c ∈ U in the final election E ′. Therefore, p becomes
a winner in E ′.

(⇐:) Suppose that E is a Yes-instance and ΠS′ is the multiset of
votes which are replaced. We assume that ΠS′ does not contain any
vote in A∪B. This assumption is sound due to the following lemma.

Lemma 3 If E is a Yes-instance, there must be a solution wherein no
vote in A ∪B is replaced.

PROOF. We prove the lemma by showing that it is always better
to replace a vote not in A ∪ B than to replace a vote in A ∪ B.
Suppose that π is a vote in A ∪ B that is replaced. Observe that
promoting p is always better than degrading candidates in U , since
promoting p by one position decreases the score gap between every
candidate in U and p by one, while degrading some candidate c ∈ U
by one position only decreases the score gap between c and p by
one (sometimes even increases the score gap between some other
candidate c′ ∈ U and p). Moreover, the amount of points that can be
decreased in the score gap between every candidate in U and p by
promoting p in π, can be also achieved by promoting p in any vote
that is not in A∪B. In fact, since in every vote in A∪B there are at
least three dummy candidates ranked below some candidates in U but
ranked above p, replacing votes which are not in A ∪ B can always

do better: replacing a vote πs �∈ A ∪ B where s = {cx, cy, cz}
with preference cx � cy � cz � p... with a vote with preference
p � cx � cy � cz... does not only decrease the score gap between
every candidate in U \s and p by 3, but better yet, decreases the score
gap between every candidate in s and p by 4.

Due to the above analysis, we assume that ΠS′ contains only the
votes in {πsj | sj ∈ S}, where S is the collection of 3-subsets in
F . Let S′ = {sj | πsj ∈ ΠS′} be the subcollection corresponding
to ΠS′ . First observe that for any vote πs ∈ ΠS′ where s ∈ S,
promoting p by three positions is always better than any other
combinations: by doing so, the score gap between every candidate in
U and p is decreased by at least 3 (for candidates in s, the score gaps
are decreased by 4). Therefore, we can assume that in the solution,
every vote in ΠS′ is replaced with a new vote obtained from the
original vote by promoting p by three positions. Since p has 3κ + 1
less points than every candidate in U in the original election E ,
and we can replace at most κ votes, every candidate in U must be
degraded by one position at least once. This implies that for every
c ∈ U , there must be a vote πs ∈ ΠS′ with c ∈ s, further implying
that S′ is an exact 3-set cover of F .

The reduction for C-KT(3)-Borda-UNI is similar to the
above reduction, with the difference in the last created vote.
Precisely, we remove the last vote created in the reduction for
C-KT(3)-Borda-NON, and create a vote with preference

←−
U � Zm ∪

{y6m−12} � p � Y \ Zm ∪ {y6m−12}.
By ranking the candidate y6m−12 between Zm and p, the score

gap between every candidate in U and p decreases to 3κ, one point
less than that in the reduction for C-KT(3)-Borda-NON.

Now we come to Condorcet. The C-KT(�)-Condorcet-UNI
problem is related to the Dodgson voting [13], where each
candidate has a Dodgson score defined as the minimum number
of swaps of adjacent candidates needed to make the candidate the
Condorcet winner. Calculating the Dodgson score of a candidate
is NP-hard [29, 30]. Recall that the KT-distance between two
votes is equal to the minimum number of swaps of adjacent
candidates needed to transform one into the other. Therefore,
if a candidate can become the Condorcet winner by recasting
at most R votes with respect to KT-distance upper bound �,
then the Dodgson score of the candidate is at most R · �. In
Theorem 1, we have shown that both C-KT(1)-Condorcet-UNI/NON
and C-KT(2)-Condorcet-UNI/NON are polynomial-time solvable. In
the following, we show that the polynomial-time solvability does
not hold for C-KT(�)-Condorcet-UNI/NON for every � ≥ 3. Recall
that in the general case, the constructive bribery for Condorcet is
NP-hard [26, 30].

Hereinafter, we assume that in both the X3C problem and the X4C
problem, each ci ∈ U occurs in exactly three subsets of S.

Theorem 4 C-KT (�)-Condorcet-UNI/NON are NP-hard for every
� ≥ 3.

PROOF. We first consider C-KT(3)-Condorcet-UNI. The reduction
is from the X3C problem. Given an instance F = (U =
{c1, c2, ..., c3κ}, S = {s1, s2, ..., s3κ) of X3C, we create an instance
E for C-KT(3)-Condorcet-UNI as follows.

Candidates: For each c ∈ U , we create a corresponding
candidate. For simplicity, we still use the same notation c to denote
this candidate. In addition, we have a distinguished candidate p and
a set Y = {y1, y2, y3} of three dummy candidates.

Votes: For each s = {cx, cy, cz} ∈ S, we create a vote πs defined
as s � p � U\s � Y . Here, the candidates in s, in U\s and in Y are
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ranked according to the increasing order of the indices, respectively.
In addition, we create 3κ − 5 votes defined as U � Y � p. Here,
the candidates in U and in Y are ranked according to the increasing
order of the indices, respectively. In total, we have 6κ− 5 votes.

Number of Replaced Votes: R = κ.
Now we discuss the correctness. Observe that c1 is the current

Condorcet winner, and no candidate in Y can become the Condorcet
winner by replacing at most κ votes with respect to the distance
restriction.

(⇒:) Suppose that F is a Yes-instance and S′ is an exact 3-set
cover. Let ΠS′ = {πsj | sj ∈ S′} be the multiset of votes
corresponding to S′. Consider replacing each vote πs ∈ ΠS′ by
another vote obtained from πs by promoting p to the highest position,
that is, replacing each vote πs ∈ ΠS′ defined as s � p � U \ s � Y
with a vote defined as p � s � U \ s � Y . Since s is a 3-subset, the
KT-distance between the original vote and the new vote is 3. Since
S′ is an exact 3-set cover, for every c ∈ U there is exactly one vote
in ΠS′ which ranks c above p (and p is ranked above c after the
replacement). Therefore, after κ replacements as discussed above,
for every c ∈ U , there are exactly 3κ − 2 votes ranking p above c,
implying that p is the Condorcet winner in the final election.

(⇐:) Suppose that E is a Yes-instance and ΠS′ is the multiset
of votes which are replaced. Since |Y | = 3 and each vote can be
replaced only with a vote which has KT-distance at most 3 from it,
replacing any of the last 3κ− 5 votes is not helpful in improving the
wining status of p (In other words, replacing a vote in the last 3κ− 5
votes is not helpful for p to beat any candidate in U , since the dummy
candidates in Y are ranked between U and p; and thus, according to
the distance restriction, p cannot be ranked above any candidate in
U via a replacement of a vote in the last 3κ − 5 votes.). Therefore,
we know that ΠS′ contains only votes corresponding to S. Let S′ =
{s ∈ S | πs ∈ ΠS′} be the subcollection of S corresponding to
ΠS′ . In order to make p the Condorcet winner, for every c ∈ U there
must be at least one vote, corresponding to some s with c ∈ s, which
is replaced with a vote ranking p above c. This implies that S′ is an
exact 3-set cover of F .

The above reduction directly applies to C-KT(3)-Condorcet-NON.
The NP-hardness of C-KT(4)-Condorcet-UNI/NON can be proved
via reductions from the X4C problem. The reductions are analogous
to the ones for C-KT(3)-Condorcet-UNI/NON (we need to create one
more dummy candidate y4 and add it to Y ). The NP-hardness of
C-KT(�)-Condorcet-UNI/NON for every � ≥ 5 is implied by the
NP-hardness reductions in Theorem 3.2 in [26].

Now we come to Copelandα. It is known that both the constructive
and the destructive bribery problems without distance restrictions
for Copelandα are NP-hard [26], for both the unique-winner model
and the nonunique-winner model. We show that these NP-hardness
results hold for the distance restricted bribery problem, even when
the distance bound is demanded to be a very small constant.

Theorem 5 The C-KT(�)-Copelandα-UNI/NON problem, the
D-KT(�)-Copelandα-NON problem for every � ≥ 3, and the
D-KT(�)-Copelandα-UNI problem for every � ≥ 5 are NP-hard. All
these results hold for every 0 ≤ α ≤ 1.

PROOF. We first consider the C-KT(3)-Copelandα-UNI problem.
The reduction is from X3C. Let F = (U = {c1, c2, ..., c3κ}, S =
{s1, s2, ..., s3κ}) be an instance of X3C. We create an instance E for
C-KT(3)-Copelandα-UNI as follows.

Candidates: We have |U | + 8 candidates in total. In particular,
for each ci ∈ U , we create a candidate. For simplicity, we still

use ci to denote this candidate. In addition, we have 8 candidates
p, y, z1, z2, z3, z

′
1, z

′
2, z

′
3, where p is the distinguished candidate. For

ease of exposition, let Z = {z1, z2, z3} and Z′ = {z′1, z′2, z′3}.
Votes: Let n = |S| = 3κ. We create 2n + 1 votes in total. In

particular, for each s = {ci, cj , ck} ∈ S, we create one vote πs with
preference y � Z′ � s � p � U \ s � Z. Here, the candidates
in Z,Z′, s, U \ s are ranked according to the increasing order of the
indices, respectively. In addition, we create n − 2 votes each with
preference U � Z � p � y � Z′. Finally, we create 3 votes each
with preference p � y � Z′ � U � Z. In the above n + 1 votes,
the candidates in U,Z and Z ′ are ranked according to the increasing
order of the indices, respectively. It is easy to verify that the candidate
y is the current (unique) winner.

Number of Replaced Votes: R = κ.
Now we prove that F is a Yes-instance if and only if E is a

Yes-instance.
(⇒:) Suppose that F is a Yes-instance and S′ is an exact 3-set

cover. Let ΠS′ = {πs | s ∈ S′} be the set of votes corresponding
to S′. Consider the election after replacing all votes in ΠS′ in the
following way: each πs ∈ ΠS′ with s ∈ S′ is replaced with a vote
defined as y � Z′ � p � s � U \ s � Z. Clearly, the KT-distance
between these two votes is 3. Since S′ is an exact 3-set cover, for
each ci ∈ U there is exactly one vote πs ∈ ΠS′ with ci ∈ s. Due to
the construction, ci is ranked above p in πs, while ranked below p in
the new vote which replaces πs. Therefore, after κ replacements as
discussed above, for every ci ∈ U there are n + 1 votes which rank
p above ci, implying that p beats every candidate ci ∈ U , further
implying that p is the unique Copelandα winner (holds for every 0 ≤
α ≤ 1).

(⇐:) Suppose that E is a Yes-instance and ΠS′ is the multiset of
votes which are replaced. Let E ′ be the final election obtained form
E by replacing the votes in ΠS′ with κ many new votes (we discuss
later what are the new votes). Observe that the candidate y beats
every other candidate except p in E . A deeper observation is that y
still beats these candidates in the final election E ′.

Lemma 6 The candidate y beats everyone in U ∪ Z ∪ Z′ in E ′.

PROOF. Clearly, y beats every candidate in Z′ in the final election
E ′ since all votes rank y above Z′. Now we consider the candidates
in U ∪ Z. Observe first that every vote in E either ranks y above
all candidates in U ∪ Z, or ranks all candidates in U ∪ Z above y.
Moreover, the votes that rank y above all candidates in U ∪ Z are
those corresponding to S, and the last three created votes. However,
in these votes, the candidates in Z′ (|Z′| = 3) are ranked between y
and every candidate in U ∪ Z; thus, we cannot replace a vote which
ranks y above a candidate a ∈ U ∪ Z by a KT(3)-close vote which,
however, ranks a above y. Therefore, the votes which rank y above
a candidate a ∈ U ∪ Z will still rank y above a in the final election
E ′. The lemma follows.

Due to the above lemma and the fact that p is the unique winner
in the final election E ′, we know that p beats every other candidate
in E ′. Observe that in the original election E , p is beaten by every
candidate in U . Then, due to the distance restriction, ΠS′ must be
from the votes corresponding to S. Let S′ = {s | πs ∈ ΠS′} be
the subcollection of 3-subsets corresponding to ΠS′ . Since p beats
all candidates in U in the final election E ′ and we can replace at most
R = κ votes, for each ci ∈ U there must be a vote πs ∈ ΠS′

with ci ∈ s, which is replaced with a new vote obtained from πs by
promoting p by three positions. Since |S| = 3κ, it follows that S′ is
an exact 3-set cover.
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The above reduction applies to D-KT(3)-Copelandα-NON if we
set y as the distinguished candidate.

Now we consider the C-KT(3)-Copelandα-NON problem. The
above reduction does not apply to this case, since p does not need
to beat every other candidate in the final election to become a winner
(p could also become a winner even there is no exact 3-set cover).
In order to overcome this situation, we introduce a new dummy
candidate y′ which beats p, but is beaten by y in the original election.
Precisely, we adopt the votes constructed as above, and rank y′ in
the votes as follows: (1) rank y′ immediately after y in all votes
corresponding to S and all the n− 2 votes following; and (2) rank y′

above p in all the three votes created in the last.
The NP-hardness of the C-KT(4)-Copelandα-UNI/NON

problem and the D-KT(4)-Copelandα-NON problem can be
proved via reductions from the X4C problem analogously. The
NP-hardness of the C-KT(�)-Copelandα-UNI/NON problem and the
D-KT(�)-Copelandα-UNI/NON problem for every � ≥ 5 is implied
by the NP-hardness reductions in Theorem 3.2 in [26].

We have just investigated the NP-hardness of the
C-KT(�)-Copelandα-UNI/NON and the D-KT(�)-Copelandα-NON
problems for every � ≥ 3, and the D-KT(�)-Copelandα-UNI
problem for every � ≥ 5, but left the complexity of the
D-KT(�)-Copelandα-UNI problem for each integer � ∈ {3, 4}
open. We cannot straightforwardly adopt the reductions for the
C-KT(3, 4)-Copelandα-NON problem to prove the NP-hardness of
the D-KT(3, 4)-Copelandα-UNI problem, since both candidates y
and y′ win the election, and thus, no candidate is valid to be the
distinguished candidate.

Now we investigate the complexity of the distance restricted
bribery problems for Maximin. It is known that both the constructive
and the destructive bribery problems for Maximin without distance
restrictions are NP-hard [24]. We prove that the NP-hardness holds
even when each bribed voter only wants to recast a new vote which
has a small constant discrepancy from his original vote.

Theorem 7 The D-KT(�)-Maximin-UNI/NON problem and the
C-KT(�)-Maximin-UNI/NON problem are NP-hard for every � ≥ 4.

4 Hamming Distance Restricted Bribery

In this section, we study the bribery problem with Hamming distance
restrictions. It should be noted that the Hamming distance between
every two votes is at least 2. We begin with several polynomial-time
solvability results.

Theorem 8 The D-HAM(�)-Condorcet-UNI/NON problem and the
D-HAM(�)-Borda-UNI/NON problem are polynomial-time solvable
for every positive integer �.

PROOF. We prove the theorem by deriving polynomial-time
algorithms for the problems stated in the theorem. We only describe
the algorithms for the unique-winner model in detail. The algorithms
for the nonunique-winner model are similar. Let m be the number of
candidates, n the number of votes, R the number of votes that can be
replaced, and p the distinguished candidate.

D-HAM(�)-Condorcet. We first consider D-HAM(2)-Condorcet.
The algorithm first guesses a candidate p′ which is not beaten by p
in the final election. This leads to m − 1 subinstances, each asking
whether we can make p′ not be beaten by p by replacing R ′ ≤ R
votes with R ′ many HAM(2)-close votes. To solve each subinstance,

we need only to arbitrarily choose up to R votes which rank p above
p′, and replace each of them with a new vote obtained from the
original vote by swapping p and p′. After this, if p′ is not beaten
by p, the subinstance is a Yes-instance; otherwise, the subinstance is
a No-instance. It is clear that the original instance is a Yes-instance
if and only if at least one of the subinstances is a Yes-instance. The
above algorithm directly applies to D-HAM(�)-Condorcet for every
possible � ≥ 2.

D-HAM(2)-Borda. The algorithm first guesses a candidate p′

which prevents p from being the unique-winner in the final election.
This leads to m− 1 subinstances, each asking whether we can make
p′ have an equal or greater Borda score than that of p by replacing
R ′ ≤ R votes with R ′ many HAM(2)-close votes. To solve each
subinstance, we order all votes πv according to a nonincreasing order
of max{posv(p′) − 1,m − posv(p), 2 · (posv(p′) − posv(p))}.
Let Π be the multiset of the first min{n,R } votes according to
this order. Then, we replace every vote in Π in the following
way. For each πv ∈ Π, if posv(p

′) − 1 ≥ m − posv(p) and
posv(p

′) − 1 ≥ 2 · (posv(p′) − posv(p)), then replace πv with
a new vote obtained from πv by swapping p′ and the first ranked
candidate in πv; otherwise, if m − posv(p) ≥ posv(p

′) − 1 and
m − posv(p) ≥ 2 · (posv(p′) − posv(p)), replace πv with a
vote obtained from πv by swapping p and the last ranked candidate
in πv; finally, if 2 · (posv(p′) − posv(p)) ≥ posv(p

′) − 1 and
2 · (posv(p′) − posv(p)) ≥ m − posv(p), replace πv with a vote
obtained from πv by swapping p and p′. After doing this for every
vote in Π, if p′ has an equal or greater Borda score than that of
p, the subinstance is a Yes-instance; otherwise, the subinstance is
a No-instance. It is clear that the original instance is a Yes-instance
if and only if at least one of the subinstances is a Yes-instance.

D-HAM(3)-Borda. The algorithm carries out m − 1 guesses as
in the above algorithm for D-HAM(2)-Borda. So, we need only to
focus on the subinstances. Notice that to prevent p from being the
unique winner, we have more choices to do in this case than in
D-HAM(2)-Borda. In particular, for a vote πv , to decrease the score
gap between p and the guessed candidate p′, we can either place p′

in the first position, p in the max{posv(p), posv(p′)}-th position,
the first ranked candidate in πv in the min{posv(p), pos(p′)}-th
position, or we can place p in the last position, p′ in the
min{posv(p), posv(p′)}-th position, the last ranked candidate in
πv in the max{posv(p), posv(p′)}-th position. Let sga(πv) be the
amount of the decrease of the score gap between p and p′ if we
perform the first operation, and sgb(πv) the amount of decrease of
the score gap between p and p′ if we perform the second operation.
Then, to solve each subinstance, we order the votes according to a
nonincreasing order of max{sga(πv), sgb(πv)} and recast the votes
accordingly, as discussed above.

D-HAM(4)-Borda. Similar to the above algorithms, the algorithm
for D-HAM(4)-Borda first carries out m−1 guesses, leading to m−1
subinstances. Now we restrict our attention to these subinstances.
For each subinstance, we partition the votes into two multisubsets
Π1 and Π2, where Π1 includes all votes that rank p above p′, and Π2

includes all votes that rank p′ above p. Then, we order the votes in Π1

according to a nonincreasing order of pos(p′) − pos(p). Moreover,
we choose the first min{|Π1|,R } votes, and replace each of them
with a vote obtained from the original vote by swapping p′ and the
first ranked candidate, and swapping p and the last ranked candidate.
After doing so, if p′ has an equal or greater score than that of p,
we return “Yes”. Otherwise, if p′ still has a less score than that of
p, we distinguish between two cases. If |Π1| ≥ R , we return “No”
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immediately. In the case that |Π1| < R , we order the votes in Π2

according to a nondecreasing order of pos(p) − pos(p′). Then, we
choose the first R − |Π1| votes, and replace each of them with a
vote obtained from the original vote by swapping p′ and the first
ranked candidate, and swapping p with the last ranked candidate.
After doing this, if p′ has an equal or greater score than that of p, the
subinstance is a Yes-instance; otherwise it is a No-instance.

D-HAM(�)-Borda. The algorithm for D-HAM(�)-Borda with � >
4 is exactly the same as for D-HAM(4)-Borda.

Now we show our hardness results. We begin with the distance
restricted bribery problem for Copelandα.

Theorem 9 The C-HAM(2)-Copelandα-UNI/NON problem and the
D-HAM(2)-Copelandα-UNI/NON problem are NP-hard for every
0 ≤ α ≤ 1.

PROOF. Due to space limitation, we give only the NP-hardness proof
for C-HAM(2)-Copelandα-UNI. Our reduction is from the X3C
problem. Let F = (U = {c1, c2, ..., c3κ}, S = {s1, s2, ..., s3κ})
be a given instance of the X3C problem. We create an instance E for
C-HAM(2)-Copelandα-UNI as follows.

Candidates: We create 3κ + 2 candidates in total. In particular,
for each element ci ∈ U , we create one candidate. For convenience,
we still use ci to denote the corresponding candidate. In addition, we
have two candidates p and q with p being the distinguished candidate.

Votes: For each s ∈ S, we create a vote πs with preference q �
U \ s � p � s. In addition, we create κ − 1 votes with preference
p � q � U , and two votes with preference U � p � q. In total, we
have 4κ + 1 votes. The comparisons between every two candidates
are summarized in Table 2. It is easy to verify that q beats every other
candidate; and thus, q is the current unique winner.

Number of Replaced Votes: R = κ.

q p cj
q - 3κ 4κ− 1
p κ+ 1 - κ+ 2
ci 2 3κ− 1 · · ·

Table 2. Comparisons between every two candidates in the NP-hardness
reduction for C-HAM(2)-Copelandα-UNI in Theorem 9. The comparisons

between ci and cj for i �= j do not play any role in the correctness argument.

Now we prove the correctness of the reduction.
(⇒:) Suppose that F is a Yes-instance and S′ is an exact 3-set

cover. Let ΠS′ = {πs | s ∈ S′} be the set of votes corresponding to
S′. Consider the final election E ′ obtained from E by replacing each
vote πs where s ∈ S with a vote obtained from πs by swapping p and
q. More precisely, each πs ∈ ΠS′ with preference q � U\s � p � s
is replaced with a vote with preference p � U \ s � q � s. Clearly,
the Hamming distance between these two votes is two. Moreover,
we have that NE′(p, q) = 2κ+ 1. Now we consider the comparison
between p and every ci ∈ U . Since S′ is an exact 3-set cover, for
every ci there are exactly κ − 1 votes πs ∈ ΠS′ with ci �∈ s. All
these votes rank ci above p in E . However, these votes are replaced
with κ−1 votes which rank p above ci as discussed above, in the final
election E ′. Therefore, for every ci ∈ U , there are (κ+2)+(κ−1) =
2κ + 1 votes which rank p above ci, implying that p beats every
ci ∈ U in E ′. Therefore, p becomes the unique winner in E ′.

(⇐:) Suppose that E is a Yes-instance. Let E ′ be the final election
obtained from E by replacing at most κ votes. Since NE(q, ci) =

4κ − 1, we know that q beats every candidate ci ∈ U in E ′. As a
result, q is beaten by p in E ′, since otherwise, q would beat every
other candidate in the final election E ′, and thus, remains the unique
winner. Moreover, since p is the unique winner in E ′, p must beat
every other candidate in the final election E ′. Since NE(p, q) = κ+1,
in order to make p beat q, there has to be κ votes ranking q above p
that are replaced by κ new votes ranking p above q. Due to this,
we know that the replaced votes are from the votes corresponding to
S, since any other vote has already ranked p above q. Let ΠS′ be
the replaced votes, and S′ = {s | πs ∈ ΠS′} the subcollection of
3-subsets corresponding to ΠS′ . As discussed above, p beats every
candidate ci ∈ U in E ′. Since NE(p, ci) = κ+ 2, for every ci ∈ U ,
there must be at least κ− 1 votes in ΠS′ ranking ci above p that are
replaced by κ− 1 votes ranking p above ci. This happens only if S′

is an exact 3-set cover.
For Condorcet and Maximin, we have the following results.

Theorem 10 C-HAM(2)-Condorcet-UNI/NON are NP-hard.

Theorem 11 The D-HAM(2)-Maximin-UNI/NON problem and the
D-HAM(2)-Maximin-UNI/NON problem are NP-hard.

5 Conclusion

We have studied the complexity of the distance restricted bribery
problem which differs from the traditional bribery problem [22] in
that the bribed voters only recast new votes which are “close” to
their original votes. In particular, we adopted the Hamming distance
and the KT-distance to measure the closeness between two votes. We
achieved both polynomial-time solvability results and NP-hardness
results for Borda, Condorcet, Maximin and Copelandα. In particular,
we achieved dichotomy results for Condorcet. A primary conclusion
of our findings is that the constructive distance restricted bribery
problem is generally NP-hard even when the distance is bounded by
a very small integer (this holds for all cases studied in this paper
except the Hamming distance restricted bribery problem for Borda,
whose complexity remains open for every distance � ≥ 2). On the
other hand, there exist voting systems where the constructive distance
restricted bribery problem is polynomial-time solvable, when the
distance is bounded by 1 or 2. For the destructive distance restricted
bribery problem, it turned out that for Maximin and Copelandα it
has become NP-hard even when the distance is bounded by 2. On
the other hand, for many other cases, it is polynomial-time solvable
for every possible distance bound. As the bribery problem proposed
in [22] can be considered as a distance restricted bribery problem
with the distance bound being considerably large (m(m − 1)/2
in KT-distance restriction and m in Hamming distance restriction,
where m is the number of candidates), our work complements the
complexity results of the bribery problem obtained in [11, 24, 26].
Of particular importance is that our work pinpoints the complexity
border between polynomial-time solvability and NP-hardness of
distance restricted bribery problem, with respect to the distance
bound. See Table 1 for a summary of our results.

There remain several open problems as shown in Table 1.
For example, we do not know the complexity of the
D-KT(1)-Copelandα-UNI/NON problem. Another avenue of
research would be to explore these problems from the parameterized
complexity viewpoint. Furthermore, exploring the same problems
with respect to further distance measurements (see [14, 16, 33] for
several distance measurements on linear orders) is also an interesting
direction for future research.
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