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Abstract. Person re-identification, aiming to identify images of the
same person from various cameras views in different places, has at-
tracted a lot of research interests in the field of artificial intelligence
and multimedia. As one of its popular research directions, the metric
learning method plays an important role for seeking a proper metric
space to generate accurate feature comparison. However, the exist-
ing metric learning methods mainly aim to learn an optimal distance
metric function through a single metric, making them difficult to con-
sider multiple similar relationships between the samples. To solve
this problem, this paper proposes a coarse-to-fine deep metric learn-
ing method equipped with multiple different Stacked Auto-Encoder
(SAE) networks and classification networks. In the perspective of the
human’s visual mechanism, the multiple different levels of deep neu-
ral networks simulate the information processing of the brain’s visual
system, which employs different patterns to recognize the character
of objects. In addition, a weighted assignment mechanism is present-
ed to handle the different measure manners for final recognition ac-
curacy. The experimental results conducted on two public datasets,
i.e., VIPeR and CUHK have shown the prospective performance of
the proposed method.

1 Introduction

Person re-identification aims to judge whether two persons which
come from different cameras views belong to the same person. Ow-
ing to its significance in tracking the escape route of suspects and
daily life, it has been widely used in the criminal investigation and
artificial intelligence [2]. Over the past decade, a large number of per-
son re-identification methods have been proposed in the literatures
[20, 1, 25, 23, 26, 19, 22, 16] and most of them have achieved satis-
fying performance. However, it is still a challenging problem because
of various surveillance conditions, such as, view switching, lighting
variations and image scaling (see Figure 1). Previous research on per-
son re-identification can be generally classified into two categories:
feature representation [25, 23, 13] and metric learning [26, 20, 9]. S-
ince lighting and view changes can cause significant appearance vari-
ations, designing a set of discriminative and robust features is still a
challenging problem [26, 21]. In order to boost the performance of
person re-identification, increasing number of researches are devot-
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Figure 1. The examples of aspects changes caused by different views,
lighting conditions, scaling variations from public datasets CUHK [14],

VIPeR [8], respectively. Each column shows two images of the same person
from two different cameras.

ed to learn a proper distance function to compare two person image
features [21, 11].

Most of the existing work focus on either feature representation
or metric learning step, lacking a global consideration of above two
steps. It is crucial to build an automatic connection among these com-
ponents in the training process for the overall system performance.
More recently, deep learning, which is based on an end-to-end net-
work, has been presented to solve the problem in a unified frame-
work. It has attracted a lot of research interests for its superb perfor-
mance in person re-identification and other visual tasks [11, 10].

Generally speaking, deep learning aims to learn features and met-
rics in a unified hierarchical framework directly from raw data. It
has also been used in metric learning [11, 24, 1]. Unlike most pre-
vious metric learning methods which usually seek a linear distance
to project samples into another linear space, the deep metric learning
methods try to compute the similarities of samples via multiple lay-
er nonlinear transformations. However, most of them just try to seek
a simplex manner to measure the similarities of the persons. Such
a simplicity of the metric manner may cause the problem that other
similarities relationship of samples cannot be well exploited. Figure
2 is a particular example, where the persons in the two pictures are
similar in shape contour and clothes, but they are not the same one in
fact. Therefore, the single metric learning methods may lose helpful
discriminative information for similarity comparison.

To relieve the problems with these limitations, we propose a
method with multiple coarse-to-fine SAE models (SAE networks and
classification networks) for deep metric learning. In our algorithm,
there exist several SAEs neural networks with different hidden lay-
ers for multi-scale metric learning and the similarities of multiple
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Figure 2. Examples of dissimilar pairs. From this figure, we can see that
the persons in the same column are similar in color and contour. In fact, they
are not the same person. So the important information that judges whether

the samples belong to the same object may be lost via a single metric
manner.

levels for person image pairs are obtained via different deep neural
networks in a coarse-to-fine manner. Generally speaking, we judge
two persons which are the same one or not just via the physical char-
acteristic at first glance. Then the facial features and clothes can be
compared. At last, more details will be observed for final validation.
This process is the information handling of our visual system. In our
work, there are different deep neural networks for metric learning
and it includes many neural nodes for each network which simulates
the neuron of brain. There are fewer nodes in shallow neural network
and vice versa. These architectures are similar to the structure of the
brain in the view of bionics. In this way, we can simulate the infor-
mation processing of the brain’s visual system, which employs mul-
tiple different levels to recognize the character of objects. Besides, a
weighted assignment mechanism is presented to handle these results
which are from different SAEs networks.

The contribution of this paper can be summarized into two aspects:
Firstly, we propose a framework of multiple different SAEs net-

works and classification networks for metric learning to measure the
similarities of the samples from coarse-to-fine.

Secondly, a weighted assignment mechanism is presented for in-
tegrating the results that come from previous different deep neural
networks. The information processing mechanism of brain is simu-
lated via this coarse-to-fine manner. Experimental results validate the
effectiveness on two public person re-identification datasets.

2 Our Approach

2.1 Preliminaries

2.1.1 Person Re-identification Problem

As mentioned above, the purpose of person re-identification is to
match the pedestrians observed in non-overlapping cameras via var-
ious visual methods. In other way, this problem can also be seen as a
binary classification problem. For the convenience of following dis-
cussion, in our work, we consider a pair of cameras which are denot-
ed as Ca and Cb, respectively. The persons in each camera are ex-
pressed as {pa = p1a, p

2
a, ..., p

n
a} and {pb = p1b , p

2
b , ..., p

m
b }. The n

and m denote the numbers of the person in each camera view. Let the
label y = 1 if two pedestrian images (pia, pib) are matched, and y=0,
otherwise. So a pair of person image is the object that we should con-
sider in this paper. P I

ab is the combination of two persons that from
different cameras views, respectively.

2.1.2 The Basic Auto-Encoders

We recall the basic principles of the auto-encoder models, e.g, [3].
The classical auto-encoder tries to learn a function hW,b(x) ≈ x. In
other words, the algorithm is trying to learn an approximation to the
identify function, so as to the output x̂ that is similar to the input x. It
is divided into two processes, that is “encoding” and “decoding”. In
the former, it is using a deterministic function of h = fθ = σ(Wx+
b) with parameters θ = {W, b}. And in the process of decoding, it is
used to reconstruct the input by a reverse mapping of f: h

′
= fθ′ =

σ(W
′
h+b

′
) with θ

′
= {W ′

, b
′}. The two parameter sets are usually

constrained to be of the form W
′
= WT , using the same weights

for encoding the input and the latent representation yi. A common
method to train the model is the famous Back-Propagation Algorithm
[18]. The cost function is described as below. For example, we just
have a set of training samples: {(x(1), y(1)), ..., (x(m), y(m))}. And
the cost function for one training case is described as following.

J(W, b;x, y) =
1

2
||hW,b(x)− y||2 (1)

In addition, cost function for the whole training set is described as
formula (2).

J(W, b) =
1

m

m∑
i=1

J(W, b;x, y) +
λ

2

nl−1∑
l=1

sl∑
i=1

sl+1∑
j=1

(W
(l)
ij )2 (2)

In order to train the model, we just need to minimize J(W, b). The
process of training is not belong to this range.

2.2 Multiple Coarse-to-Fine Deep Metric Learning

The architecture of the multi-scale learning method is shown in Fig-
ure 3. It includes four layers to get the coarse-to-fine deep metric
learning for person re-identification. The first layer is the monitored
person images that come from two different camera views. We ran-
domly combine the two person images together to form the original
input for the second layer. Then the pretreatment is executed via sub-
tracting the mean values and normalization for each sample pair. The
images are transformed into gray images and the input of the SAE
networks is formed. Then a softmax classifier is followed by each
of the stacked auto-encoder to get a classification result. At last, we
have utilized a weighted assignment mechanism to handle the clas-
sification results obtained from the former layer. And the multiple
deep metric learning framework includes two networks: the SAEs
network and classification network. The detail of each layer is de-
scribed as below.

There are several different SAE models for metric learning in our
algorithm. For each auto-encoder network, it has three layers: the
input layer, hidden layer and the output layer. In many previous work,
the auto-encoder networks were used for feature representation [17].
In this work, we have used it for metric learning. In details, each of
the SAE network is following by a softmax classifier (See Figure 3).
Each of them is trained via the back-propagation algorithm.

From Figure 3. we can see that the input of auto-encoder networks
is the person image pairs, which is reprocessed before being input
into the deep neural networks. The network parameters are trained
from the first hidden layer. And the output of the first hidden layer
is calculated via the parameters that were trained before. The output
for the next hidden layers is counted through the same way. After
that, the last hidden layer is followed by a softmax classifier. The
output of the last hidden layer is used to train parameters for the
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Figure 3. The Multiple Coarse-to-Fine Deep Metric Learning Framework. From left to right, there are four layers structured for last classification. For the
first layer, we randomly select the two person images which come from different camera views. And the second, the combined image pairs are obtained from

the previous layer that transformed into gray images. Then they are subtracted to the mean values and normalized into [0,1]. The coarse-to-fine SAEs structure
is following in the third layer. This layer includes several SAEs which equipped with a softmax classifier. In other word, The whole network is composed of

SAEs networks and classification networks. The parameter θ={W, b}(W is the weight, and b is bias.) is to be trained. The output of the softmax classifier is the
probability that the sample pair belongs to a certain class. And the weighted assignment mechanism is used for handle the classification results for the last layer.

softmax classifier. The cost function for the softmax classifier is de-
scribed as formula (3). For example, considering the training set is
{(x(1), y(2)), ..., (x(m), y(m))}. The m denotes the numbers of sam-
ples and x(i) represents the feature that is the output of the last hidden
layer in this work. The yi is the classification label for each sample.

J(θ) = − 1

m
[

m∑
i=1

k∑
j=1

1{y(i) = j} log eθ
T
j x(i)

∑k

l=1
eθ

T
l
x(i)

] (3)

In order to train the model, we just need to calculate the J(θ). The
gradient decent method is used in the algorithm. And k is 2 for the
person re-identification problem. The last result is classified into two
classes.

In our model, there are several kinds of SAE networks and each
of them has different configurations. So we can capture different lev-
els metric results for each sample pair. A coarse metric learning is
implemented via the shallow network and vice versa. So the coarse-
to-fine metric manner is formed in this way. In our work, a pair of
person images is generated to form the input of the SAE network-
s. But the final output is the probability that a person belongs to a
class. Therefore, we can get multiple different results. These classi-
fied results are the sources that we can obtain the final recognition
accuracy. And then handling these classified results is described as
the following section.

2.3 Joint Learning for Weighted Assignment

As mentioned above, there are several kinds of SAE models for the
persons binary classification. The output of each softmax classifier is
a probability that the person pair belongs to a certain class. And the
probability values that we can obtain are diversified. How to handle
these results is remained to settle. In this work, we have utilized the
weighted assignment mechanism to solve this problem. In our work,
there are several SAE models for metric learning and the multiple

similarities are generated via these networks. As the characteristic
capability of each metric is different. So the weighted assignment
mechanism is presented to get the final result. And the process of
jointing is described in Figure 4.

SAEs SAEs

SAEs

Deep Neural Network Model SAEs

Weight Factor

=

=

(y=0|x)

(y=1|x)

Results

Figure 4. The process of the weights assignment mechanism. In our work,
there are three kinds of SAE models for pedestrians classification. The
weight factor λi is made via joining the deep networks. This process

includes three parts: the first one is the process of these SAE models joint
learning for three kinds of networks. The parameter θ={W,b} should be

trained. Then the weight factor is assigned for each SAE model. At last, the
final result is gotten via the operation of weight assignment.

In details, the output of the softmax classifier is two classes rep-
resented by the probabilities. From Figure 3, we assume that there
are three kinds of SAE models to classify for the person pair. The
notations P (y = 1|x) and P (y = 0|x) denote the probabilities that
the sample pair x belongs to the certain class. If the person pair is
matched, the label y = 1, and y = 0 otherwise. Generally speak-
ing, the two samples are similar, the other aspects of them are similar
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too. We try to consider multiple aspects of the samples for judging
whether they belong to the same object. For the person images pair
(pia, pib), the probability they matched is P i

ab (P i
ab is from the i-th

SAE model. See Figure 3.). The weights assignment mechanism for
each probability matrix distribution is represented as formula (4). Af-
ter that, we reset the probabilities to get the last recognition result.

Algorithm 1 Weighted Assignment For Similar Probability

Input: N labeled a set of training samples (P i
ab, yi) where P i

ab is the
combination of two pedestrian images and yi ∈ {1,−1} denotes
whether the two person belong to the same one.
A distribution over all the training samples: D1(i) = 1/N for
i=1,...,N.

for t=1,...,K:
- Find the best localized feature λt for the current distribution
Dt.
- Calculate the edge γt
γt =

∑N

i=1
Dt(i)h(xi)yi

- If γt < 0 break
- Set αt =

1
2
ln 1+γt

1−γt

- Set Dt+1(i) =
1
Zt

Dt+1exp(−αth(xi)yi), where zt is a nor-
malizing factor
- Add αt, λt to the joint.

Output: The weight factor λ.

We assign different weights to each of the classification result to
get a better representation. Generally, for the task of deep neural net-
works, more hidden layers lead to greater weights as well as better
robust results. And the weights will be higher. In fact, these weights
are learnt like the process in [6]: AdaBoost is adaptive in the sense
that subsequent weak learners are tweaked in favor of those instances
misclassified by previous classifiers. Our approach is quite similar in
these respects, however our object is domain specific (i.e. only ap-
plicable to comparing which class the pedestrian belongs to). The
proposed probability assignment is a weighted ensemble of likeli-
hood ratio tests, made by the Algorithm 1, a brief review of which
that can be found below.

In training the weights are iteratively updated. The training set
is T = {P 1

ab, P
2
ab, ..., P

N
ab}. Initializing the weight distribution of

training data is representing like formula (4). And Dt(x) is the prob-
ability matrix which means the distribution for the combination of
two persons. λt is the weight factor.

D1 = (λ1,1, .., λ1,i, .., λ1,N ) s.t. λ1 =
1

N
, i = 1, 2, ..., N.

(4)
In algorithm 1, the h(xi) is week classifier, x → {−1,+1}. The
error of the update is γt and it generates in formula (5).

γt = P ((xi) �= yi) =

N∑
k

λtiI(h(xi) �= yi) (5)

The coefficient of h(xi) is calculated in formula (6)

αt =
1

2
ln

1 + γt
1− γt

(6)

The update of weight of probability distribution is representing in
formula (7) (8).(t denotes the numbers of iteration.)

Dt+1 = (λt+1,1, λt+1,2, ..., λt+1,N ) (7)

λt+1,i =
λti

Zt
exp(−αth(xi)yi) (8)

Zt is a normalized factor and represents in formula (9). It makes the
Dt+1 become a probability distribution.

Zm =

N∑
1

λtiexp(−αtyih(xi)) (9)

In algorithm 1, there are several iterations for the joint learning.
The similarity probability is searched for the best weights w.r.t the
current distribution and made the joint. And the weight for each prob-
ability matrix (i.e. the output of each SAE model) is assigned as for-
mula (10). N denotes the numbers of the SAE model. It is 3 in our
work.

f(x) =

N∑
t=1

λtDt(x) (10)

3 Experimental Results

In this section, we evaluate our multiple coarse-to-fine deep metric
learning algorithm on two person re-identification benchmarks: the
VIPeR and CUHK. For each dataset, we would give out the experi-
ment result and compare with other previous methods. The detailed
experimentation is described as following. We introduce the coarse-
to-fine metric learning method from three aspects. i.e. the physical
character, profile feature and facial feature. So there are three SAE
models simulating the human’s visual system. Besides, we imple-
ment our algorithm using the Andrew Ng’s deep learning framework
and write the code for our own architecture. It is time-consuming for
roughly 6 days for the deepest network on high-performance com-
puting platform.

3.1 The Datasets

The widely used VIPeR dataset is collected by Gray and Tao [8] and
contains 1264 outdoor images obtained from two views of 632 per-
sons. Each pair is made up of images of the same person from two
different cameras, under different viewpoints, poses and light con-
ditions, respectively. All images are normalized to 128 × 48 pixels.
Views changes are the matched image pairs containing a viewpoint
change of 90 degree.

The CUHK02 Campus dataset [14] contains 1816 persons and five
pairs of camera views (P1-P5, ten camera views). They have 971,
306, 107, 193 and 239 persons respectively. Each person has two
images in each camera view. This dataset is used to evaluate the per-
formance when camera views in test are different than those in train-
ing. In our experiment, we choose view pair P1 for evaluation. And
this view includes 971 subjects, 1942 images. Each subjects has two
images from 2 camera views. And the instances in the two datasets
could be seen as Figures.5.

3.2 Experimental Methods

Evaluation Protocol. Re-identification models are commonly evalu-
ated by the cumulative match characteristic (CMC) curve. This mea-
sure indicates how the matching performance of the algorithm im-
proves as the number of returned image increases. Given an algorith-
m and a test set of images of people with labels, each image in the
test set is compared against the remaining images under the given
algorithmic model and the position of the correct match is recorded.
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Figure 5. Some typical samples of the two public dataset. And each column shows two images of the same person from two different cameras with
significant changes on view point and illumination condition. (a) VIPeR dataset contains significant difference between different views. (b) CUHK is similar to

VIPeR, but more challenge as it contains more person pairs.

The CMC curve indicates for each rank the fraction of test samples
which had that rank or better. A perfect CMC curve would reach the
value 1 for rank 1. Specifically, let P = {p1, ..., p|P |} be a probe
set, where |P | is the size of P. And G = {g1, ..., gn} a gallery set.
For each probe images pi ∈ P , all gallery images gi ∈ G are ranked
by comparing the distance between pi and gi in ascending order. The
image of the same person pi in the gallery set is denoted as gpi . And
the index of which in the sorted gallery is denoted as r(gpi). The
CMC value of rank k is defined as formula (5)

CMCk =

∑|P |
i=1

1(r(gpi) ≤ k)

|P | (11)

where 1(•) is the indicator function.
Data Augmentation. In the training set, the matched sample pairs

(positive samples) are several orders fewer than non-matched pairs
(negative samples). If they are directly used to train the deep net-
work, the model tends to predict all the inputs as being non-matched.
The easiest and most common method to solve this problem is to ar-
tificially enlarge the positive samples and randomly reduce the neg-
ative samples using label-preserving transformations [4, 5]. In our
work, we exploited data augmentation by extracting random patches
from the previous image pairs like [12]. For example, in the VIPeR
dataset, the resolution of the combined image pairs is 128 ∗ 96, and
we chose the size of each patch is 112 ∗ 84. For the CUHK dataset,
the original resolution for each image is 160 ∗ 60. We tried to shrink
the images into 128 ∗ 48 first. After that, the compound mode of the
person images is similar with VIPeR dataset. Then, we shrank the
combined image into 112 ∗ 84 for each negative sample pair. So the
positive and negative samples pairs can be balanced via this way.

Training Platform and Training Strategy. We test the run time
of the process after feedback selection. The networks are trained on
the High-Performance Computing platform (HPC), which is com-
posed of Dawning Cluster, HP Cluster, HP SMP Mainframe, GPU
Cluster and Stroage System. And our algorithm is trained on the
Dawning Cluster, which includes 93 computing nodes, 6 I/O nodes,
2 management nodes. For each node, there are 2 CPU with 12 cores
with 2.2 GHz and the memory is 128 GB. It takes about 6 days to
train the deepest network for CUHK. In addition, as the training and
testing samples take up too much memory, our training algorithm
adopts the mini-batch stochastic gradient descent proposed in [7].
The training data is divided into several mini-batches. And training
errors are calculated upon each mini-batch in the softmax layer and

get Back-Propagation to the lower layers.

3.3 Experimental Results on VIPeR Dataset

In the first experiment, we evaluated our algorithm on the VIPeR
dataset. We exploited 316 person image pairs for training and 316
person image pairs for testing. Similar to [12] positive and negative
sample pairs were balanced in the procedure. It means that the di-
mension of the feature of each image pair was 9408 (112*84). Then,
the feature acted as the input of the SAE networks. Besides, each
sample belongs to a certain class. As described above, if the image
pair is matched. The label is y = 1 and y = 0, otherwise.

In our multiple SAE models, there were three kinds of deep net-
works. The hidden layers were set 2, 3 and 4 for these SAE net-
works, respectively. And the hidden units of each network were set
1000, correspondingly. In addition, for the single auto-encoder net-
work, the numbers of units for each hidden layer were the same.
We exploited the SAE-K(The K denotes the numbers of the hid-
den layers.) to represent the configuration of each SAE network. In
the training phase, the input of the SAE network was 9408*100000
(we randomly selected 100000 samples which included positive and
negative ones for training). There was a label for each one. At last,
the output of the deep network was following by a softmax classifier.
There were about 400 iterations for training the network architec-
ture. In the testing phase, we exploited 316 samples pairs for pre-
dicting the accuracy. Three kinds of probability matrix were generat-
ed by three kinds of SAE networks. Then, the weighted assignment
mechanism was used for making the final decision. After that, the
probability was transformed into the recognition accuracy. The final
performance would be confirmed through this way. After training an
auto-encoder network, we would like to visualize the weights (filter-
s) that learned by the algorithm and try to understand what has been
learnt. Figure 6 shows some filers learned by the first hidden layer
of our network. The filters of network have different texture patterns,
which mean that they capture the information in a unified manner.

The experiment results and all the Cumulative Matching Charac-
teristic (CMC) curves are shown in Figure 7. It shows not only the
3 results for 3 different networks, but also the combined results af-
ter balancing the similarities. From the figure, we conclude that the
matching results of the 3 networks are different, and each of them is
low. The CMC(1) for single SAE network is not very high. And the
more hidden layers of the network, the higher of the recognition ac-
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Figure 6. Visualization of Features: Visualization of some filters learned
by a single auto-encoder network trained on VIPeR. The weights (called

filters) of the first hidden layer for the auto-encoder network can be
visualized.

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Rank

M
at

ch
es

CMC in VIPeR

SAE−2
SAE−3
SAE−4
Weighted Assignment

Figure 7. The recognition accuracies for different SAE models in VIPeR.
The SAE-K denotes different hidden layers for the deep networks.

curacy for CMC(1). For the SAE-3, the accuracy is better than SAE-
2. After exploiting the weighted assignment mechanism, the holistic
recognition accuracy would be better than the single one and this
phenomenon is consistent with our intuition.

As it is a classification problem in our work. There would be a
final holistic accuracy for each SAE network and the classification
network. For the test samples, each of them has a label which indi-
cates the ground truth. It is a sign that was predicted by the softmax
classifier. There are positive and negative samples in the test datasets.
The holistic classification accuracy can manifest the performance of
the model. The performances of the three deep models (SAE network
and classification network) are shown in Figure 8. The accuracy in-
dicates the correct classification for each test sample. If the accuracy
is higher, the model is better to train. From the figure, the results are
consistent with the CMC curves in Figure 7. The CMC(1) for SAE-4
is lower than SAE-2 in the figure. We think that there may exist too
many connections and associated parameters between the adjacent
layers in SAE-4. And they are difficult to tailor the performance.

Comparing with other metric learning methods, our algorithm has
gotten the best recognition rate in CMC(1). The results can be seen as
in Table 1. We compared with other six metric learning algorithms.
The top two rows are the conventional metric learning methods. And
the next four are the deep metric learning algorithms. We can see that
our method enjoys the highest accuracy in CMC(1). When rank=10,
our result is not very competitive. We guess that the results of the
rank 10 may be led by the structure of SAE-4 which involves more
hidden layers and associated parameters. Because the parameters are

Figure 8. The overall classification performance in VIPeR for each deep
model. Acc means the accuracy. From this figure, we can see that the

coarse-to-fine classification mode is just like the character of the human
brain which has many different levels of visual way. The SAE-K denotes the

configurations of the SAEs.

Figure 9. Some filters are learned on the CUHK.

over-fitting and the single result lower the holistic rank performance.

Table 1. Comparative results with the other metric learning algorithms on
VIPeR.

Methods Deep or Not r=1 r=10
KISSME Not 19.6% 62.2%
LMNN Not 19.0% 58.1%

DML [24] Yes 28.23% 73.45%
DDML [10] Yes 29.56% 61.71%
DTML [11] Yes 32.12% 65.92%

DCA [1] Yes 34.81% 76.25%
Ours Yes 41.77% 66.92%

3.4 Experimental Results on CUHK Dataset

In the second experiment, we evaluated our method on the CUHK
dataset. The resolution of CUHK Campus is 60× 160. Before train-
ing, we scaled them to 48× 128 first. This dataset included 970 per-
sons, which was divided into 485 for training and 485 for testing.
They were also randomly selected. For each person image, we also
preprocessed it like the VIPeR dataset. And the compound mode for
each person image was the same as the first experiment. Some of
filters learning from the first hidden layer show in Figure 9. In this
experiment, there were also three kinds of deep neural networks to
train. The architectures of the SAE networks were set via the same
way like the previous one. In the training phase, we preprocessed the
combined image pairs like the way in the VIPeR dataset. And the size
for the input sample was also 9408(112*84). It was a label for each
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Figure 10. The recognition accuracies for different SAE networks in
CUHK. The symbols denote the similar meaning like Figure 6.

Figure 11. The overall classification performance in CUHK for each SAE
network. The meaning of each notation in the figure is the same as in VIPeR.

one. The hidden layers for each SAE networks were set 2, 3 and 4,
respectively. And the hidden units of each deep neural network were
set 800, correspondingly. There were about 300 iterations for training
the network architecture. At last, each of the auto-encoder networks
was following by a softmax classifier. And the fine tuning was exe-
cuted for the whole model via the back-Propagation algorithm. The
output for each softmax classifier was the probability that a pair be-
longs to a certain class. A final accuracy was obtained via handling
these probabilities. The recognition result can be seen as Figure 10.

Table 2. Comparative results with other metric learning algorithms on
CUHK.

Methods Deep or Not r=1 r=10
KISSME Not 29.40% 60.22%
LMNN Not 21.17% 57.53%

FPNN [15] Yes 27.87% 81.07%
DML [24] Yes 16.17% 45.82%

Ours Yes 47.42% 83.29%

From Figure 10, we can see that the single deep neural network
for recognition performance is not very high. But the result is en-
hanced via exploiting the weighted assignment mechanism. This is
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Figure 12. The different joint learning strategies on VIPeR. The weight
assignment is better than average strategy.

in accordance with our intuition. The multi-scale metric learning is
better than the single measure manner. The reason may be the same
as the first experiment. And the result is not very precise. The holistic
performance in this dataset is shown in Figure 11.

Comparing with other deep metric learning methods, our algorith-
m get the competitive result on the same dataset. The comparative
results can be seen as Table 2. From it, we can see that our algorithm
get the best accuracy comparing with other methods in CMC(1) and
CMC(10). In addition, our model is simpler than other deep models
for its architecture and training process comparing with [15, 1, 24].
Because they get involved into the structure modification, which take
more time to train the deep networks. In our work, the deep models
are just used to classification and the the results are joining together
to get the final result. The time complexity and space complexity are
simpler comparing with previous methods.

3.5 Performance Verification on Joint Learning
Strategies

In this section, we would compare the joint strategies for our previ-
ous experiments. Firstly, we exploited the average similarity strategy
as the joint learning on the two common datasets. Comparing with
the different strategies, the experiment result can be seen as Figure
as 12. From the figure, we can see that the performance of weights
assignment mechanism is better than average. In CUHK dateset, the
performance for compared strategy is also different. The results can
be seen as Figure 13. In fact, the average similarity strategy is the
special case for the weights assignment mechanism. As the architec-
ture of the neural network is different, the degree of contribution for
recognition accuracy is also different. So there are different weight
factor and the joint strategy is very important for the final result.

4 Conclusions and Future Work

In this work, we have presented a method which utilizes mul-
tiple coarse-to-fine auto-encoder models to address person re-
identification problem under varied environmental changes. In our
algorithm, we have trained several different SAE networks, with each
followed by a softmax classifier. So that the brain’s visual cortex can
be simulated by our established deep neural networks with different
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Figure 13. The different joint learning strategies on CUHK.

hidden layers. The preprocessed person image pairs via subtracting
the mean value are used for network input and a couple of classifica-
tion results are then produced. Finally, a weighted assignment mech-
anism is further used to boost recognition accuracy for the obtained
classification results. Extensive experimental results on two public
datasets have shown the superiority of our algorithm. Our established
multiple coarse-to-fine deep metric learning approach can be extend-
ed to other visual applications, such as images classification, object
detection and so on.
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