
A Reinforcement Learning Framework for Trajectory
Prediction Under Uncertainty and Budget Constraint

Truc Viet Le1 and Siyuan Liu2 and Hoong Chuin Lau3

Abstract. We consider the problem of trajectory prediction, where
a trajectory is an ordered sequence of location visits and correspond-
ing timestamps. The problem arises when an agent makes sequential
decisions to visit a set of spatial locations of interest. Each location
bears a stochastic utility and the agent has a limited budget to spend.
Given the agent’s observed partial trajectory, our goal is to predict
the agent’s remaining trajectory. We propose a solution framework
to the problem that incorporates both the stochastic utility of each
location and the budget constraint. We first cluster the agents into
groups of homogeneous behaviors called “agent types”. Depending
on its type, each agent’s trajectory is then transformed into a discrete-
state sequence representation. Based on such representations, we use
reinforcement learning (RL) to model the underlying decision pro-
cesses and inverse RL to learn the utility distributions of the spatial
locations. We finally propose two decision models to make predic-
tions: one is based on long-term optimal planning of RL and another
uses myopic heuristics. We apply the framework to predict real-world
human trajectories collected in a large theme park and are able to ex-
plain the underlying processes of the observed actions.

1 Introduction

How does a rational agent decide to visit a set of locations in space?
Assuming there are distinct points of interest (POIs), then the act of
visiting them has to happen sequentially. We call it spatial sequential
decision-making. It is reasonable to assume that each location bears a
non-negative utility (reward) to the decision-maker that would not be
fully realized until it is visited. Until then, utilities remain uncertain
and reflect the agent’s prior preferences. When making sequential
decisions, a rational agent should also weigh in the long-term costs of
visiting each of the locations in order to make an optimal plan, where
“costs” here are assumed to be proportional to physical distances.
Hence, answering the question above would require a model of the
agent’s sequential decisions for selecting locations, whose utilities
remain uncertain and costs are dynamic, and weighing in their long-
term consequences into the decision-making [15].

In practice, the agent typically has a limited amount of resources
(e.g., time) to run its plan, which we call a budget. Such a budget
constraint can significantly shape the agent’s decision-making pro-
cess and outcomes in non-obvious ways. In this paper, we propose a
framework based on reinforcement learning [24] to model the agent’s

1 Singapore Management University, 80 Stamford Rd., Singapore 178902.
E-mail: trucviet.le.2012@smu.edu.sg

2 Smeal College of Business, Pennsylvania State University, PA 16802, USA.
E-mail: siyuan@psu.edu

3 Singapore Management University, 80 Stamford Rd., Singapore 178902.
E-mail: hclau@smu.edu.sg

Figure 1: Visualizing the attractiveness of the same set of POIs in a
real-world theme park environment (to be discussed in Sect. 7) and
the pairwise transition probabilities (only those probabilities ≥ 0.20
are drawn) between them as observed by two groups of agents: “Type
1” and “Type 2”. Each group is given a certain amount of time budget
to visit the set of POIs, where Type 1 has, on average, 114 minutes
more than Type 2. The size of each POI is drawn to reflect its relative
popularity (attractiveness) among members of each group.

spatial sequential decision-making, taking into account the uncer-
tainty of the utilities and the budget constraint. Using the framework,
we could discover the underlying processes that drive real-world be-
haviors such as the condition for making long-term optimal decisions
in the defined setting. Indeed, traditional economic view of ratio-
nal decision-making as solving an optimization problem often fails
to predict reality due to bounded rationality [10]. Such discoveries
would give insights into real-world human behaviors and help bridge
the gap between human and machine intelligence [28, 15].

Our motivation comes from the problem of predicting the next se-
quence of location visits (called trajectory) of a mobile agent know-
ing its current trajectory and past observed trajectories of other simi-
lar agents. Accurate predictions of the agent’s next locations can en-
able numerous applications of location-based services such as real-
time prediction of visitor arrivals and congestion at POIs or devising
real-time advertising strategies or adaptive recommendation system
for a mobile agent knowing its probable future trajectory.

Consider the example illustrated in Fig. 1, whose data were col-
lected from real-world human behaviors in a theme park (to be dis-
cussed in Sect. 7). In this setting, suppose there are two groups of
agents (human visitors) of equivalent sizes called “type 1” and “type
2”. Each agent in each group is to visit the same set of POIs within
a given time frame (budget). Agent type 1 is given, on average, 114
minutes more than type 2. Such a budget difference can translate into
starkly different behaviors as illustrated in the figure. Not only is the
relative attractiveness of each of the POIs different, but the pairwise
transition probabilities among them also become discernibly distinct.
Type 1 appears to have a larger “coverage” of the POIs through their
sequential transitions, while type 2 tends to visit those POIs that are

ECAI 2016
G.A. Kaminka et al. (Eds.)
© 2016 The Authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/978-1-61499-672-9-347

347

clustered together. These observations reflect the inherently different
underlying decision processes used by these agent types. Thus, in or-
der to make accurate trajectory predictions, it suffices to model the
sequential decision-making process of each group separately.

In this paper, we develop on and extend the capabilities of the
framework proposed by Le et al. [17] for spatial decision modeling.
Specifically, we set out to predict an ordered sequence of an agent’s
future locations (as opposed to an unordered bundle). Furthermore,
our novel contribution is that we do not rely solely on a generative
model as previously proposed to generate sequential actions (e.g.,
naive Bayes [14] or hidden Markov models (HMMs) [20]). Instead,
we integrate one of such (i.e., HMMs) into a reinforcement learning
framework to model an agent’s sequential decisions. We further pro-
pose decision models based on the learned utilities resulted from the
framework for trajectory prediction. Doing so enables us to explain
the underlying processes of the predicted outcomes, the effects of
budget constraint on decision-making, and evaluate the appropriate-
ness of the proposed decision models.

We summarize our contributions as follows:

• We model the sequential decision process of an agent in an inte-
grated framework to predict its trajectory;

• Our framework takes into account both the stochasticity of re-
wards and the budget constraint;

• We propose two decision models for prediction: one is based on
long-term optimal planning of reinforcement learning and another
uses myopic heuristics;

• We empirically evaluate our framework using real-world human
trajectories with compelling results.

2 Related Work

Trajectory prediction. The problem of predicting the future loca-
tion(s) of a mobile agent is not entirely new. Krumm and Horvitz
[14] propose a naive Bayes model called Predestination to predict
the final destination of a driving trip given its partially observed GPS
trajectory. In most recent work, some form of Markov model is often
used to learn the observed transitions and infer future locations. For
example, Mathew et al. [20] use hidden Markov models (HMMs) to
identify clusters of locations from raw GPS data and Gambs et al.
[9] propose a mobility model based on Markov chains to incorpo-
rate knowledge of the previous n visited locations. We also employ
HMMs in our framework, but in a radically different way: to repre-
sent the environment in which the agent interacts with. Recently, Le
et al. [17] propose a framework based on revealed preference learn-
ing to predict unordered bundles of spatial locations given an agent’s
budget information. In this respect, our work expands on [17] for
predicting ordered sequences of spatial decisions.

Sequential decisions. Modeling human sequential actions has
been traditionally studied in the domain of human-computer interac-
tion. For instance, mining sequential behaviors has been used to dis-
cover mobile users that share similar habits [19], or to imitate human
behaviors in order to provide better automated care to the disabled
and the elderly [11]. In this respect, modeling sequential decisions
as Markov processes is commonly used to simplify the representa-
tion of the user’s knowledge [26]. A common shortcoming among
these work is the lack of modeling of the users’ underlying decision
processes in order to explain the discovered patterns.

Reinforcement learning. Understanding human behaviors re-
quires finding the reward function that motivates the observed ac-
tions. Inverse reinforcement learning (IRL), first proposed by Russell

[22], provides an elegant framework to identify the reward function
being optimized by the agents given observations of their activities.
Ng and Russell [21] propose the original algorithms to tackle the
problem based on linear programming. Ever since, there has been a
wealth of algorithms developed to solve IRL [25]. IRL has enjoyed
diverse applications in automated control systems that try to imitate
the behaviors of expert human users (a.k.a. “learning from demon-
strations”) such as learning how to drive [2], controlling helicopters
[1], and predicting mouse movements [26]. In this respect, our frame-
work integrates IRL to model the stochasticity of rewards.

3 Problem Statement

We consider a set D of agents and a finite set G (|G| = n) of POIs
(locations). Each agent i ∈ D has a utility vector ui over each lo-
cation j ∈ G, where uij ∈ R≥0 is the utility of j to i. Agent i
has a budget constraint Bi and wishes to visit a subset si ⊆ G such
that

∑
j∈si

cij ≤ Bi, where cij is i’s cost of visiting j. We denote
si as agent i’s trajectory that contains the ordered sequence of lo-
cations visited by i and the corresponding timestamps. Without loss
of generality, we assume throughout that the costs and budget con-
straint are in terms of travel time and i makes a binary decision vector
si ∈ {0, 1}n. Hence, cij is a dynamic cost for each j that depends
on the previous location in the sequence. We additionally assume the
proportionality between distance and travel time, where all distances
considered in this paper are spatial Euclidean distance.

Suppose D can be divided into non-overlapping subsets called
agent types, where each “type” implies homogeneous preferences
and behaviors. Given an agent of a certain type, his partial trajec-
tory (say the first k location visits) and the current budget, our goal is
to predict the agent’s remaining trajectory. The notion of agent type
comes from the idea that modeling each individual agent is imprac-
tical. It is much more feasible to divide them into finite and disjoint
clusters of similar preferences and behaviors. Thus, we also use the
terms “cluster” and “(agent) type” interchangeably.

Predicting an agent’s remaining trajectory requires sequential de-
cision modeling under uncertainty and budget constraint. The uncer-
tainty comes from the utility distributions of the remaining locations.
While the relative attractiveness of the locations can be easily worked
out using a simple frequency count, it is not straightforward how to
learn their utility distributions from the observed trajectories and how
to incorporate them into a sequential decision-making model.

4 Solution Overview

We propose an integrated framework to model and predict the next
sequence of locations given an agent’s observed partial trajectory and
budget constraint. The framework consists of two components: learn-
ing and prediction. Fig. 2 illustrates the overall framework. Table 1
summarizes the notations used in this paper.

Learning. We first divide the agents in the training set S into K
finite clusters, where each cluster Clj (1 ≤ j ≤ K) represents an
agent type. K is typically chosen heuristically via some clustering
coefficient (e.g., the silhouette index). Using the agents’ observed
features and the K clusters as class labels, we train a multi-class
classifier (e.g., multinomial logistic regression). We also model the
environment that the agents interact with as a finite set of states S,
where each state s ∈ S has a distinct vector of features fs. We use
hidden Markov models (HMMs) to transform the observed trajecto-
ries into finite sequences of states. Such a representation can then be

T.V. Le et al. / A Reinforcement Learning Framework for Trajectory Prediction Under Uncertainty and Budget Constraint348

Figure 2: The proposed framework to model and predict the remaining trajectory of a test agent i ∈ T given its observed partial trajectory
s̃i, current budget Bi, and trajectories of the agents in the training set S. “Trajec” stands for “trajectory”. S is the finite set of states, P is the
matrix of state transition probabilities, and f is the set of feature vectors of the states in S.

Table 1: Summary of notations used in the paper.

Notation Description
D,S, T Total dataset, training set and test set, respectively
G Set of POIs, where |G| = n
uij , cij Utility and cost of location j ∈ G for agent i
si, s̃i, Bi Trajectory, partial trajectory, and current budget of i
li Trajectory (sequence) length of agent i
K Number of clusters (agent types)
S Finite set of states for each agent type (|S| = N)
fs Feature vector of each state s ∈ S
Rk State-reward matrix ∀ agent type k (1 ≤ k ≤ K)
Ra Location-reward matrix for each location a ∈ G
Qi Expected reward level (“personal goal”) of agent i

modeled as a Markov decision process (MDP). The utility of each ac-
tion (i.e., location visit) can then be derived via the process of inverse
reinforcement learning (IRL) using the agents’ observed actions (rep-
resented in the transition probability matrix P of the MDP). The final
outcomes of IRL are the reward matrices R.

Prediction. Given the observed partial trajectory and features of
an agent i in the test set T , we first predict i’s type Clik using the
trained classifier above. We then use the Viterbi algorithm [7] to find
the most probable sequence of states s̃i for the observed trajectory.
We are then able to model i’s goal Qi (also called the “expected
reward level”) and predict the next sequence of visits that can meet
this goal within budget Bi. We finally propose two decision models
that take into account the uncertainty of the utilities (represented by
the matrix Rk for each type k) and budget Bi.

In the following sections, we elaborate on each of the components
of the proposed framework shown in Fig. 2.

5 Learning

5.1 Trajectory Clustering

For each agent i ∈ S, let li (1 ≤ li ≤ n) be i’s sequence length,
which is the total number of locations visited by i. We denote the
sequence of locations visited by i as y(i) = {y(i)

t }lit=1 and the se-
quence of corresponding timestamps as τ (i) = {τ (i)

t }lit=1. We define
i’s trajectory as s(i) = {(y(i)t , τ

(i)
t)}lit=1. We are able to discretize

τ (i) into T segments, where Δτ is the duration of each segment. We
can then derive a vector ai of length T for each s(i), where each
ait ∈ ai (1 ≤ t ≤ T) indicates i’s observed location at time t.

We can now cluster the agents based on the similarities ai for all
i ∈ S using, e.g., hierarchical clustering (because of its simplicity
and effectiveness). In particular, we propose to use the agglomera-
tive approach that clusters the vectors recursively from bottom up.
To this end, we use the edit distance [6] to quantify the dissimilar-
ity between ai and aj with the substitution cost being the distance
between the pair of locations that differ. To select K, the hierarchi-
cal tree is “cut” at some height that splits S into K clusters. The
goodness of the clustering can then be quantified using, e.g., the sil-
houette coefficient. We choose K that best aligns with our domain
knowledge and produces a good enough clustering coefficient.

5.2 Environment Modeling

We use hidden Markov models (HMMs) to model the environ-
ment the agents interact with as a finite set of states S =
{S1, S2, . . . , SN}. An HMM describes the relationship between an
observed stochastic process and an unobserved (hidden) underlying
process. The hidden process follows a Markov chain and the obser-
vations are conditionally independent given the sequence of hidden
states. Let {Yt}Tt=1 and {Xt}Tt=1 represent the observations and the
corresponding hidden states, respectively. We denote f(yt|Θxt) =
Pr(Yt = yt; Θ|Xt = xt) as the (emission) density function of ob-
servation yt parameterized over Θ given hidden state xt. Each emis-
sion yt is a tuple (yk, τk) with the spatial component yk being a
discrete location drawn from G and the temporal component τk be-
ing a continuous timestamp drawn from the Gaussian distribution
N (μk, σk) (1 ≤ k ≤ N).

An HMM with N states is completely specified by:

1. The finite set of hidden states S = {S1, S2, . . . , SN};
2. The state transition matrix T = {tij}, where tij = Pr(Xt =

Sj |Xt−1 = Si), 1 ≤ i, j ≤ N ;
3. The parameter vector Θi of the response (or emission) density

function f(yt|Θxt) for each Si; and
4. The vector of initial (state) probabilities p = {pi}, where pi =

Pr(X1 = Si) and
∑N

i=1 pi = 1.

Each hidden state of the HMM can be thought of as a spatiotempo-
ral cluster of the visiting activities. Empirical observations confirm
that nearby locations are much more likely to be visited sequentially
in short periods of time, i.e., having “high” emission probabilities.
We fit the HMMs using the trajectories s(i) ∀i ∈ S. A well-known
method to estimate the parameters of an HMM is the Baum-Welch

T.V. Le et al. / A Reinforcement Learning Framework for Trajectory Prediction Under Uncertainty and Budget Constraint 349

algorithm [4]. For each HMMj (1 ≤ j ≤ K), we select the opti-
mal number of states N∗

j using the Bayesian Information Criterion
(BIC) [8]. An important inference problem is that given a sequence
of observations, find the most probable sequence of hidden states that
produces it, which can be solved using the Viterbi algorithm [7].

5.3 Inverse Reinforcement Learning

5.3.1 Preliminaries.

Markov decision processes (MDPs) [5] provide an elegant frame-
work to model sequential decisions in an environment represented
as a finite state space S. At each state s ∈ S, the agent chooses
an action a ∈ A. Upon which, the process transitions into the next
state s′ ∈ S according to the probability Pa(s, s

′) = Pr(St+1 =
s′|St = s, at = a). The agent then receives a reward Ra(s, s

′). The
main concern of MDP is to find an optimal policy π∗ : S �→ A that
maximizes the long-term cumulative reward

∑
t

Rat(st, st+1).

Let Pπ(s) represent the transition probability matrix correspond-
ing to the application of some policy π. A finite-horizon MDP is
completely described by the tuple (S,A, Pπ(s), R). The value func-
tion V π(s) of policy π at state s represents the expected cumulative
reward from s. Thus, our goal is to find an optimal policy π∗ such
that V π∗

(s) is maximized. It can be shown that there exists at least
one optimal policy such that V π(s) is maximized for all s ∈ S [24]
that can be expressed as:

π∗(s) ∈ argmax
a∈A

∑

s′∈S

Pa(s, s
′)[R(s, s′) + γV π(s′)]. (1)

A fundamental property of the value function is, for any policy π and
any state s:

V π(s) = Rπ(s)(s) +
∑

s′∈S

Pπ(s)(s, s
′)V π(s′). (2)

Eqn. (2) (called the Bellman equation) directly gives rise to efficient
dynamic programming (DP) formulations to find a long-term optimal
policy π∗ called value iteration and policy iteration [5].

Inverse reinforcement learning (IRL) is the inverse problem to
MDP, whose goal is to determine the reward function R that is be-
ing optimized given observations of the sequential decisions. Ng and
Russell [21] originally propose LP formulations to solve the prob-
lem with constraints leading to the optimal observed policy. Abbeel
and Ng [2] later propose a strategy of matching feature expectations
between an observed policy and an agent’s behaviors. The strategy
is both necessary and sufficient to achieve the same performance
as if the agent were in fact solving an MDP with reward function
linear in the features of the states. Denote ξi a state-based trajec-
tory (aka a “path”), f the sequence of feature vectors of a path, and
f̄ = 1

m

∑
i fξi the empirical expected feature count based on m tra-

jectories. Matching feature expectations is described by:
∑

ξi

Pr(ξi)fξi = f̄ . (3)

We adopt the maximum entropy (MaxEnt) IRL algorithm [27] to
learn the reward distribution of each state. MaxEnt IRL is an effective
framework for modeling and understanding human activities, where
the recovered reward function intuitively encodes an individual’s set
of preferences [12]. The notion of reward distribution comes from
the fact that different people, even if classified into types, would still
have different preferences (utilities) for the same thing. Such diver-
sity in tastes can be best modeled as a probability distribution.

5.3.2 Maximum Entropy IRL (MaxEnt IRL).

Given a state-action sequence ξ = {(s, a)}i, where si ∈ S and
ai ∈ A, agent i is optimizing some function that linearly maps the
features of each state fsj ∈ R

k to a reward value that represents i’s
utility of visiting that state. This function is parameterized by some
weight vector θ and the reward of a trajectory is simply the sum of all
the state rewards. The reward weights are applied to the path feature
counts fξ =

∑
si∈ξ fsj such that the reward of the trajectory is the

weighted sum of the feature counts along the path:

R(fξ) = θ · fξ =
∑

sj∈ξ

θ · fsj . (4)

Since many distributions of paths may match the feature counts
and any one distribution from among this set may exhibit a prefer-
ence for some of the paths over others not implied by the path fea-
tures. Such ambiguity is solved using the principle of maximum en-
tropy by choosing the distribution that does not exhibit any additional
preferences beyond matching feature expectations. The resulting dis-
tribution over the paths is parameterized by the weights θ:

Pr(ξi|θ) =
1

Z(θ)
eθ·fξi =

1

Z(θ)
e
∑

sj∈ξi
θ·fsj , (5)

where Z(θ) is some partition function for the parameter weights.
This distribution also provides a stochastic policy (i.e., a distribution
over the actions at each state). Refer to [27] for more details.

We now build an MDP model (S,A, P,R) for each agent type,
where S is the set of states of the corresponding HMM and A is the
set G of locations. We then need a set of state sequences in order to
derive the transition matrix P and reward function R. To this end, we
convert each trajectory into its most probable sequence of (hidden)
states using the Viterbi algorithm [7]. P is then derived by sampling
the observed state transitions and action taken at each state.

MaxEnt IRL additionally requires a set of features fs for each state
s ∈ S. We use the spatiotemporal characteristics of each state as its
features. Specifically, recall that each state Si of the HMM is both
a spatial cluster (i.e., what locations are likely to be visited) and a
temporal cluster (described by the Gaussian mean μi). We use the
tuple (loi, lai, μi, σi) as the features fSi of Si, where loi and lai

are the “mean”4 longitude and latitude coordinates of Si and μi and
σi are the mean and standard deviation of the Gaussian emission,
respectively. Such weighted sum of the coordinates are referred to as
the “cluster centroids” of the states. Hence, each state Si admits a
unique cluster centroid Ci described by its (loi, lai).

Each run j of MaxEnt IRL produces a unique reward function
Rj : Si �→ R

+, ∀1 ≤ i ≤ N . In order to produce a distribution of
reward for each state, we split the trajectories into subsets and run
MaxEnt IRL on each subset to get a unique reward function. The
probability of each reward value is the proportion of the subset in the
original set. Towards this end, we split the trajectories into subsets of
equal sequence lengths and run MaxEnt IRL on each of them.

We compute the distribution of reward for each location as fol-
lows. Let Rs be a state-reward matrix. Rs is of dimension l × N ,
where N is the number of states and l is the maximum sequence
length. For each state Sk (1 ≤ k ≤ N), let pk of length n = |G| be
the vector of multinomial emission probabilities of the HMM. Let Π
be the multinomial emission matrix of dimension N × n whose row
vectors are pk. We compute the location-reward matrix Ra as:

Ra = Rs ×Π. (6)
4 Precisely, loi and lai are the sum of the coordinates of the locations

weighted by the multinomial emission probabilities at Si.

T.V. Le et al. / A Reinforcement Learning Framework for Trajectory Prediction Under Uncertainty and Budget Constraint350

We assume that the stochastic reward R(a) of each location a fol-
lows a Gaussian distribution, whose mean and variance can be de-
rived from the corresponding column vector of Ra.

6 Prediction

In this paper, we present two decision models to the problem of tra-
jectory prediction: Adaptive MDP (AMDP) and Value Ratio (VR).
The former follows the long-term optimal policy of an MDP and the
latter uses myopic greedy heuristics to make decisions.

6.1 Adaptive MDP

Empirical evidence shows that the sequence lengths of the trajecto-
ries typically follow normal distributions [16, 18, 15]. We take advan-
tage of this to introduce stochasticity of reward and policy into our
model by splitting the training set into subsets of the same sequence
lengths. For each subset, we learn a unique reward/policy function. In
the end, we come up with a reward/policy matrix, where for each ma-
trix, the columns are the states and the rows are the sequence lengths
whose probability distribution follows that of the sequence lengths.

With the above setup, we obtain the following matrices from the
training set for each agent type:

1. Rs (or R): each entry is the reward (column) of each state that
corresponds to each sequence length (row);

2. V (l × N): each entry is the value (column) of each state that
corresponds to each sequence length (row);

3. Optimal policy matrix Π∗ (l×N): each entry is an optimal action
a ∈ A at each state (column) that corresponds to each sequence
length (row).

From R, we are able to derive the Gaussian distribution of reward
R(s) at each state s ∈ S using the probability distribution of the
sequence length (i.e., the rows).

An important consideration in our model is the agent’s expected

reward level. This comes about from the observation that an agent
may finish its trajectory even when there is sufficient budget to go
on. Such behavior may come from an intrinsic expected reward level,
such as a “personal goal”, having been met. Once such goal is met,
the agent would just be happy to finish there and then and not go on to
maximize the cumulative reward any further. In order to model such
a personal goal, we make use of the value function. From Eqn. (2),
the value function at state s is sum of the immediate reward Rπ(s)(s)
and the future expected reward. We use this future expected reward
to model agent i’s expected reward level Qi:

Qi = V π(s)−Rπ(s)(s). (7)

Since both V π(s) and Rπ(s)(s) are given (by V and R(s), respec-
tively), we can derive Qi for each agent i knowing its current state
s and the current sequence length k. Furthermore, the optimal policy
matrix Π∗ is stochastic because, given a state s, each column vector
of policies Π∗[:, s] is distributed according to the Gaussian distri-
bution of the sequence length. Algorithm 1 describes the proposed
Adaptive5 MDP decision model for trajectory prediction.

Algorithm 1 follows the long-term optimal policy of an MDP be-
cause it makes use of the optimal (stochastic) policy function to make
decision at each step. The policy function is long-term optimal as a
result of solving the Bellman equation (2).

5 “Adaptive” is used to mean that the algorithm is adapted to stochastic re-
wards/policies and the budget constraint.

Algorithm 1 Adaptive MDP decision model for agent i

1: Given agent i’s partial trajectory s̃i = {(s, a)}i of current length
k and i’s current budget Bi > 0

2: Let s = s̃i[k] be the current state
3: Sample reward R(s) from Gaussian distribution
4: Retrieve current state’s value V[k, s]
5: Let Qi = V[k, s]−R(s) be i’s expected reward level
6: Initialize i’s future cumulative reward Ui ← 0
7: Let ŝi ← ∅ be the predicted sequence
8: while Ui < Qi and Bi > 0 do

9: Sample an action a from policy Π∗[k : l, s]
10: while a ∈ s̃i {a has been visited} do

11: Repeat Step 9
12: end while

13: Sample next state s′ from Pa(s, s
′)

14: Update k ← k + 1; s ← s′

15: Update ŝi ← ŝi ∪ (s, a); s̃i ← s̃i ∪ ŝi
16: Sample reward R(s) from Gaussian distribution
17: Let ta be the travel time from current location to a
18: Let Δa be the minimum duration to be spent at a
19: Update Ui ← Ui +R(s); Bi ← Bi − (ta +Δa)
20: end while

21: Return the sequence of actions in ŝi

6.2 Value Ratio

At each time step, the agent samples a random reward value rj from
the Gaussian distribution R(aj) of each of the remaining locations
aj . Given its current location, the agent heuristically maps itself to
the nearest cluster centroid (refer to Sect. 5.3.2) as a “point of refer-
ence” and derives the distances dj from the cluster centroid to each of
the remaining locations. The agent then chooses to visit the location
j∗ that has the largest ratio rj/dj (i.e., the ratio of the immediate
reward to its cost) and repeats until its budget runs out or there is
no unvisited location left. This is the well-known best “bang-for-the-
buck” greedy heuristic [3]. Algorithm 2 describes the model.

Algorithm 2 Value Ratio decision model for agent i

1: Given agent i’s current location ai, its current set of unvisited
locations Gi ⊆ G and the current budget Bi > 0

2: Let ŝi ← ∅ be the predicted sequence of visits
3: while |Gi| > 0 and Bi > 0 do

4: Sample reward rj from Gaussian distribution for each aj ∈ Gi

5: Let Ck∗ = argmink distance(ai, Ck) (1 ≤ k ≤ N)
6: Let dj = distance(aj , Ck∗), ∀aj ∈ Gi

7: Select aj∗ where j∗ = argmaxj rj/dj , ∀aj ∈ Gi

8: Update ŝi ← ŝi ∪ {aj∗}; Gi ← Gi \ {aj∗}
9: Let tj∗ be the travel time from ai to aj∗

10: Let Δj∗ be the minimum duration to be spent at aj∗

11: Update Bi ← Bi − (tj∗ +Δj∗); ai ← aj∗

12: end while

13: Return ŝi

7 Experiments

7.1 Dataset

We collaborated with a large theme park operator in a major Asian
city to conduct experiments and collect demographic and behavioral

T.V. Le et al. / A Reinforcement Learning Framework for Trajectory Prediction Under Uncertainty and Budget Constraint 351

Figure 3: Visualization of the two clusters (agent types) of the training data in the experiments. Horizontal axes represent the timeline in discrete
intervals of 5 minutes from 9 a.m. to 7 p.m. Vertical axes represent the probability of the visitors of each type being at each of the 14 attractions
(or at some unknown location “0”). Attractions are represented by their color codes whose legend is shown at the bottom.

data from their visitors from January to April, 2014. The dataset con-
tains the visitors’ trajectories tracked using RFID devices. In the ex-
periments, visitors pay upfront a fixed amount in order to redeem up
to 14 participating attractions (locations). Visitors can only redeem
the attractions during the specified 10-hour period from 9 a.m. to 7
p.m. on a chosen day. Each attraction can only be visited once.

Our dataset D contains trajectories of 3, 867 unique and indepen-
dent visitors together with their demographic features. The empirical
distribution of the sequence length of these trajectories follows a typ-
ical bell-shaped characteristic of a Gaussian distribution.

7.2 Trajectory Clustering

We perform cross-validations6 on D. For each fold, the training set
S is used for trajectory clustering and decision modeling. Our hi-
erarchical clustering results in K = 2 clusters using the interval
Δτ = 5 minutes (refer to Sect. 5.1) for all the agents. The value of
K was chosen based on inspection of the hierarchical tree and empir-
ical goodness of clustering via the silhouette coefficient (partitions of
comparable sizes and good in-group cohesiveness).

Fig. 3 visualizes the 2 clusters using training data of one of the
random folds. The horizontal axes represent the discretized timeline
(by Δτ) from 9 a.m. to 7 p.m. for each cluster and the vertical axis
represents the probability for each agent of each cluster to be at any
one of the 14 attractions at any interval. (Note that even after 7 p.m.,
some activities can still be recorded in the park.) The attractions are
identified by their numbers whose color codes are shown in the leg-
end at the bottom of the figure. We denote “0” (white color) when
we do not know for sure the location of an agent during a given time
interval (i.e., he was not observed at any known attraction during the
interval). We can see that, most of the time, visitors hang out in the
park without checking into any specific attractions.

The trajectory clustering reveals that the main differences between
the two agent types are their temporal behaviors. That is, agent type

6 Precisely, we performed 3-fold cross-validations to ensure a large enough
training/test partition per fold.

1 tends to arrive earlier and has their peak of visiting activities ear-
lier in the day (around 12–1 p.m.), and then (their visit frequency)
sharply drops off. Whereas, agent type 2 tends to arrive much later
and reaches their peak later (at round 3–4 p.m.), and then gradually
declines. If budget is defined as the duration from the time of entry
until the closing time (7 p.m.), then agent type 1 has, on average,
114 minutes more than agent type 2. As a result, we call agent type
1 the “early birds” and agent type 2 the “latecomers”. The two clus-
ters have roughly comparable sizes with cluster 1 being 54.42% and
cluster 2 being 45.58% of the set training S.

7.3 Evaluation

For each cluster in S, we learn the matrices R, V, and Π∗. The test
set T is used to validate the predicted trajectories. For each agent
i ∈ T , let li be i’s final sequence length. We first predict i’s type
using its demographic features and first timestamp via a multinomial
logistic model. Given i’s partial trajectory of length k, we predict i’s
remaining trajectory while varying k ∈ [2, li − 1]. Let s∗i and ŝi be
i’s actual and predicted remaining trajectory, respectively. We use the
Levenshtein edit distance [6] to quantify the similarity between s∗i
and ŝi. Each match receives a fixed positive score and each mismatch
incurs a negative penalty proportional to the distance (in kilometers)
between the two locations.

The following baseline models are used for evaluation:

1. HMM. At each time step, predict agent i’s current state s, generate
an unvisited location based on the state’s multinomial probabilities
ps and repeat until Bi runs out. This is based on [20].

2. Nearest neighbor. At each time step, agent i redeems a remaining
location that is nearest to its current location and repeats until Bi

runs out.
3. Random. At each time step, i redeems a random unvisited loca-

tion and repeats until Bi runs out.

T.V. Le et al. / A Reinforcement Learning Framework for Trajectory Prediction Under Uncertainty and Budget Constraint352

(a) (b)

Figure 4: (a) Comparison between the estimated reward distribution for each attraction (“attrId”) (top panel) and the empirical visit probability
for each attraction (bottom panel). (b) Similarity measures between the actual and predicted trajectories across different models: Random
(“Rand”), Nearest Neighbor (“NN”), HMM, Value Ratio (“VR”) and Adaptive MDP (“AMDP”).

7.4 Results

Our experimental results are summarized in Fig. 4. In Fig. 4a, the
mean reward per attraction learned from IRL and Eqn. (6) is plot-
ted together with its 95% confidence interval (top panel). The figure
shows that the mean rewards, in general, faithfully reflect their re-
spective empirical probabilities of attraction visit for both agent types
(i.e., their preferences – in the bottom panel).

It is noteworthy to observe in Fig. 4a that agent type 2 has, for
the most part, higher (absolute) immediate reward per attraction (top
panel) than agent type 1. This consequentially differentiates the un-
derlying decision processes employed by the two agent types. Fig. 4b
shows the distributions of the similarity measures (means and vari-
ances – represented by 95% confidence bars) across the models. Each
distribution is computed from the cross-validation while varying the
observed partial trajectory length k ∈ [2, li − 1]. A higher mean
similarity implies a more accurate prediction, on average. These dis-
tributions (in Fig. 4b) are empirically verified to be Gaussian.

For agent type 1, Fig. 4b shows that the Adaptive MDP model
has the most accurate prediction, on average. The Value Ratio and
HMM model both have about the same second best average predic-
tion score. The Random baseline model has the least accurate average
prediction, which is quite reasonable, followed by the Nearest Neigh-
bor model. For agent type 2, the figure shows that the Adaptive MDP
model performs marginally worse than the Value Ratio model, even
though it still fares much better than the other baselines. In other
words, the Value Ratio model makes the most accurate prediction,
on average, for this group of agents. This is a remarkable result that
warrants further discussion.

7.5 Discussion

From trajectory clustering, we have discovered that agent type 1 are
the early birds and agent type 2 are the latecomers. From the per-
spective of modeling, agent type 1 has a much larger budget (by 114
minutes, on average) than agent type 2. Larger budget means more

flexibility, more foresight and better long-term planning, which is
what the Adaptive MDP model reflects: it embodies the long-term
optimal policy of the corresponding reinforcement learning model.
This indeed performs better than other short-sighted baselines.

On the other hand, a smaller budget, which agent type 2 has, trans-
lates into less flexibility and less time for careful planning, which ul-
timately results in more myopic and suboptimal decisions (i.e., re-
sorting to greedy strategies). This is reflected in the experimental
results, where the greedy and myopic Value Ratio model performs
the best for agent type 2 (even though just marginally better than the
Adaptive MDP). This myopic decision-making corroborates with the
observations in Fig. 4a, where most of agent type 2’s immediate re-
wards are larger (in absolute terms) than agent type 1’s such that it
sees less values in delayed (future) rewards and finds more incentives
to act greedily [24]. This is also evidenced in Fig. 1, where type 2 has
a much stronger tendency to visit attractions that are nearby to one
another (i.e., maximizing the value ratio) than type 1.

8 Conclusion

In this paper, we address the problem of trajectory prediction using
reinforcement learning to model the agent’s sequential decisions. By
doing so, we have discovered from real-world trajectories how peo-
ple make decisions: they make more optimal decisions when given
enough time to do so. This is perhaps not surprising in retrospect,
because it is reasonable that foresighted decisions and careful plans
need time to coordinate, while myopic ones do not (as only the imme-
diate rewards are considered). On the other hand, this also validates
our framework’s ability to model real-world behaviors by finding out
what makes reasonable sense in real life.

Our main shortcoming here is the simplistic handling of the bud-
get constraint. We would like to see if handling it in more sophisti-
cated ways would improve predictions. For example, for foresighted
agents, we would like to experiment with decision models other than
MDP in our future work. One of which is the adaptive stochastic
knapsack [13], which it is similar to a traditional knapsack model ex-

T.V. Le et al. / A Reinforcement Learning Framework for Trajectory Prediction Under Uncertainty and Budget Constraint 353

cept for the sequential decisions and stochastic reward of each item.
Another shortcoming of this work is the simplistic Value Ratio model
for myopic decision-making (type 2), which yields just slightly bet-
ter prediction than the Adaptive MDP for agent type 2. Hence, for
myopic agents, a more sophisticated decision model may be desir-
able to better model and predict their behaviors. One of such model
for sequential decisions has been proposed in the operations research
literature [23]. This is also worth investigating in the future work.

ACKNOWLEDGEMENTS

This research is supported by the Singapore National Research Foun-
dation under its International Research Centre @ Singapore Funding
Initiative and administered by the IDM Program Office, Media De-
velopment Authority, as well as its Corp Lab @ University scheme.

Siyuan Liu is additionally supported by the Basic Research Pro-
gram of Shenzhen: JCYJ20140610152828686 and the Natural Sci-
ence Foundation of China: 61572488.

REFERENCES

[1] Pieter Abbeel, Adam Coates, Morgan Quigley, and Andrew Y. Ng, ‘An
application of reinforcement learning to aerobatic helicopter flight’, in
Advances in Neural Information Processing Systems, eds., B. Schlkopf,
J. Platt, and T. Hoffman, volume 19, Cambridge, MA, USA, (2007).
MIT Press.

[2] Pieter Abbeel and Andrew Y Ng, ‘Apprenticeship learning via inverse
reinforcement learning’, in Proceedings of the Twenty-first Interna-
tional Conference on Machine Learning, p. 1. ACM, (2004).

[3] Maria-Florina Balcan, Amit Daniely, Ruta Mehta, Ruth Urner, and Vi-
jay V Vazirani, ‘Learning economic parameters from revealed prefer-
ences’, in Web and Internet Economics, 338–353, Springer, (2014).

[4] Leonard E Baum, Ted Petrie, George Soules, and Norman Weiss, ‘A
maximization technique occurring in the statistical analysis of prob-
abilistic functions of Markov chains’, The Annals of Mathematical
Statistics, 41(1), 164–171, (1970).

[5] R. Bellman, ‘A Markovian decision process’, Journal of Mathematics
and Mechanics, 6(4), 679–684, (April 1957).

[6] Paul E Black, ‘Levenshtein distance’, Algorithms and Theory of Com-
putation Handbook, (1999).

[7] G David Forney Jr, ‘The Viterbi algorithm’, Proceedings of the IEEE,
61(3), 268–278, (1973).

[8] Chris Fraley and Adrian E Raftery, ‘Model-based clustering, discrimi-
nant analysis, and density estimation’, Journal of the American Statis-
tical Association, 97(458), 611–631, (2002).

[9] Sébastien Gambs, Marc-Olivier Killijian, and Miguel Núñez del
Prado Cortez, ‘Next place prediction using mobility Markov chains’,
in Proceedings of the First Workshop on Measurement, Privacy, and
Mobility, p. 3. ACM, (2012).

[10] Gerd Gigerenzer, Reinhard Selten, et al., ‘Rethinking rationality’,
Bounded rationality: The adaptive toolbox, 1–12, (2001).

[11] Valerie Guralnik and Karen Zita Haigh, ‘Learning models of human be-
haviour with sequential patterns’, in Proceedings of the AAAI-02 Work-
shop on Automation as Caregiver, pp. 24–30, (2002).

[12] De-An Huang, Amir-massoud Farahmand, Kris M Kitani, and J An-
drew Bagnell, ‘Approximate maxent inverse optimal control and its ap-
plication for mental simulation of human interactions’, in Twenty-Ninth
AAAI Conference on Artificial Intelligence, (2015).

[13] Taylan Ilhan, Seyed MR Iravani, and Mark S Daskin, ‘The adap-
tive knapsack problem with stochastic rewards’, Operations Research,
59(1), 242–248, (2011).

[14] John Krumm and Eric Horvitz, ‘Predestination: Inferring destinations
from partial trajectories’, in UbiComp 2006: Ubiquitous Computing,
243–260, Springer, (2006).

[15] Truc Viet Le, Siyuan Liu, and Hoong Chuin Lau, ‘Reinforcement learn-
ing framework for modeling spatial sequential decisions under uncer-
tainty’, in Proceedings of the 2016 International Conference on Au-
tonomous Agents & Multiagent Systems, pp. 1449–1450. International
Foundation for Autonomous Agents and Multiagent Systems, (2016).

[16] Truc Viet Le, Siyuan Liu, Hoong Chuin Lau, and Ramayya Krishnan,
‘A quantitative analysis of decision process in social groups using hu-
man trajectories’, in Proceedings of the 2014 international conference
on Autonomous agents and multi-agent systems, pp. 1425–1426. Inter-
national Foundation for Autonomous Agents and Multiagent Systems,
(2014).

[17] Truc Viet Le, Siyuan Liu, Hoong Chuin Lau, and Ramayya Krishnan,
‘Predicting bundles of spatial locations from learning revealed prefer-
ence data’, in Proceedings of the 2015 International Conference on Au-
tonomous Agents and Multiagent Systems, pp. 1121–1129. International
Foundation for Autonomous Agents and Multiagent Systems, (2015).

[18] Siyuan Liu, Qiang Qu, and Shuhui Wang, ‘Rationality analytics from
trajectories’, ACM Transactions on Knowledge Discovery from Data
(TKDD), 10(1), 10, (2015).

[19] Haiping Ma, Huanhuan Cao, Qiang Yang, Enhong Chen, and Jilei Tian,
‘A habit mining approach for discovering similar mobile users’, in Pro-
ceedings of the 21st International Conference on World Wide Web, pp.
231–240. ACM, (2012).

[20] Wesley Mathew, Ruben Raposo, and Bruno Martins, ‘Predicting fu-
ture locations with hidden Markov models’, in Proceedings of the
2012 ACM Conference on Ubiquitous Computing, pp. 911–918. ACM,
(2012).

[21] Andrew Y Ng and Stuart Russell, ‘Algorithms for inverse reinforce-
ment learning’, in Proc. 17th International Conf. on Machine Learning,
(2000).

[22] Stuart Russell, ‘Learning agents for uncertain environments (extended
abstract)’, in Proceedings of the Eleventh Annual Conference on Com-
putational Learning Theory, pp. 101–103, New York, NY, USA,
(1998). ACM.

[23] Matthew J Sobel and Wei Wei, ‘Myopic solutions of homogeneous se-
quential decision processes’, Operations Research, 58(4-part-2), 1235–
1246, (2010).

[24] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction,
MIT Press, Cambridge, MA, USA, 1998.

[25] Shao Zhifei and Er Meng Joo, ‘A review of inverse reinforcement learn-
ing theory and recent advances’, International Journal of Intelligent
Computing and Cybernetics, 5(3), 293–311, (June 2012).

[26] Brian D. Ziebart, Anind K. Dey, and J. Andrew Bagnell, ‘Probabilistic
pointing target prediction via inverse optimal control’, in Proceedings
of the 2012 ACM International Conference on Intelligent User Inter-
faces, pp. 1–10, New York, NY, USA, (February 2012). ACM.

[27] Brian D Ziebart, Andrew L Maas, J Andrew Bagnell, and Anind K
Dey, ‘Maximum entropy inverse reinforcement learning.’, in AAAI, pp.
1433–1438, (2008).

[28] Brian D Ziebart, Andrew L Maas, J Andrew Bagnell, and Anind K
Dey, ‘Human behavior modeling with maximum entropy inverse opti-
mal control.’, in AAAI Spring Symposium: Human Behavior Modeling,
p. 92, (2009).

T.V. Le et al. / A Reinforcement Learning Framework for Trajectory Prediction Under Uncertainty and Budget Constraint354

