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Abstract. Perception of the presence and position of human is cru-
cial for many kinds of Artificial Intelligence (AI) applications. In
this paper, we have developed a novel two-staged method for real-
time human detection in depth image. The first stage is to quickly
scan through the image to detect possible head-top locations in or-
der to ensure all the candidate locations are included. The second
stage is to use a novel head-shoulder descriptor (HSD) which jointly
encodes the One-hot Depth Difference information and local geo-
metric characteristics of human upper body to filter the detections so
as to keep the genuine human locations and discard false positives.
The results show that our approach using only depth data is superior
to other methods using color and depth images on four datasets. In
addition, our method performs well under weak illumination condi-
tions or even total darkness. Moreover, our system is also able to run
in real-time on conventional PC without GPU acceleration.

1 INTRODUCTION

Human detection is an important task due to its wide application
in human-computer interaction, intelligent vehicles, autonomous in-
door mobile robots, etc. It is also a critical technology in building
smart rooms in which intellectual sensors should be aware of users’
presence and locations [7, 8, 9]. However, human detection is still
a challenging problem especially in occasion of occlusion, posture
variations, dynamic and heavily cluttered background or crowd, etc.

Existing methods [6, 24, 28] for conventional video cameras are
reported as able to work in well-illuminated environments with rel-
atively simple and stationary background. However, their perfor-
mance declines quickly if the illumination conditions deteriorate or
the background becomes dynamic and complicated.

With the recent rapid development of depth cameras, such as time-
of-flight camera and Kinect, human detection becomes more man-
ageable as depth image is relatively insensitive to scene textures, and
the depth information acquired by the sensors using actively emitted
near infra-red medium is robust against illumination variation of the
environment.

There have been methods for detecting human beings with depth
cameras [2, 1, 31, 15, 23, 27, 32, 26]. The work reported in [4] adopt-
s a graph-based segmentation algorithm combined with randomized
subsampling for depth image segmentation and a set of parameter-
ized heuristics to reduce candidate segments for classification. Wo-
jek et al. [29] combine a full object detector and multiple object part
detectors in a mixture of experts based on their expected visibility.
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Spinello et al. [22] take inspiration from HOG (Histogram of Orient-
ed Gradients) detector which is mainly for color/grayscale image and
design HOD (Histogram of Oriented Depths) descriptor for depth da-
ta, and then achieve promising human detection result. These meth-
ods mentioned above using full-body detectors show their effective-
ness in many environments, but encounter challenges in crowded en-
vironments where occlusions occur frequently and people are often
partially visible.

An upper-body detector is a good choice for robust human detec-
tion, since the upper part of human body is less likely to be occlud-
ed and less deformable. The approach proposed by Xia et al. [30]
combines a 2D head contour model and a 3D head surface model to
detect people in indoor environments. Ikemura et al. [12] introduce
the notion of Relational Depth Similarity Features (RDSF) based on
depth information, which is derived from a similarity of depth his-
tograms and represents the relationship between two local regions.
The method presented in [13] uses a continuous normalized-depth
template as an upper-body detector for close range and a full-body
detector for farther range. Choi et al.’s system [5] integrates multi-
hypothesis (including human upper-body shape, human face, human
skin, as well as human motion) and shows interesting results for lo-
cating people in 3D space. Liu et al. [18] combine a Ring-wedge
Mask (RWM) and 2D Joint Histogram of Color and Height (JHCH)
information to classify plausible human head candidates. Munaro et
al. [19] combines depth-based and color-based techniques in a cas-
cade algorithm to detect people.

In this paper, we propose a novel two-staged approach which fully
utilizes the unique characteristics of the human’s upper body from
depth images only. We first quickly localize all candidate head-tops
based on the contour information of human head. Excessive num-
bers of possible human head candidates are extracted in this stage,
which contain true human head regions in the scene (with very low
miss rate) as well as false positives. Although the false positive rate
is still relative high, we are able to reduce the search space at a very
low computational cost. These false positives in the detections from
the first stage are further filtered out in the second stage by training a
classifier with an effective upper-body head-shoulder descriptor (HS-
D) which consists of a One-hot Depth Difference Descriptor (ODD-
D) to describe the occlusion relationship among humans and their
surrounding environments, and a Binarized Local Surface Descrip-
tor (BLSD) to characterize the local surface geometrical properties
of humans.

Our contributions are in the following aspects:

• We propose a fast head-top candidate extractor by localizing ex-
treme points along the depth discontinuities and try to ensure all
true human head-tops are included, which reduces searching space
to obtain high speed.

• We propose a novel upper-body head-shoulder descriptor (HSD),
which jointly encodes the information of One-hot depth differ-
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Figure 1: Workflow of the proposed method.

ence and local surface statistics to effectively and efficiently clas-
sify detections, aiming at further eliminating false positives while
preserving the true detections. Both of the two descriptors are dis-
criminative and compact, and they encode different kinds of infor-
mation of the upper-body in depth images.

Experimental results have demonstrated the effectiveness of our
approach on four available datasets. Although only depth data is em-
ployed, the proposed method outperforms existing methods using
both depth and RGB data. Using only depth data is also advanta-
geous in environments with dark or volatile illuminations.

2 THE PROPOSED APPROACH

Our method follows a two-stage cascaded structure. The first stage
uses extreme points in edge map to detect candidate head-top loca-
tions and try to include all the probable locations. The second stage
uses a novel head-shoulder descriptor (HSD) to verify the candidates
so as to keep the genuine ones and discard false ones. We try to
achieve a very low miss rate and expect to efficiently locate the can-
didates in the first stage, while the subsequent more computationally
expensive verification stage only needs to deal with a limited num-
ber of candidates rather than on all image pixels. An overview of the
proposed detection framework is given in Figure 1.

2.1 Finding Possible Head-top Points

Several existing works also tried to locate the head regions as ROI
(Region of Interests) as a preliminary detection stage. For example,
[30] and [13] use a depth template to localize the head positions as
ROI to reduce the search space. However, the template matching of-
ten gets corrupted due to occlusions. [13] and [17] project the 3D
point cloud to the ground plane and then use the height information
to locate the probable head positions. But these methods require the
prior knowledge of the ground plane which is either time consuming
or even not possible to estimate.

Our motivation is to quickly and directly find possible head-tops in
the depth image without the assist of any point clouds or depth tem-
plates, so that the more computationally intensive verification pro-
cess needs to be applied to only a limited number of candidates rather
than all pixels, thus substantially reducing the computation load. We

try to ensure all genuine head-top points are included in the responses
while allowing some false positives. There are two successive mod-
ules in this stage: depth based contour extraction and head-top can-
didates localization.

2.1.1 Depth based Contour Extraction

Depth data remains continuous within the same object and varies
greatly across distinct objects or parts of objects. So depth discon-
tinuities usually indicate true boundaries between two non-touching
objects. In real-world scenes, a standing person’s head is always suf-
ficiently far away from its surrounding background. This inspires us
to first extract the contour of human head based on depth discontinu-
ities and then look for further cues in these contours. This cue makes
it possible for us to obtain a set of less noisy contours corresponding
to human head boundaries from depth data much easier than from
RGB images.

Since depth data generated by depth camera may contain some
noise and holes, we use a depth image inpainting technique [20] to
reconstruct missing data, then the inpainted depth image is smoothed
by a Gaussian filter. Gradient magnitude M(x, y) and gradient ori-
entation φ(x, y) are calculated with a Canny operator. Canny op-
erator is employed as its outputs are not only isolated edge points
but a set of contours with points linked which facilitates our further
analysis of the contour. Then we locate every possible edge point by
the non-maxima suppression (NMS) and extract contours by double-
threshold edge linking scheme[3]. With conventional RGB image,
the contours output by Canny can be noisy and fragmented, but as we
have discussed above, with depth data we can always obtain clearer
and more complete human head contours as shown in Figure 2(a).

2.1.2 Head-top Candidates Localization

In most scenarios, the camera is positioned to make the image y-
axis inversely aligned with the gravity direction. Now that we have
obtained relatively clean and complete contours of human heads,
which protrude towards the ceiling of the image, we can find ex-
treme points along the contours in which head-tops are contained as
shown in Figure 2 (a). Given a contour consisted of a chain of points
C = {(xi, yi)}ni=1, we define the extreme point lk as the point which
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(a) (b)

Figure 2: (a) shows an example of depth based contour extraction and ex-
treme point localizations. The head-tops are in red color with contours in
black. In (b), each head-top has its own corresponding ROI illustrated in blue
box.

has a local maxima y value:

lk = {(xk, yk) | yk ≥ yj , j ∈ N(k)} (1)

where N(k) = {k−s, ..., k+s} is a neighborhood of point (xk, yk).
We set s = 3 in all the experiments. Searching along all the contours
extracted, we can obtain a set of extreme points as L = {lk}mk=1,
which are considered to be head-top candidates. The head-top candi-
dates can be extracted ultra fast since that 1) we do not have to esti-
mate the ground plane; 2) the extreme points are searched on the ex-
tracted contours rather than the whole image. Even in highly crowd-
ed environments, it makes sure that people’s head-top positions are
included in the resultant responses L (see in Section 3.2).

It is a novel idea to extract the candidate points information from
edge maps for subsequent processing, which dramatically reduces
the searching space and gains high detection speed. It can be easily
extended to other vision tasks in depth image, such as object recog-
nition, human activity analysis, and hand gesture analysis.

2.2 Purifying the Detections

We have obtained the probable head-top detection candidates, but the
results are over-detected and the false positives should be further fil-
tered out. We train a classifier using a novel head-shoulder descriptor
(HSD) combining two features: One-hot Depth Difference Descrip-
tor (ODDD) and Binarized Local Surface Descriptor (BLSD).

2.2.1 Scale Invariant ROI Selection

Conventional object detection in RGB images often involves testing
detection windows with different scales to detect objects with differ-
ent sizes on image, which is time-consuming. With the help of depth
information, we can select the ROIs adaptively according to the depth
of a 3D point as shown in Figure 2 (b).

We denote an ROI as rk = (lk, wk, hk) around the head-top point
to cover the whole head. Here lk is a head-top candidate, wk and
hk are the width and height of selected ROI for lk, they are adjusted
adaptively according to the corresponding depth value dk. We select
the ROI whose left-top corner is lk − (0.25hk, 0.5wk). This is set
empirically to make the ROI cover the upper-body and some context.
We prefer slightly larger ROIs to diminish the effect of inaccuracy in
localizing head-top points. Since human head is roughly spherical,
we let ρ denote the head radius in physical quantity while ρdk de-
note the projected radius and wk = 3ρdk , hk = 4ρdk . The relation-
ship between physical quantity and projected quantity is ρdk = λ ρ

dk
,

Figure 3: One-hot Depth Difference Descriptor (ODDD). We classify each
pixel into three categories: detectee (100), background (010) and overlapper
(001). The codes of picked points are concatenated to build a feature vector.

where λ is a constant factor obtained with camera’s intrinsic param-
eters [11, 18].

2.2.2 Head-shoulder Descriptor (HSD)

The pattern of human head-shoulder in depth images is distinctive
from other objects, so the key problem here is to design a head-
shoulder descriptor (HSD) to describe this distinctive property. We
design an HSD that encodes two different aspects of information:
the relative positions among human upper-body and their surround-
ing environments and the local surface geometrical characteristics of
human upper-body. With these two kinds of information compactly
encoded, the HSD is highly discriminative in keeping the true human
locations and rejecting false positives.

One-hot Depth Difference Descriptor (ODDD) Depth difference
has been explored in human pose estimation in [21]. But it is not
suitable for describing the pattern of human head-shoulder due to
complex relationships between humans and their surrounding back-
ground. Depth difference between human and background varies
from less than 1m to more than 10m, making the resulted feature
badly scaled and may cause misleading classification results. If we
directly utilize depth difference as a feature, it is possible to acquire
misleading results or may influence the classification results signif-
icantly. So directly employing depth differences to detect human is
not a wise choice.

In order to make depth difference more suitable for our classifica-
tion task, we propose a novel One-hot Depth Difference Descriptor
(ODDD). Inspired by [18], we classify each pixel in an ROI into
three categories: detectee (pixels belonging to the region of human
to be detected), background (pixels regarded as background) and
overlapper (pixels that can be considered as objects that occlude
the human to be detected) by depth difference values (with threshold
σ). We assign a three-bit one-hot code for each category, so for each
pixel u = (x, y) the feature f(u) is computed as (Figure 3):

fd(u) =

⎧
⎨
⎩

100, |d(u)− d(lk)| ≤ σ
010, d(u)− d(lk) > σ
001, d(u)− d(lk) < −σ

(2)

We divide the ROI into α × β cells, and to obtain fast computation
speed, one point rather than all points is randomly picked from each
cell, the one-hot code of the picked points in all the cells are concate-
nated to build a feature vector.

The feature extracted in above manner is able to shield the large
variation of depth differences among pixels while retaining the occlu-
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sion relationships (the category) between humans and their surround-
ing environments. Also, using one-hot code can facilitate processing
for many classification methods. It should be noted that [18] also
seek to threshold depth difference value, however, they used a hard
template with strong prior knowledge to perform classification. Our
work is significantly different as we turn the category information of
pixels into features and train a classifier with them, which leverages
the advantage of large amount of data to account for various kinds of
occlusions and view changes.

Binarized Local Surface Descriptor (BLSD) One-hot Depth D-
ifference Descriptor (ODDD) focuses on describing the complex
depth pattern formed by humans and their surrounding environ-
ments, but it is ineffective in characterizing the local geometrical
property of objects’ surfaces, which has been proven to be impor-
tant in RGBD object recognition tasks [25]. With depth informa-
tion, the 2D pixels can be reprojected into 3D space as point cloud,
which represent the 3D surfaces of the scene. For a pixel location
u = (x, y), the 3D surface normal vector can be approximated as
#      »

n(u) =
(

∂d(u)
∂x

, ∂d(u)
∂y

,−1
)T

[25]. Instead of building a histogram
of normal vectors which loses the spatial information of points, we
propose a binarized local surface descriptor (BLSD) which encodes
the local surface smoothness in different spatial locations (Figure 4).
The feature is also extracted from the ROI in Sec. 2.2.1.

For a pixel location u = (x, y), we first compute the Normal Vec-
tor Difference (NVD):

fn(u) =
#           »

Δn(u) =
#      »

n(u)− #        »

n(lk) (3)

where
#      »

n(u) and
#        »

n(lk) are normalized normal vectors at u and lk.
NVD is much more robust to view point change than normal vectors
since the normal vector at head-top lk is substracted. And we also di-
vide the ROI into cells, one point is randomly picked in each cell and
its NVD is computed. Concatenating the NVDs of all the sampled
points in all the cells will form a feature vector Fk which is highly
redundant. Instead of using this feature vector for classification, we
convert it to a binary code which is much more compact and can be
more effectively processed.

We follow the approach of random forest based hashing to learn
the compact binary codes [14]. A set of random forests {Ti}Mi=1 is
trained from the training data. Each Ti = {t1i , t2i , ..., tNi } is trained
using a randomly selected subset of training data and a randomly s-
elected subset of features of Fk, which serves as a binary test for
generating one bit of the binary code (i.e. it generates 1 if Fk is clas-
sified as positive and 0 otherwise). In this manner, we are able to
obtain a compact M bit BLSD which is combined with ODDD as
our final binarized features for classification.

2.2.3 Training and classification

For training the classfier, we use 7,600 positive and 25,060 negative
training samples. These samples are obtained in the following way:
firstly detections are generated by the first stage of our method on
23 RGB-D video sequences, then 7,600 true human head-tops and
25,060 false positives are manual selected. Finally, ROIs are deter-
mined and from which HSDs are extracted.

In the classification procedure, we use a linear Support Vector Ma-
chine (SVM) to classify the Head-shoulder Descriptor (HSD) (by
concatenating ODDD and BLSD) for an ROI to decide whether the
region contains a human head or not.

Figure 4: Binarized Local Surface Descriptor (BLSD). Head-top point lk is
in red color and randomly sampled points u are in blue color. Normal vector
differences (NVDs) are computed and concatenated, and then are converted
into a compact binary code by random forest hashing.

3 EXPERIMENTS AND DISCUSSIONS

We evaluate the detection accuracy and computational efficiency of
the proposed method and compare it with other state-of-the-art ap-
proaches on four available datasets. These datasets are captured with
Kinect at 640× 480 resolution.

3.1 Datasets and Metrics for Evaluation

The first dataset is the CLOTHING STORE [16, 17]. It contains
two video sequences of 45 minutes length each. The scene is clut-
tered with pillars, hangers, clothes, cabinets and shoe racks. People
take on various poses such as walking, sitting and bending, and they
interact with each other frequently.

The second and third datasets named OFFICE and
MOBILE PLATFORM are provided by Choi et al. [5]. The
former contains 17 video sequences and was captured in an office
room. The environment is cluttered, and people in this dataset
face different directions and take various poses, such as standing,
walking, and sitting on chairs. The latter was collected with a Kinect
mounted on a PR2 robot driving around in a building. It contains 18
video sequences with different scenes. This dataset includes various
illumination conditions and cluttered backgrounds.

To the best of our knowledge, there is no publicly available
RGB-D dataset captured under dark illumination for person detec-
tion. In order to comprehensively assess the performance of our
method in such environments, we collected a challenging dataset
named DARK. This dataset is captured at night with dark illumi-
nation which makes the persons indistinguishable from RGB im-
ages, as shown in Figure 7 (d). We will show that our method works
well under such weak illumination or totally dark conditions. This
new dataset is available at http://www.cv.fudan.edu.cn/
humandetection.htm.

Also, we evaluate the performance via false-positive-per-image
(FPPI) vs. miss-rate in our experiments. FPPI is computed in
a standard way, as total number of false positives divided by
frame numbers. Four images per second from OFFICE and
MOBILE PLATFORM [5], one image every three seconds from
CLOTHING STORE and DARK are selected to evaluate the per-
formance [17]. A successful detection is counted if the overlap ratio
between the annotated bounding box and the detected bounding box
is above 0.5.
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Figure 5: Comparison results with other approaches on four datasets CLOTHING STORE, OFFICE, MOBILE PLATFORM and DARK.

3.2 Analysis and Evaluation

We evaluate the detection accuracy and computational efficiency of
the proposed method, with the overall system performance against
other methods for a quantitative evaluation, and then we provide a
comprehensive evaluations respectively on the computational times,
the role of first stage, the contribution of each feature, and the effect
of different distance.

Computational Times The proposed system was measured on a
desktop PC with i5-2500 CPU and 8GB RAM, and runs at 40 fps
without GPU acceleration, which is faster than the recording speed
of Kinect (30 fps).

Overall system performance We compare the proposed system
against a conventional HOG detector [6], a depth-based detector pro-
posed by Xia et al. [30], a Combo-HOD detector [22], a color-depth
detector proposed by Choi et al. [5], an RWM human locator [18],
and cascade classifier proposed by Munaro et al. [19] on four dataset-
s illustrated in Figure 5 (a)-(d). The results shown in Fig. 5 are ob-
tained by using the codes from original authors [18, 19] and by our
implementation [6, 22, 30]. The performance of [5] is only evaluat-
ed on OFFICE and MOBILE PLATFORM (the performance is
reported by the authors), as the source code is not available.

The experiments show that our algorithm outperforms state-of-
the-art detectors. In the results, the performance of HOG detector
is limited due to the clutter of background and various people’s pos-
es in color images. Xia et al.’s method uses a 2D head contour model
and a 3D head surface model, which is strongly dependent on human
shape, it may fail when in side-view cases. The Combo-HOD detec-
tor and Munaro et al.’s method work well in spacious environments,
but the performance decreases in our test scenes where people are oc-
cluded and posing variedly such as sitting or bowing. The approach
proposed by Choi et al. combines multiple cues based on color and
depth data. But it may fail because the depth information is not fully
exploited. The RWM locator has a strong assumption of the parame-
ter in different categories so that it is easy to fail in divergent scenes
of occlusion and tilt.

The proposed method using only depth information provides a
more reliable result than the method HOG using RGB data only and
the method of Xia et al. using depth only. Moreover, our method even
yields higher accuracy than the methods [22, 5, 18, 19] , which utilize
both color and depth information. Especially in the DARK dataset,
where RGB information is limited and many detector with RGB can
not work, our approach is significantly superior to others. Some de-

tecting examples are shown in Figure 7. This demonstrates that our
method is quite robust in dealing with real-world challenging tasks
including occlusion, variations in postures and clutter, and also dark
illumination.

Table 1: Average of miss rate and FPPI in first stage.

Dataset Miss Rate FPPI
CLOTHING STORE 0.044 41.12

OFFICE 0.049 50.32
MOBILE PLATFORM 0.027 31.45

DARK 0.057 44.32
Average 0.044 41.80

Contribution of the first stage We evaluate it on four datasets
with the results in Table 1 with average miss rate at 4.4% and aver-
age FPPI at 41.80. The results show that only a few false positives
are contained in the responses. This indicates that the finding possi-
ble head-top points stage is very effective for search space reduction.
And in this stage, the average run time for one frame is around 10
ms, which is fast enough to ensure the real-time processing. On av-
erage, about 25 points from the three hundred thousand pixels in a
frame are detected as candidate head-top points (1/12,000).

Contribution of the two features We compare each feature
used in the proposed descriptor separately. In this experiment, we
test each feature at a time to compare the detection results on
CLOTHING STORE. As illustrated in Figure 6 (a), using only
one feature (ODDD or BLSD) may dramatically decrease the per-
formance than combining ODDD and BLSD together. In addition,
we compare the influence between depth difference only and ODDD
in Figure 6 (a). It indicates that the detection performance of ODD-
D can be improved in average precision much higher than directly
using depth differences.

Impact of the distance We evaluate the effect of the distance from
camera on detection performance. As the Microsoft Kinect sensor
has a practical ranging limit of 0.8m− 3.5m distance [10], the long
distance out of the practical range may be more fragmentary and
noisier than the short distance. Figure 6 (b) depicting the analysis of
the effects of long range (> 3.5m) and short range (≤ 3.5m) shows
that the proposed method can provide higher detection accuracy for
nearer humans.
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Figure 7: Examples of detection results on (a) CLOTHING STORE, (b) OFFICE, (c) MOBILE PLATFORM, and (d) DARK.
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Figure 6: (a) Contribution analysis of each detection feature. The red curve
represents the results of the method with both ODDD and BLSD features.
Purple and yellow curves show the results of a specific feature either BLSD
or ODDD. Blue curve represents depth difference feature. (b) presents the
detection performance for different distance ranges ( >3.5m or <3.5m).

4 CONCLUSION

We have presented in this paper a novel two-staged method for de-
tecting humans in depth images. The possible human head-top points
are extracted in the edge map by the first stage. These candidates are
then fed to the second verification stage to output the final detection
results. Experiment results show that the proposed method (without
RGB information) can reliably detect people in complex, dynamic
and even dark environments in real time with high accuracy, and even
outperforms state-of-the-art approaches that use RGB-D data.
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